Abstract
Semiconductor nanocrystals with uniform morphology and composition are expected to show consistent responses during light-matter interactions. However, microscopy reveals significant variations in their photoluminescence blinking patterns, even under identical experimental conditions. This discrepancy arises from differences in crystal defects and nonradiative trap states. As a result, heterogeneous blinking patterns serve as valuable indicator of material quality, uncovering several concealed features through statistical analysis of large datasets. Nonetheless, efficient segregation and analysis of numerous blinking trajectories remain a challenge due to laborious calculations, computational bottlenecks, and manual intervention. In this study, we introduce a robust unsupervised machine learning (UML) assisted module to cluster high-dimensional blinking patterns in near-real-time, while calculating category-wise power spectral densities (PSD) to investigate active traps. Furthermore, we explore the impact of data preprocessing on clustering performance. The ‘clustering-segregation-analysis’ (UML-PSD) methodology demonstrates versatility, paving a way to advance contemporary (micro)spectroscopy, specifically for rapid and cost-effective optical characterization of semiconductor nanocrystals.
Data availability
The trial blinking datasets, with and without multi-state blinking trajectories, can be found in the repository https://doi.org/10.5281/zenodo.1771595781.
Code availability
The codes are stored in the repository https://doi.org/10.5281/zenodo.17715957 (for UML analysis81) and https://zenodo.org/records/8027381 (for PSD analysis82). These codes can be universally utilized on any dataset of choice according to the application and interest of the user.
References
Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).
Bout, D. A. V. et al. Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules. Science 277, 1074–1077 (1997).
Hofkens, J. et al. Probing photophysical processes in individual multichromophoric dendrimers by single-molecule spectroscopy. J. Am. Chem. Soc. 122, 9278–9288 (2000).
Gensch, T. et al. Fluorescence detection from single dendrimers with multiple chromophores. Angew. Chem. Int. Ed. 38, 3752–3756 (1999).
Cotlet, M. et al. Probing intramolecular förster resonance energy transfer in a naphthaleneimide−peryleneimide−terrylenediimide-based dendrimer by ensemble and single-molecule fluorescence spectroscopy. J. Am. Chem. Soc. 127, 9760–9768 (2005).
Masuo, S. et al. Multichromophoric dendrimers as single-photon sources: a single-molecule study. J. Phys. Chem. B 108, 16686–16696 (2004).
Clifford, J. N. et al. Fluorescence of single molecules in polymer films: Sensitivity of blinking to local environment. J. Phys. Chem. B 111, 6987–6991 (2007).
Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).
Efros, A. L. & Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78, 1110–1113 (1997).
Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior. J. Chem. Phys. 112, 3117–3120 (2000).
Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. “On”/“off” fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 115, 1028–1040 (2001).
Galisteo-López, J. F., Calvo, M. E., Rojas, T. C. & Míguez, H. Mechanism of photoluminescence intermittency in organic–inorganic perovskite nanocrystals. ACS Appl. Mater. Interfaces 11, 6344–6349 (2019).
Wen, X. et al. Mobile charge-induced fluorescence intermittency in methylammonium lead bromide perovskite. Nano Lett. 15, 4644–4649 (2015).
Chouhan, L., Ghimire, S. & Biju, V. Blinking beats bleaching: the control of superoxide generation by photo-ionized perovskite nanocrystals. Angew. Chem. 131, 4929–4933 (2019).
Mukherjee, A., Roy, M., Pathoor, N., Aslam, M. & Chowdhury, A. Influence of atmospheric constituents on spectral instability and defect-mediated carrier recombination in hybrid perovskite nanoplatelets. J. Phys. Chem. C 125, 17133–17143 (2021).
Jin, H. et al. Single-particle optical study on the effect of chloride post-treatment of MAPbI3 nano/microcrystals. Nanoscale 15, 5437–5447 (2023).
Behera, T., Pathoor, N., Phadnis, C., Buragohain, S. & Chowdhury, A. Spatially correlated photoluminescence blinking and flickering of hybrid-halide perovskite micro-rods. J. Lumin. 223, 117202 (2020).
Pathoor, N. et al. Fluorescence blinking beyond nanoconfinement: spatially synchronous intermittency of entire perovskite microcrystals. Angew. Chem. Int. Ed. 57, 11603–11607 (2018).
Jin, H. et al. It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 7, 397–410 (2020).
Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).
Mahajan, S. Defects in semiconductors and their effects on devices. Acta mater. 48, 137–149 (2000).
