Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Machine learning for microscopy data analytics targeting real-time optical characterization of semiconductor nanocrystals
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Machine learning for microscopy data analytics targeting real-time optical characterization of semiconductor nanocrystals

  • Amitrajit Mukherjee1,
  • Robby Reynaerts  ORCID: orcid.org/0000-0002-2551-51451 na1,
  • Bapi Pradhan1 na1,
  • Sudipta Seth1,
  • Andreas T. Rösch2,
  • Tamali Banerjee3,
  • Lata Chouhan1,
  • Handong Jin4,
  • Christian Sternemann  ORCID: orcid.org/0000-0001-9415-11065,
  • Michael Paulus5,
  • Luca Leoncino6,
  • Kunal S. Mali  ORCID: orcid.org/0000-0002-9938-64461,
  • Steven De Feyter  ORCID: orcid.org/0000-0002-0909-92921,
  • Maarten B. J. Roeffaers  ORCID: orcid.org/0000-0001-6582-65147,
  • E. W. Meijer  ORCID: orcid.org/0000-0003-4126-74922,8,
  • Johan Hofkens  ORCID: orcid.org/0000-0002-9101-05671,8 &
  • …
  • Elke Debroye  ORCID: orcid.org/0000-0003-1087-47591 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Characterization and analytical techniques
  • Wide-field fluorescence microscopy

Abstract

Semiconductor nanocrystals with uniform morphology and composition are expected to show consistent responses during light-matter interactions. However, microscopy reveals significant variations in their photoluminescence blinking patterns, even under identical experimental conditions. This discrepancy arises from differences in crystal defects and nonradiative trap states. As a result, heterogeneous blinking patterns serve as valuable indicator of material quality, uncovering several concealed features through statistical analysis of large datasets. Nonetheless, efficient segregation and analysis of numerous blinking trajectories remain a challenge due to laborious calculations, computational bottlenecks, and manual intervention. In this study, we introduce a robust unsupervised machine learning (UML) assisted module to cluster high-dimensional blinking patterns in near-real-time, while calculating category-wise power spectral densities (PSD) to investigate active traps. Furthermore, we explore the impact of data preprocessing on clustering performance. The ‘clustering-segregation-analysis’ (UML-PSD) methodology demonstrates versatility, paving a way to advance contemporary (micro)spectroscopy, specifically for rapid and cost-effective optical characterization of semiconductor nanocrystals.

Data availability

The trial blinking datasets, with and without multi-state blinking trajectories, can be found in the repository https://doi.org/10.5281/zenodo.1771595781.

Code availability

The codes are stored in the repository https://doi.org/10.5281/zenodo.17715957 (for UML analysis81) and https://zenodo.org/records/8027381 (for PSD analysis82). These codes can be universally utilized on any dataset of choice according to the application and interest of the user.

References

  1. Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).

    Google Scholar 

  2. Bout, D. A. V. et al. Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules. Science 277, 1074–1077 (1997).

    Google Scholar 

  3. Hofkens, J. et al. Probing photophysical processes in individual multichromophoric dendrimers by single-molecule spectroscopy. J. Am. Chem. Soc. 122, 9278–9288 (2000).

    Google Scholar 

  4. Gensch, T. et al. Fluorescence detection from single dendrimers with multiple chromophores. Angew. Chem. Int. Ed. 38, 3752–3756 (1999).

    Google Scholar 

  5. Cotlet, M. et al. Probing intramolecular förster resonance energy transfer in a naphthaleneimide−peryleneimide−terrylenediimide-based dendrimer by ensemble and single-molecule fluorescence spectroscopy. J. Am. Chem. Soc. 127, 9760–9768 (2005).

    Google Scholar 

  6. Masuo, S. et al. Multichromophoric dendrimers as single-photon sources:  a single-molecule study. J. Phys. Chem. B 108, 16686–16696 (2004).

    Google Scholar 

  7. Clifford, J. N. et al. Fluorescence of single molecules in polymer films: Sensitivity of blinking to local environment. J. Phys. Chem. B 111, 6987–6991 (2007).

