Abstract
Ribosomes are responsible for protein synthesis in all living systems. Determining their cellular organization, movement, and translational activity is crucial for dissecting ribosomes’ complex functions. In this study, we describe the development of a selective fluorescent probe for eukaryotic ribosomes — RiboBright. Using C-H activation, the natural product cycloheximide was aminated at the C13-position and fluorescently modified to afford RiboBright. We employ RiboBright for the quantification of ribosome content in 10 cell lines through microscopy and flow cytometry. RiboBright is applicable in live cells for tracking and quantification of ribosome movement and in fixed cells for visualization of sub-micrometer-sized spots, at the single-cell level. RiboBright reveals lineage-specific ribosome content, organization, and movement upon differentiation into either extraembryonic endoderm or ectoderm-like cells. Thus, RiboBright provides a versatile and convenient approach for imaging the cellular dynamics of ribosomes.
Data availability
All relevant data supporting the key findings of this study are available within the article and its Supplementary Information files. Due to the large number of images taken, these files, as well as any additional information needed to reanalyze the data, are available from the lead contact upon request. MaPseq sequencing data have been deposited at Gene Expression Omnibus (GEO) and are publicly available as of the date of publication at GSE316112. Source data are provided with this paper.
Code availability
All code is publicly available on GitHub at https://github.com/XinyuHuRU/RiboBright-project.git.
References
Bohnsack, K. E. & Bohnsack, M. T. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J. 38, e100278 (2019).
Ozadam, H. et al. Single-cell quantification of ribosome occupancy in early mouse development. Nature 618, 1057–1064 (2023).
VanInsberghe, M., van den Berg, J., Andersson-Rolf, A., Clevers, H. & van Oudenaarden, A. Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. Nature 597, 561–565 (2021).
Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).
Brenner, S., Jacob, F. & Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576–581 (1961).
Samir, P. et al. Identification of Changing Ribosome Protein Compositions using Mass Spectrometry. Proteomics 18, e1800217 (2018).
Jouffe, C. et al. The circadian clock coordinates ribosome biogenesis. PLoS Biol. 11, e1001455 (2013).
Sinturel, F. et al. Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles. Cell 169, 651–663 e614 (2017).
Wu, B., Eliscovich, C., Yoon, Y. J. & Singer, R. H. Translation dynamics of single mRNAs in live cells and neurons. Science 352, 1430–1435 (2016).
Dalla Venezia, N., Vincent, A., Marcel, V., Catez, F. & Diaz, J. J. Emerging Role of Eukaryote Ribosomes in Translational Control. Int. J. Mol Sci. 20, 1226 (2019).
Joo, M. et al. Specialised ribosomes as versatile regulators of gene expression. RNA Biol. 19, 1103–1114 (2022).
Brombin, A., Joly, J. S. & Jamen, F. New tricks for an old dog: ribosome biogenesis contributes to stem cell homeostasis. Curr. Opin. Genet Dev. 34, 61–70 (2015).
Ruggero, D. Translational control in cancer etiology. Cold Spring Harb. Perspect Biol. 5, a012336 (2013).
White, R. J. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet 24, 622–629 (2008).
Drygin, D., Rice, W. G. & Grummt, I. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev. Pharm. Toxicol. 50, 131–156 (2010).
Bustelo, X. R. & Dosil, M. Ribosome biogenesis and cancer: basic and translational challenges. Curr. Opin. Genet Dev. 48, 22–29 (2018).
Ingolia, N. T., Hussmann, J. A. & Weissman, J. S. Ribosome Profiling: Global Views of Translation. Cold Spring Harb. Perspect Biol. 11, a032698 (2019).
Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).
Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).
Saady, A., Varon, E., Jacob, A., Shav-Tal, Y. & Fischer, B. Applying styryl quinolinium fluorescent probes for imaging of ribosomal RNA in living cells. Dyes Pigments 174, 107986 (2020).
Cao, C. et al. Ribosomal RNA-Selective Light-Up Fluorescent Probe for Rapidly Imaging the Nucleolus in Live Cells. ACS Sens 4, 1409–1416 (2019).