Bhatia, H., Ghosh, B. & Debroye, E. Colloidal FAPbBr3 perovskite nanocrystals for light emission: what’s going on? J. Mater. Chem. C. 10, 13437–13461 (2022).
Bhatia, H. et al. Single-step synthesis of dual phase bright blue-green emitting lead halide perovskite nanocrystal thin films. Chem. Mater. 31, 6824–6832 (2019).
Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).
Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
Jin, H. et al. Experimental evidence of chloride-induced trap passivation in lead halide perovskites through single particle blinking studies. Adv. Opt. Mater. 9, 2002240 (2021).
Kiligaridis, A. et al. Are Shockley-Read-Hall and ABC models valid for lead halide perovskites? Nat. Commun. 12, 3329 (2021).
Gerhard, M. et al. Microscopic insight into non-radiative decay in perovskite semiconductors from temperature-dependent luminescence blinking. Nat. Commun. 10, 1698 (2019).
Paul, S., Kishore, G. & Samanta, A. Photoluminescence blinking of quantum confined CsPbBr3 perovskite nanocrystals: influence of size. J. Phys. Chem. C 127, 10207–10214 (2023).
Ghosh, S. et al. Slower auger recombination in 12-faceted dodecahedron CsPbBr3 nanocrystals. J. Phys. Chem. Lett. 14, 1066–1072 (2023).
Gibson, N. A., Koscher, B. A., Alivisatos, A. P. & Leon, S. R. Excitation intensity dependence of photoluminescence blinking in CsPbBr3 perovskite nanocrystals. J. Phys. Chem. C. 122, 12106–12113 (2018).
Yuan, H. et al. Photoluminescence blinking of single-crystal methylammonium lead iodide perovskite nanorods induced by surface traps. ACS Omega 1, 148–159 (2016).
Tian, Y. et al. Giant photoluminescence blinking of perovskite nanocrystals reveals single-trap control of luminescence. Nano Lett. 15, 1603–1608 (2015).
Roy, D. et al. Excitation-energy-dependent photoluminescence quantum yield is inherent to optically robust core/alloy-shell quantum dots in a vast energy landscape. J. Phys. Chem. Lett. 13, 2404–2417 (2022).
Liao, M., Shan, B. & Li, M. Role of trap states in excitation wavelength-dependent photoluminescence of strongly quantum-confined all-inorganic CsPbBr3 perovskites with varying dimensionalities. Phys. Chem. C. 125, 21062–21069 (2021).
Zhang, Y. et al. Operationally stable and efficient CsPbI3−xBrx perovskite nanocrystal light-emitting diodes enabled by ammonium ligand surface treatment. ACS Photonics 10, 2774–2783 (2023).
Takagi, T., Omagari, S. & Vacha, M. Suppression of blinking in single CsPbBr3 perovskite nanocrystals through surface ligand exchange. Phys. Chem. Chem. Phys. 25, 19004–19012 (2023).
Mukherjee, A. et al. Insights on heterogeneity in blinking mechanisms and non-ergodicity using sub-ensemble statistical analysis of single quantum-dots. J. Chem. Phys. 151, 084701 (2019).
Anaya, M., Galisteo-Lopez, J. F., Calvo, M. E., Espinos, J. P. & Míguez, H. Origin of light-induced photophysical effects in organic metal halide perovskites in the presence of oxygen. J. Phys. Chem. Lett. 9, 3891–3896 (2018).
Tian, Y. et al. Enhanced organo-metal halide perovskite photoluminescence from nanosized defect-free crystallites and emitting sites. J. Phys. Chem. Lett. 6, 4171–4177 (2015).
Sampat, S. et al. Multistate blinking and scaling of recombination rates in individual silica-coated CdSe/CdS nanocrystals. ACS Photonics 2, 1505–1512 (2015).
Frantsuzov, P. A., Volkán-Kacsó, S. & Jankó, B. Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers. Phys. Rev. Lett. 103, 207402 (2009).
Frantsuzov, P. A., Volkán-Kacsó, S. & Jankó, B. Universality of the fluorescence intermittency in nanoscale systems: experiment and theory. Nano Lett. 13, 402–408 (2013).
Seth, S. et al. Presence of maximal characteristic time in photoluminescence blinking of MAPbI3 perovskite. Adv. Energy Mater. 11, 2102449 (2021).