    Google Scholar 

  8. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Google Scholar 

  9. Efros, A. L. & Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78, 1110–1113 (1997).

    Google Scholar 

  10. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior. J. Chem. Phys. 112, 3117–3120 (2000).

    Google Scholar 

  11. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. “On”/“off” fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 115, 1028–1040 (2001).

    Google Scholar 

  12. Galisteo-López, J. F., Calvo, M. E., Rojas, T. C. & Míguez, H. Mechanism of photoluminescence intermittency in organic–inorganic perovskite nanocrystals. ACS Appl. Mater. Interfaces 11, 6344–6349 (2019).

    Google Scholar 

  13. Wen, X. et al. Mobile charge-induced fluorescence intermittency in methylammonium lead bromide perovskite. Nano Lett. 15, 4644–4649 (2015).

    Google Scholar 

  14. Chouhan, L., Ghimire, S. & Biju, V. Blinking beats bleaching: the control of superoxide generation by photo-ionized perovskite nanocrystals. Angew. Chem. 131, 4929–4933 (2019).

    Google Scholar 

  15. Mukherjee, A., Roy, M., Pathoor, N., Aslam, M. & Chowdhury, A. Influence of atmospheric constituents on spectral instability and defect-mediated carrier recombination in hybrid perovskite nanoplatelets. J. Phys. Chem. C 125, 17133–17143 (2021).

    Google Scholar 

  16. Jin, H. et al. Single-particle optical study on the effect of chloride post-treatment of MAPbI3 nano/microcrystals. Nanoscale 15, 5437–5447 (2023).

    Google Scholar 

  17. Behera, T., Pathoor, N., Phadnis, C., Buragohain, S. & Chowdhury, A. Spatially correlated photoluminescence blinking and flickering of hybrid-halide perovskite micro-rods. J. Lumin. 223, 117202 (2020).

    Google Scholar 

  18. Pathoor, N. et al. Fluorescence blinking beyond nanoconfinement: spatially synchronous intermittency of entire perovskite microcrystals. Angew. Chem. Int. Ed. 57, 11603–11607 (2018).

    Google Scholar 

  19. Jin, H. et al. It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 7, 397–410 (2020).

    Google Scholar 

  20. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Google Scholar 

  21. Mahajan, S. Defects in semiconductors and their effects on devices. Acta mater. 48, 137–149 (2000).

    Google Scholar 

  22. Bhatia, H., Ghosh, B. & Debroye, E. Colloidal FAPbBr3 perovskite nanocrystals for light emission: what’s going on? J. Mater. Chem. C. 10, 13437–13461 (2022).

    Google Scholar 

  23. Bhatia, H. et al. Single-step synthesis of dual phase bright blue-green emitting lead halide perovskite nanocrystal thin films. Chem. Mater. 31, 6824–6832 (2019).

    Google Scholar 

  24. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    Google Scholar 

  25. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Google Scholar 

  26. Jin, H. et al. Experimental evidence of chloride-induced trap passivation in lead halide perovskites through single particle blinking studies. Adv. Opt. Mater. 9, 2002240 (2021).

    Google Scholar 

  27. Kiligaridis, A. et al. Are Shockley-Read-Hall and ABC models valid for lead halide perovskites? Nat. Commun. 12, 3329 (2021).

    Google Scholar 

  28. Gerhard, M. et al. Microscopic insight into non-radiative decay in perovskite semiconductors from temperature-dependent luminescence blinking. Nat. Commun. 10, 1698 (2019).

    Google Scholar 

  29. Paul, S., Kishore, G. & Samanta, A. Photoluminescence blinking of quantum confined CsPbBr3 perovskite nanocrystals: influence of size. J. Phys. Chem. C 127, 10207–10214 (2023).

    Google Scholar 

  30. Ghosh, S. et al. Slower auger recombination in 12-faceted dodecahedron CsPbBr3 nanocrystals. J. Phys. Chem. Lett. 14, 1066–1072 (2023).