Burke, K. S., Antilla, K. A. & Tirrell, D. A. A Fluorescence in Situ Hybridization Method To Quantify mRNA Translation by Visualizing Ribosome-mRNA Interactions in Single Cells. ACS Cent. Sci. 3, 425–433 (2017).
Ignacio, B. J. et al. THRONCAT: metabolic labeling of newly synthesized proteins using a bioorthogonal threonine analog. Nat. Commun. 14, 3367 (2023).
Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 103, 9482–9487 (2006).
Bastide, A., Yewdell, J. W. & David, A. The RiboPuromycylation Method (RPM): an Immunofluorescence Technique to Map Translation Sites at the Sub-cellular Level. Bio Protoc 8, e2669 (2018).
Tsai, Y. J., Lee, H. I. & Lin, A. Ribosome distribution in HeLa cells during the cell cycle. PLoS One 7, e32820 (2012).
Shore, D. & Albert, B. Ribosome biogenesis and the cellular energy economy. Curr. Biol. 32, R611–R617 (2022).
Metelev, M. et al. Direct measurements of mRNA translation kinetics in living cells. Nat. Commun. 13, 1852 (2022).
Katz, Z. B. et al. Mapping translation ‘hot-spots’ in live cells by tracking single molecules of mRNA and ribosomes. Elife 5, e10415 (2016).
Junod, S. L. et al. Dynamics of nuclear export of pre-ribosomal subunits revealed by high-speed single-molecule microscopy in live cells. iScience 26, 107445 (2023).
Halstead, J. M. et al. Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347, 1367–1671 (2015).
Ruijtenberg, S., Hoek, T. A., Yan, X. & Tanenbaum, M. E. Imaging Translation Dynamics of Single mRNA Molecules in Live Cells. Methods Mol. Biol. 1649, 385–404 (2018).
Schneider-Poetsch, T. et al. Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat. Chem. Biol. 6, 209–217 (2010).
Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).
Sharma, P., Wu, J., Nilges, B. S. & Leidel, S. A. Humans and other commonly used model organisms are resistant to cycloheximide-mediated biases in ribosome profiling experiments. Nat. Commun. 12, 5094 (2021).
Park, Y. et al. Versatile Synthetic Route to Cycloheximide and Analogues That Potently Inhibit Translation Elongation. Angew. Chem. Int Ed. Engl. 58, 5387–5391 (2019).
Abou-Zeid, A. Z., Abd El Hamid, M. M. & El-Sherbini, S. H. Biogenesis and production of cycloheximide by Streptomyces species. Zentralbl Bakteriol. Parasitenkd. Infektionskr Hyg. 131, 419–487 (1976).
Paoletti, F. et al. Novel fluorescent cycloheximide derivatives for the imaging of protein synthesis. Biochem Biophys. Res Commun. 396, 258–264 (2010).
Roizen, J. L., Zalatan, D. N. & Du Bois, J. Selective intermolecular amination of C-H bonds at tertiary carbon centers. Angew. Chem. Int Ed. Engl. 52, 11343–11346 (2013).
Koga, Y. et al. Discovery of C13-Aminobenzoyl Cycloheximide Derivatives that Potently Inhibit Translation Elongation. J. Am. Chem. Soc. 143, 13473–13477 (2021).
Chyan, W. & Raines, R. T. Enzyme-Activated Fluorogenic Probes for Live-Cell and in Vivo Imaging. ACS Chem. Biol. 13, 1810–1823 (2018).
Jradi, F. M. & Lavis, L. D. Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy. ACS Chem. Biol. 14, 1077–1090 (2019).
Wang, L., Frei, M. S., Salim, A. & Johnsson, K. Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy. J. Am. Chem. Soc. 141, 2770–2781 (2019).
Pals, M. J. & Velema, W. A. A Quenched Size-Expanded Nucleotide Reports Activity of the Leukemia Biomarker Terminal Deoxynucleotidyl Transferase (TdT). Angew. Chem. Int Ed. Engl. 62, e202302796 (2023).