Praneeth, N. V. S. et al. Amine-free multi-faceted CsPbBr3 nanocrystals for complete suppression of long-lived dark states. Adv. Optical Mater. 12, 2303222 (2024).
Ruiz, L. G. B., Pegalajar, M. C., Arcucci, R. & Molina-Solana, M. A time-series clustering methodology for knowledge extraction in energy consumption data. Expert Syst. Appl. 160, 113731 (2020).
Javed, A., Lee, B. S. & Rizzo, D. M. A benchmark study on time series clustering. Mach. Learn. Appl. 1, 100001 (2020).
Giordano, D., Mellia, M. & Cerquitelli, T. K-MDTSC: K-multi-dimensional time-series clustering algorithm. Electronics 10, 1166 (2021).
Kobylin, O. & Lyashenko, V. Time series clustering based on the K-means algorithm. J. La Multiapp 1, 1–7 (2020).
Luo, Z., Zhang, L., Liu, N. & Wu, Y. Time series clustering of COVID-19 pandemic-related data. Data Sci. Manag. 6, 79–87 (2023).
Wang, X. & Smith, K. Characteristic-based clustering for time series data. Data Min. Knowl. Discov. 13, 335–364 (2006).
Landaluce-Calvo, M. I. & Modroño-Herrán, J. I. Classification for time series data. An unsupervised approach based on reduction of dimensionality. J. Classification 37, 380–398 (2020).
Aghabozorgi, S., Shirkhorshidi, A. S. & Wah, T. Y. Time-series clustering–A decade review. Inf. Syst. 53, 16–38 (2015).
Rani, S. & Sikka, G. Recent techniques of clustering of time series data: a survey. Int. J. Comput. Appl. 52, 0975–8887 (2012).
Behera, T., Pathoor, N., Mukherjee, R. & Chowdhury, A. Deciphering modes of long-range energy transfer in perovskite crystals using confocal excitation and wide-field fluorescence spectral imaging. Methods Appl. Fluorescence 10, 044013 (2022).
Pathoor, N. & Chowdhury, A. Spatially correlated blinking of perovskite micro-crystals: deciphering effective modes of communication between distal photoexcited carriers. ACS Photonics 10, 49–57 (2023).
Pathoor, N., Mukherjee, A. & Chowdhury, A. Investigating spatiotemporal correlation of multi-state photoluminescence intermittency in organo-lead bromide microcrystal films. J. Phys. Chem. C. 126, 5991–5999 (2022).
Rösch, A. T. et al. Double lamellar morphologies and odd-even effects in two- and three-dimensionalN,N′-bis(n-alkyl)-naphthalenediimide materials. Chem. Mater. 33, 8800–8811 (2021).
Dey, A. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021).
Yuan, H. et al. Imaging Heterogeneously Distributed Photo-Active Traps in Perovskite Single Crystals. Adv. Mater. 30, 1705494 (2018).
Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).
Lord, E., Willems, M., Lapointe, F.-J. & Makarenkov, V. Using the stability of objects to determine the number of clusters in datasets. Inf. Sci. 393, 29–46 (2017).
Garcia-Dias, R., Vieira, S., Pinaya, W. H. L. & Mechelli, A. Chapter 13 - Clustering analysis, machine learning: methods and applications to brain disorders. Academic Press 227–247 (2020).
Adhau, S. P., Moharil, R. M. & Adhau, P. G. K-Means clustering technique applied to availability of micro hydro power. Sustain. Energy Technol. Assess. 8, 191–201 (2014).
Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974).
Liu, Y., Li, Z., Xiong, H., Gao, X. & Wu, J. Understanding of Internal Clustering Validation Measures. In IEEE International Conference on Data Mining, 911–916 (2010).
Ujjwal, M. & Bandyopadhyay, S. Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1650–1654 (2002).
Thorndike, R. L. Who belongs in the family? Psychometrika 18, 267–276 (1953).
Ketchen, D. J. & Shook, C. L. The application of cluster analysis in strategic management research: an analysis and critique. Strat. Manag. J. 17, 441–458 (1996).
Schubert, E. Stop using the elbow criterion for K-means and how to choose the number of clusters instead. ACM SIGKDD Explorat. Newsl. 25, 36–42 (2023).
Vlachos, M., Lin, J., Keogh, E. & Gunopulos, D. A wavelet-based anytime algorithm for K-means clustering of time series. In Proc. Workshop on Clustering High Dimensionality Data and its Applications, 3rd SIAM International Conference on Data Mining, San Francisco, CA, USA, pp 23–30 (2003).