    Google Scholar 

  31. Gibson, N. A., Koscher, B. A., Alivisatos, A. P. & Leon, S. R. Excitation intensity dependence of photoluminescence blinking in CsPbBr3 perovskite nanocrystals. J. Phys. Chem. C. 122, 12106–12113 (2018).

    Google Scholar 

  32. Yuan, H. et al. Photoluminescence blinking of single-crystal methylammonium lead iodide perovskite nanorods induced by surface traps. ACS Omega 1, 148–159 (2016).

    Google Scholar 

  33. Tian, Y. et al. Giant photoluminescence blinking of perovskite nanocrystals reveals single-trap control of luminescence. Nano Lett. 15, 1603–1608 (2015).

    Google Scholar 

  34. Roy, D. et al. Excitation-energy-dependent photoluminescence quantum yield is inherent to optically robust core/alloy-shell quantum dots in a vast energy landscape. J. Phys. Chem. Lett. 13, 2404–2417 (2022).

    Google Scholar 

  35. Liao, M., Shan, B. & Li, M. Role of trap states in excitation wavelength-dependent photoluminescence of strongly quantum-confined all-inorganic CsPbBr3 perovskites with varying dimensionalities. Phys. Chem. C. 125, 21062–21069 (2021).

    Google Scholar 

  36. Zhang, Y. et al. Operationally stable and efficient CsPbI3−xBrx perovskite nanocrystal light-emitting diodes enabled by ammonium ligand surface treatment. ACS Photonics 10, 2774–2783 (2023).

    Google Scholar 

  37. Takagi, T., Omagari, S. & Vacha, M. Suppression of blinking in single CsPbBr3 perovskite nanocrystals through surface ligand exchange. Phys. Chem. Chem. Phys. 25, 19004–19012 (2023).

    Google Scholar 

  38. Mukherjee, A. et al. Insights on heterogeneity in blinking mechanisms and non-ergodicity using sub-ensemble statistical analysis of single quantum-dots. J. Chem. Phys. 151, 084701 (2019).

    Google Scholar 

  39. Anaya, M., Galisteo-Lopez, J. F., Calvo, M. E., Espinos, J. P. & Míguez, H. Origin of light-induced photophysical effects in organic metal halide perovskites in the presence of oxygen. J. Phys. Chem. Lett. 9, 3891–3896 (2018).

    Google Scholar 

  40. Tian, Y. et al. Enhanced organo-metal halide perovskite photoluminescence from nanosized defect-free crystallites and emitting sites. J. Phys. Chem. Lett. 6, 4171–4177 (2015).

    Google Scholar 

  41. Sampat, S. et al. Multistate blinking and scaling of recombination rates in individual silica-coated CdSe/CdS nanocrystals. ACS Photonics 2, 1505–1512 (2015).

    Google Scholar 

  42. Frantsuzov, P. A., Volkán-Kacsó, S. & Jankó, B. Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers. Phys. Rev. Lett. 103, 207402 (2009).

    Google Scholar 

  43. Frantsuzov, P. A., Volkán-Kacsó, S. & Jankó, B. Universality of the fluorescence intermittency in nanoscale systems: experiment and theory. Nano Lett. 13, 402–408 (2013).

    Google Scholar 

  44. Seth, S. et al. Presence of maximal characteristic time in photoluminescence blinking of MAPbI3 perovskite. Adv. Energy Mater. 11, 2102449 (2021).

    Google Scholar 

  45. Praneeth, N. V. S. et al. Amine-free multi-faceted CsPbBr3 nanocrystals for complete suppression of long-lived dark states. Adv. Optical Mater. 12, 2303222 (2024).

  46. Ruiz, L. G. B., Pegalajar, M. C., Arcucci, R. & Molina-Solana, M. A time-series clustering methodology for knowledge extraction in energy consumption data. Expert Syst. Appl. 160, 113731 (2020).