Dziuba, D., Pohl, R. & Hocek, M. Polymerase synthesis of DNA labelled with benzylidene cyanoacetamide-based fluorescent molecular rotors: fluorescent light-up probes for DNA-binding proteins. Chem. Commun. 51, 4880–4882 (2015).
Yu, W. T., Wu, T. W., Huang, C. L., Chen, I. C. & Tan, K. T. Protein sensing in living cells by molecular rotor-based fluorescence-switchable chemical probes. Chem. Sci. 7, 301–307 (2016).
Wilson, D. L. & Kool, E. T. Ultrafast Oxime Formation Enables Efficient Fluorescence Light-up Measurement of DNA Base Excision. J. Am. Chem. Soc. 141, 19379–19388 (2019).
Mondal, I. C. et al. Julolidine-based small molecular probes for fluorescence imaging of RNA in live cells. Org. Biomol. Chem. 21, 7831–7840 (2023).
Zuo, F. et al. Imaging the dynamics of messenger RNA with a bright and stable green fluorescent RNA. Nat. Chem. Biol. 20, 1272–1281 (2024).
Paez-Perez, M. & Kuimova, M. K. Molecular Rotors: Fluorescent Sensors for Microviscosity and Conformation of Biomolecules. Angew. Chem. Int Ed. Engl. 63, e202311233 (2024).
Liu, J., Xu, Y., Stoleru, D. & Salic, A. Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc. Natl. Acad. Sci. USA 109, 413–418 (2012).
Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).
Myasnikov, A. G. et al. Structure-function insights reveal the human ribosome as a cancer target for antibiotics. Nat. Commun. 7, 12856 (2016).
Garreau de Loubresse, N. et al. Structural basis for the inhibition of the eukaryotic ribosome. Nature 513, 517–522 (2014).
Dorner, K., Ruggeri, C., Zemp, I. & Kutay, U. Ribosome biogenesis factors-from names to functions. EMBO J. 42, e112699 (2023).
Lavdovskaia, E. et al. A roadmap for ribosome assembly in human mitochondria. Nat. Struct. Mol. Biol. 31, 1898–1908 (2024).
Jagannathan, S., Reid, D. W., Cox, A. H. & Nicchitta, C. V. De novo translation initiation on membrane-bound ribosomes as a mechanism for localization of cytosolic protein mRNAs to the endoplasmic reticulum. RNA 20, 1489–1498 (2014).
Ruthardt, N., Lamb, D. C. & Brauchle, C. Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol. Ther. 19, 1199–1211 (2011).
Wang, C., Han, B., Zhou, R. & Zhuang, X. Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells. Cell 165, 990–1001 (2016).
Renner, M., Wang, L., Levi, S., Hennekinne, L. & Triller, A. A Simple and Powerful Analysis of Lateral Subdiffusion Using Single Particle Tracking. Biophys. J. 113, 2452–2463 (2017).
Stephens, S. B. & Nicchitta, C. V. Divergent regulation of protein synthesis in the cytosol and endoplasmic reticulum compartments of mammalian cells. Mol. Biol. Cell 19, 623–632 (2008).
Yan, X., Hoek, T. A., Vale, R. D. & Tanenbaum, M. E. Dynamics of Translation of Single mRNA Molecules In. Vivo. Cell 165, 976–989 (2016).
Carter, S. D. et al. Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells. Sci. Adv. 6, eaay9572 (2020).
Waisman, A. et al. Cell cycle dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripotency. Sci. Rep. 9, 8051 (2019).
Lin, L., Zou, Y. & Zhang, D. Silencing ribosome biogenesis regulator 1 homolog (RRS1) inhibits angiogenesis and cisplatin resistance of lung cancer cells by activating ferroptosis mediated by p53 pathway. Tissue Cell 94, 102796 (2025).
Pan, H. et al. RBIS regulates ribosome biogenesis to affect progression in lung adenocarcinoma. J. Transl. Med. 22, 1147 (2024).
Fan, H. & Penman, S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J. Mol. Biol. 50, 655–670 (1970).