Popivanov, I. & Miller, R. J. Similarity search over time series data using wavelets. In Proc. of the 18th International Conference on Data Engineering, San Jose, CA, USA, pp. 212–221 (2002).
Giacofci, M., Lambert-Lacroix, S., Marot, G. & Picard, F. Wavelet based clustering for mixed effects functional models in high dimension. Biometrics 69, 31–40 (2013).
Huntala, Y., Karkkainen, J. & Toivonen, H. Mining for similarities in aligned time series using wavelets. In Proc. of the Data Mining and Knowledge Discovery: Theory, Tools, and Technology, Orlando, FL, pp. 150–160 (1999).
Phungtua-eng, T. & Nishikawa, Y. Elastic data binning: time-series sketching for time-domain astrophysics analysis. ACM SIGAPP Appl. Comput. Rev. 23, 5–22 (2023).
Jang, J.-Y., Oh, H.-S., Lim, Y. & Cheung, Y. K. Ensemble clustering for step data via binning. Biometrics 77, 293–304 (2021).
Louis, B. et al. In operando locally-resolved photophysics in perovskite solar cells by correlation clustering imaging. Adv. Mater. 37, 2413126 (2025).
Seth, S. et al. Unveiling the local fate of charge carriers in halide perovskite thin films via correlation clustering imaging. Chem. Biomed. Imaging 3, 244–252 (2025).
PicoQuant GmbH. SymPhoTime 64 v2.11 [software]. PicoQuant https://www.picoquant.com/products/category/software/symphotime-64-fluorescence-lifetime-imaging-and-correlation-software.
www.imec-int.com/en/articles/chip-scale-microscope-high-throughput-fluorescence-imaging.
Mukherjee, A. Clustering Photoluminescence Blinking Trajectories 1.0. Zenodo https://doi.org/10.5281/zenodo.17715957 (2025).
Podshivaylov, E. A. & Frantsuzov, P. A. Power-Spectral-Density: v1.0 (v1.0). Zenodo https://doi.org/10.5281/zenodo.8027381 (2023).
Acknowledgements
R.R., K.S.M. and S.D.F. acknowledge financial support from the Research Foundation – Flanders (FWO grant numbers G0H2122N, EOS 40007495) and the KU Leuven Internal Funds (grant number C14/23/090). B.P. acknowledges Industrieel Onderzoeksfonds KU Leuven (IOF)-VTI-25-00160. S.S. acknowledges the support of Marie Skłodowska-Curie postdoctoral fellowship (No. 101151427, SPS_Nano) from the European Union’s Horizon Europe program, short stay abroad grant (K257023N) and travel grant (K147824N) from Research Foundation-Flanders (FWO). J.H. acknowledges financial support from the Research Foundation-Flanders (FWO grant numbers S002019N, G098319N, S004322N Gigapixel and G0AHQ25N), the KU Leuven Research Fund (iBOF-21-085 PERSIST), the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04), and the MPI as a fellow. E.D. acknowledges funding from the KU Leuven Internal Funds (grant numbers C14/23/090, CELSA/23/018) and FWO grant number G0AHQ25N, and the European Union (ERC Starting Grant, 101117274 X-PECT). However, the views and opinions expressed are those of the authors only and do not necessarily reflect those of the European Union or European Research Council. Neither the European Union nor the granting authority can be held responsible for them.
Author information
Authors and Affiliations
Contributions
Conceptualization: A.M., E.D., Methodology (Machine Learning): A.M., T.B., Methodology (Power spectral density): S.S., Wide-field imaging: A.M., L.C., Scanning tunneling spectroscopy: R.R., Sample preparation & characterization (CsPbBr3 system): B.P., H.J., C.S., M.P., L.L., Sample preparation & characterization (Alkyl-NDI SAMNs): R.R., A.T.R., Investigation & Visualization: A.M., Funding acquisition: E.D., J.H., Supervision: E.D., J.H., Writing – original draft: A.M., R.R., Writing—review & editing: K.S.M., S.S., B.P., S.D.F., M.R., E.W.M., J.H., E.D., #R.R. and B.P. contributed equally.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Marco Califano, Rafael López-Arteaga and the other anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Mukherjee, A., Reynaerts, R., Pradhan, B. et al. Machine learning for microscopy data analytics targeting real-time optical characterization of semiconductor nanocrystals. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68939-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68939-7