    Google Scholar 

  47. Javed, A., Lee, B. S. & Rizzo, D. M. A benchmark study on time series clustering. Mach. Learn. Appl. 1, 100001 (2020).

    Google Scholar 

  48. Giordano, D., Mellia, M. & Cerquitelli, T. K-MDTSC: K-multi-dimensional time-series clustering algorithm. Electronics 10, 1166 (2021).

    Google Scholar 

  49. Kobylin, O. & Lyashenko, V. Time series clustering based on the K-means algorithm. J. La Multiapp 1, 1–7 (2020).

    Google Scholar 

  50. Luo, Z., Zhang, L., Liu, N. & Wu, Y. Time series clustering of COVID-19 pandemic-related data. Data Sci. Manag. 6, 79–87 (2023).

    Google Scholar 

  51. Wang, X. & Smith, K. Characteristic-based clustering for time series data. Data Min. Knowl. Discov. 13, 335–364 (2006).

    Google Scholar 

  52. Landaluce-Calvo, M. I. & Modroño-Herrán, J. I. Classification for time series data. An unsupervised approach based on reduction of dimensionality. J. Classification 37, 380–398 (2020).

    Google Scholar 

  53. Aghabozorgi, S., Shirkhorshidi, A. S. & Wah, T. Y. Time-series clustering–A decade review. Inf. Syst. 53, 16–38 (2015).

    Google Scholar 

  54. Rani, S. & Sikka, G. Recent techniques of clustering of time series data: a survey. Int. J. Comput. Appl. 52, 0975–8887 (2012).

    Google Scholar 

  55. Behera, T., Pathoor, N., Mukherjee, R. & Chowdhury, A. Deciphering modes of long-range energy transfer in perovskite crystals using confocal excitation and wide-field fluorescence spectral imaging. Methods Appl. Fluorescence 10, 044013 (2022).

    Google Scholar 

  56. Pathoor, N. & Chowdhury, A. Spatially correlated blinking of perovskite micro-crystals: deciphering effective modes of communication between distal photoexcited carriers. ACS Photonics 10, 49–57 (2023).

    Google Scholar 

  57. Pathoor, N., Mukherjee, A. & Chowdhury, A. Investigating spatiotemporal correlation of multi-state photoluminescence intermittency in organo-lead bromide microcrystal films. J. Phys. Chem. C. 126, 5991–5999 (2022).

    Google Scholar 

  58. Rösch, A. T. et al. Double lamellar morphologies and odd-even effects in two- and three-dimensionalN,N′-bis(n-alkyl)-naphthalenediimide materials. Chem. Mater. 33, 8800–8811 (2021).

    Google Scholar 

  59. Dey, A. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021).

    Google Scholar 

  60. Yuan, H. et al. Imaging Heterogeneously Distributed Photo-Active Traps in Perovskite Single Crystals. Adv. Mater. 30, 1705494 (2018).

    Google Scholar 

  61. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    Google Scholar 

  62. Lord, E., Willems, M., Lapointe, F.-J. & Makarenkov, V. Using the stability of objects to determine the number of clusters in datasets. Inf. Sci. 393, 29–46 (2017).

    Google Scholar 

  63. Garcia-Dias, R., Vieira, S., Pinaya, W. H. L. & Mechelli, A. Chapter 13 - Clustering analysis, machine learning: methods and applications to brain disorders. Academic Press 227–247 (2020).

  64. Adhau, S. P., Moharil, R. M. & Adhau, P. G. K-Means clustering technique applied to availability of micro hydro power. Sustain. Energy Technol. Assess. 8, 191–201 (2014).

    Google Scholar 

  65. Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974).

    Google Scholar 

  66. Liu, Y., Li, Z., Xiong, H., Gao, X. & Wu, J. Understanding of Internal Clustering Validation Measures. In IEEE International Conference on Data Mining, 911–916 (2010).