Xu, C.S.P., S., Hayworth, K. J. & Hess, H. F. (ed. J.R.C. OpenOrganelle) (2020).
Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J. & Eisen, M. B. Noise minimization in eukaryotic gene expression. PLoS Biol. 2, e137 (2004).
Tahmasebi, S., Amiri, M. & Sonenberg, N. Translational Control in Stem Cells. Front. Genet. 9, 709 (2018).
Breznak, S. M., Kotb, N. M. & Rangan, P. Dynamic regulation of ribosome levels and translation during development. Semin. Cell Dev. Biol. 136, 27–37 (2023).
Wang, R. & Amoyel, M. mRNA Translation Is Dynamically Regulated to Instruct Stem Cell Fate. Front. Mol. Biosci. 9, 863885 (2022).
Atlasi, Y. et al. The translational landscape of ground state pluripotency. Nat. Commun. 11, 1617 (2020).
Loebel, D. A., Watson, C. M., De Young, R. A. & Tam, P. P. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev. Biol. 264, 1–14 (2003).
Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).
Semrau, S. et al. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat. Commun. 8, 1096 (2017).
Garcia-Blay, O. et al. Multimodal screen identifies noise-regulatory proteins. Dev. Cell 60, 133–151.e112 (2025).
Li, D. & Wang, J. Ribosome heterogeneity in stem cells and development. J. Cell Biol 219 (2020).
Holt, C. E., Martin, K. C. & Schuman, E. M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26, 557–566 (2019).
You, K. T., Park, J. & Kim, V. N. Role of the small subunit processome in the maintenance of pluripotent stem cells. Genes Dev. 29, 2004–2009 (2015).
Saba, J. A., Liakath-Ali, K., Green, R. & Watt, F. M. Translational control of stem cell function. Nat. Rev. Mol. Cell Biol. 22, 671–690 (2021).
Sampath, P. et al. A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2, 448–460 (2008).
Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).
Blair, J. D., Hockemeyer, D., Doudna, J. A., Bateup, H. S. & Floor, S. N. Widespread Translational Remodeling during Human Neuronal Differentiation. Cell Rep. 21, 2005–2016 (2017).
Baser, A. et al. Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. Nature 566, 100–104 (2019).
Corsini, N. S. et al. Coordinated Control of mRNA and rRNA Processing Controls Embryonic Stem Cell Pluripotency and Differentiation. Cell Stem Cell 22, 543–558.e512 (2018).
Pauklin, S. & Vallier, L. The cell-cycle state of stem cells determines cell fate propensity. Cell 155, 135–147 (2013).
Koledova, Z. et al. Cdk2 inhibition prolongs G1 phase progression in mouse embryonic stem cells. Stem Cells Dev. 19, 181–194 (2010).
Martínková, S. et al. Ribosome transfer via tunnelling nanotubes rescues protein synthesis in pancreatic cancer cells. bioRxiv, 2024.2006.2006.597772 (2025).
Gatie, M. I., Assabgui, A. R. & Kelly, G. M. The Zen of XEN: insight into differentiation, metabolism and genomic integrity. Cell Death Dis. 9, 1075 (2018).
Shimosato, D., Shiki, M. & Niwa, H. Extra-embryonic endoderm cells derived from ES cells induced by GATA Factors acquire the character of XEN cells. BMC Dev.ol. 7, 80 (2007).
Besse, F. & Ephrussi, A. Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat. Rev. Mol. Cell Biol. 9, 971–980 (2008).
Steward, O. & Schuman, E. M. Protein synthesis at synaptic sites on dendrites. Annu Rev. Neurosci. 24, 299–325 (2001).
Parekkadan, B. et al. Cell-cell interaction modulates neuroectodermal specification of embryonic stem cells. Neurosci. Lett. 438, 190–195 (2008).
Hardin, J. & Armstrong, N. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo. Dev. Biol. 182, 134–149 (1997).
Denes, L. T., Kelley, C. P. & Wang, E. T. Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat. Commun. 12, 6079 (2021).
Simpson, L. J., Tzima, E. & Reader, J. S. Mechanical Forces and Their Effect on the Ribosome and Protein Translation Machinery. Cells 9, 650 (2020).
Ni, C. & Buszczak, M. The homeostatic regulation of ribosome biogenesis. Semin Cell Dev. Biol. 136, 13–26 (2023).
Ni, C. et al. A programmed decline in ribosome levels governs human early neurodevelopment. Nat. Cell Biol. 27, 1240–1255 (2025).
Rangaraju, V., Lauterbach, M. & Schuman, E. M. Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity. Cell 176, 73–84.e15 (2019).
Genuth, N. R. et al. A stem cell roadmap of ribosome heterogeneity reveals a function for RPL10A in mesoderm production. Nat. Commun. 13, 5491 (2022).
McHedlov-Petrossyan, N. O., Cheipesh, T. A., Roshal, A. D., Doroshenko, A. O. & Vodolazkaya, N. A. Fluorescence of aminofluoresceins as an indicative process allowing one to distinguish between micelles of cationic surfactants and micelle-like aggregates. Methods Appl Fluoresc. 4, 034002 (2016).
van Mierlo, G. et al. Integrative Proteomic Profiling Reveals PRC2-Dependent Epigenetic Crosstalk Maintains Ground-State Pluripotency. Cell Stem Cell 24, 123–137.e128 (2019).
Desai, R. V. et al. A DNA repair pathway can regulate transcriptional noise to promote cell fate transitions. Science 373, eabc6506 (2021).
Incarnato, D., Morandi, E., Simon, L. M. & Oliviero, S. RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications. Nucleic Acids Res 46, e97 (2018).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Ershov, D. et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 19, 829–832 (2022).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Rossum, G. V. & Drake, F. L. Python 3 Reference Manual. (CreateSpace, 2009).
Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform. (Apress, Berkeley, CA; 2019).
Waskom, M. L. Seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).
Acknowledgements
We thank Dr. Hendrik Marks (Radboud University) for the mESC-E14 cells; Prof. Leor Weinberger (University of Miami) for the NANOG-GFP mESC-E14 cells; Prof. Ger Pruijn (Radboud University) for providing SH-SY5Y cells, Dr. Klaas Mulder (Radboud University) for providing HCT 116 and U2OS cells, Prof. Wilhelm Huck (Radboud University) for providing HeLa cells and Dr. Wenny Peeters (Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc) for providing MCF 10A cells. This work has received funding from the European Research Council under the European Union’s Horizon Europe research and innovation program under grant agreement number 101041939 (ChOICE) to M.M.K.H and 101041938 (RIBOCHEM) to W.A.V. M.M.K.H. further acknowledges generous support from Oncode Institute, which is partly financed by the Dutch Cancer Society.
Author information
Authors and Affiliations
Contributions
Conceptualization: W.A.V., M.M.K.H. Methodology: G.P., C.G., X.H., W.A.V., M.M.K.H. Investigation: G.P., C.G., X.H., P.Y. Visualization: G.P., C.G., X.H. Funding acquisition: W.A.V., M.M.K.H. Project administration: G.P., C.G., X.H., W.A.V., M.M.K.H. Supervision: W.A.V., M.M.K.H. Writing – original draft: G.P., C.G., X.H., W.A.V., M.M.K.H. Writing – review & editing: G.P., C.G., X.H., P.Y., W.A.V., M.M.K.H.
Corresponding authors
Ethics declarations
Competing interests
A patent related to this work has been filed with: Applicant: STICHTING RADBOUD UNIVERSITEIT. Inventors: Maike Hansen, Willem Velema. Application Number: NL2025/150006. Status of the application: PCT application filed Specific aspects of the manuscript covered in the patent application: Probe for single cell ribosome imaging and tracking; RiboBright probe. Application claims priority from: NL 2039232 (NL application). All other authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Lei Lei, who co-reviewed with Yuchen Sun; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Poulladofonou, G., Grandi, C., Hu, X. et al. RiboBright reveals cell-type-specific differences in ribosome organization and movement. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68947-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68947-7