  67. Ujjwal, M. & Bandyopadhyay, S. Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1650–1654 (2002).

    Google Scholar 

  68. Thorndike, R. L. Who belongs in the family? Psychometrika 18, 267–276 (1953).

    Google Scholar 

  69. Ketchen, D. J. & Shook, C. L. The application of cluster analysis in strategic management research: an analysis and critique. Strat. Manag. J. 17, 441–458 (1996).

    Google Scholar 

  70. Schubert, E. Stop using the elbow criterion for K-means and how to choose the number of clusters instead. ACM SIGKDD Explorat. Newsl. 25, 36–42 (2023).

    Google Scholar 

  71. Vlachos, M., Lin, J., Keogh, E. & Gunopulos, D. A wavelet-based anytime algorithm for K-means clustering of time series. In Proc. Workshop on Clustering High Dimensionality Data and its Applications, 3rd SIAM International Conference on Data Mining, San Francisco, CA, USA, pp 23–30 (2003).

  72. Popivanov, I. & Miller, R. J. Similarity search over time series data using wavelets. In Proc. of the 18th International Conference on Data Engineering, San Jose, CA, USA, pp. 212–221 (2002).

  73. Giacofci, M., Lambert-Lacroix, S., Marot, G. & Picard, F. Wavelet based clustering for mixed effects functional models in high dimension. Biometrics 69, 31–40 (2013).

    Google Scholar 

  74. Huntala, Y., Karkkainen, J. & Toivonen, H. Mining for similarities in aligned time series using wavelets. In Proc. of the Data Mining and Knowledge Discovery: Theory, Tools, and Technology, Orlando, FL, pp. 150–160 (1999).

  75. Phungtua-eng, T. & Nishikawa, Y. Elastic data binning: time-series sketching for time-domain astrophysics analysis. ACM SIGAPP Appl. Comput. Rev. 23, 5–22 (2023).

    Google Scholar 

  76. Jang, J.-Y., Oh, H.-S., Lim, Y. & Cheung, Y. K. Ensemble clustering for step data via binning. Biometrics 77, 293–304 (2021).

    Google Scholar 

  77. Louis, B. et al. In operando locally-resolved photophysics in perovskite solar cells by correlation clustering imaging. Adv. Mater. 37, 2413126 (2025).

    Google Scholar 

  78. Seth, S. et al. Unveiling the local fate of charge carriers in halide perovskite thin films via correlation clustering imaging. Chem. Biomed. Imaging 3, 244–252 (2025).

    Google Scholar 

  79. PicoQuant GmbH. SymPhoTime 64 v2.11 [software]. PicoQuant https://www.picoquant.com/products/category/software/symphotime-64-fluorescence-lifetime-imaging-and-correlation-software.

  80. www.imec-int.com/en/articles/chip-scale-microscope-high-throughput-fluorescence-imaging.

  81. Mukherjee, A. Clustering Photoluminescence Blinking Trajectories 1.0. Zenodo https://doi.org/10.5281/zenodo.17715957 (2025).

  82. Podshivaylov, E. A. & Frantsuzov, P. A. Power-Spectral-Density: v1.0 (v1.0). Zenodo https://doi.org/10.5281/zenodo.8027381 (2023).

Download references

Acknowledgements

R.R., K.S.M. and S.D.F. acknowledge financial support from the Research Foundation – Flanders (FWO grant numbers G0H2122N, EOS 40007495) and the KU Leuven Internal Funds (grant number C14/23/090). B.P. acknowledges Industrieel Onderzoeksfonds KU Leuven (IOF)-VTI-25-00160. S.S. acknowledges the support of Marie Skłodowska-Curie postdoctoral fellowship (No. 101151427, SPS_Nano) from the European Union’s Horizon Europe program, short stay abroad grant (K257023N) and travel grant (K147824N) from Research Foundation-Flanders (FWO). J.H. acknowledges financial support from the Research Foundation-Flanders (FWO grant numbers S002019N, G098319N, S004322N Gigapixel and G0AHQ25N), the KU Leuven Research Fund (iBOF-21-085 PERSIST), the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04), and the MPI as a fellow. E.D. acknowledges funding from the KU Leuven Internal Funds (grant numbers C14/23/090, CELSA/23/018) and FWO grant number G0AHQ25N, and the European Union (ERC Starting Grant, 101117274 X-PECT). However, the views and opinions expressed are those of the authors only and do not necessarily reflect those of the European Union or European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Author notes
  1. These authors contributed equally: Robby Reynaerts, Bapi Pradhan.

Authors and Affiliations

  1. Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium

    Amitrajit Mukherjee, Robby Reynaerts, Bapi Pradhan, Sudipta Seth, Lata Chouhan, Kunal S. Mali, Steven De Feyter, Johan Hofkens & Elke Debroye

  2. Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands

    Andreas T. Rösch & E. W. Meijer

  3. Department of Computer Science, Indian Institute of Technology Bombay, Mumbai, India

    Tamali Banerjee

  4. School of Science, Shandong Jiaotong University, Jinan, China

    Handong Jin

  5. Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany

    Christian Sternemann & Michael Paulus

  6. Electron Microscopy Facility, Istituto Italiano di Tecnologia, Genova, Italy

    Luca Leoncino

  7. cMACS, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium

    Maarten B. J. Roeffaers

  8. Max Planck Institute for Polymer Research, Mainz, Germany

    E. W. Meijer & Johan Hofkens

Authors
  1. Amitrajit Mukherjee
    View author publications

    Search author on:PubMed Google Scholar

  2. Robby Reynaerts
    View author publications

    Search author on:PubMed Google Scholar

  3. Bapi Pradhan
    View author publications

    Search author on:PubMed Google Scholar

  4. Sudipta Seth
    View author publications

    Search author on:PubMed Google Scholar

  5. Andreas T. Rösch
    View author publications

    Search author on:PubMed Google Scholar

  6. Tamali Banerjee
    View author publications

    Search author on:PubMed Google Scholar

  7. Lata Chouhan
    View author publications

    Search author on:PubMed Google Scholar

  8. Handong Jin
    View author publications

    Search author on:PubMed Google Scholar

  9. Christian Sternemann
    View author publications

    Search author on:PubMed Google Scholar

  10. Michael Paulus
    View author publications

    Search author on:PubMed Google Scholar

  11. Luca Leoncino
    View author publications

    Search author on:PubMed Google Scholar

  12. Kunal S. Mali
    View author publications

    Search author on:PubMed Google Scholar

  13. Steven De Feyter
    View author publications

    Search author on:PubMed Google Scholar

  14. Maarten B. J. Roeffaers
    View author publications

    Search author on:PubMed Google Scholar

  15. E. W. Meijer
    View author publications

    Search author on:PubMed Google Scholar

  16. Johan Hofkens
    View author publications

    Search author on:PubMed Google Scholar

  17. Elke Debroye
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: A.M., E.D., Methodology (Machine Learning): A.M., T.B., Methodology (Power spectral density): S.S., Wide-field imaging: A.M., L.C., Scanning tunneling spectroscopy: R.R., Sample preparation & characterization (CsPbBr3 system): B.P., H.J., C.S., M.P., L.L., Sample preparation & characterization (Alkyl-NDI SAMNs): R.R., A.T.R., Investigation & Visualization: A.M., Funding acquisition: E.D., J.H., Supervision: E.D., J.H., Writing – original draft: A.M., R.R., Writing—review & editing: K.S.M., S.S., B.P., S.D.F., M.R., E.W.M., J.H., E.D., #R.R. and B.P. contributed equally.

Corresponding authors

Correspondence to Amitrajit Mukherjee, Johan Hofkens or Elke Debroye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Marco Califano, Rafael López-Arteaga and the other anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Code

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Reynaerts, R., Pradhan, B. et al. Machine learning for microscopy data analytics targeting real-time optical characterization of semiconductor nanocrystals. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68939-7

Download citation

  • Received: 28 February 2025

  • Accepted: 21 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68939-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing