Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
RiboBright reveals cell-type-specific differences in ribosome organization and movement
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

RiboBright reveals cell-type-specific differences in ribosome organization and movement

  • Georgia Poulladofonou  ORCID: orcid.org/0009-0008-3381-58511 na1,
  • Carmen Grandi  ORCID: orcid.org/0000-0003-1323-41401,2 na1,
  • Xinyu Hu  ORCID: orcid.org/0000-0002-9211-17651,2 na1,
  • Phillip Yesley1,
  • Willem A. Velema  ORCID: orcid.org/0000-0003-0257-27341 &
  • …
  • Maike M. K. Hansen  ORCID: orcid.org/0000-0001-7998-66311,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cellular imaging
  • Chemical tools
  • Confocal microscopy
  • Ribosome
  • RNA

Abstract

Ribosomes are responsible for protein synthesis in all living systems. Determining their cellular organization, movement, and translational activity is crucial for dissecting ribosomes’ complex functions. In this study, we describe the development of a selective fluorescent probe for eukaryotic ribosomes — RiboBright. Using C-H activation, the natural product cycloheximide was aminated at the C13-position and fluorescently modified to afford RiboBright. We employ RiboBright for the quantification of ribosome content in 10 cell lines through microscopy and flow cytometry. RiboBright is applicable in live cells for tracking and quantification of ribosome movement and in fixed cells for visualization of sub-micrometer-sized spots, at the single-cell level. RiboBright reveals lineage-specific ribosome content, organization, and movement upon differentiation into either extraembryonic endoderm or ectoderm-like cells. Thus, RiboBright provides a versatile and convenient approach for imaging the cellular dynamics of ribosomes.

Data availability

All relevant data supporting the key findings of this study are available within the article and its Supplementary Information files. Due to the large number of images taken, these files, as well as any additional information needed to reanalyze the data, are available from the lead contact upon request. MaPseq sequencing data have been deposited at Gene Expression Omnibus (GEO) and are publicly available as of the date of publication at GSE316112. Source data are provided with this paper.

Code availability

All code is publicly available on GitHub at https://github.com/XinyuHuRU/RiboBright-project.git.

References

  1. Bohnsack, K. E. & Bohnsack, M. T. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J. 38, e100278 (2019).

    Google Scholar 

  2. Ozadam, H. et al. Single-cell quantification of ribosome occupancy in early mouse development. Nature 618, 1057–1064 (2023).

    Google Scholar 

  3. VanInsberghe, M., van den Berg, J., Andersson-Rolf, A., Clevers, H. & van Oudenaarden, A. Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. Nature 597, 561–565 (2021).

    Google Scholar 

  4. Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    Google Scholar 

  5. Brenner, S., Jacob, F. & Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576–581 (1961).

    Google Scholar 

  6. Samir, P. et al. Identification of Changing Ribosome Protein Compositions using Mass Spectrometry. Proteomics 18, e1800217 (2018).

    Google Scholar 

  7. Jouffe, C. et al. The circadian clock coordinates ribosome biogenesis. PLoS Biol. 11, e1001455 (2013).

    Google Scholar 

  8. Sinturel, F. et al. Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles. Cell 169, 651–663 e614 (2017).

    Google Scholar 

  9. Wu, B., Eliscovich, C., Yoon, Y. J. & Singer, R. H. Translation dynamics of single mRNAs in live cells and neurons. Science 352, 1430–1435 (2016).

    Google Scholar 

  10. Dalla Venezia, N., Vincent, A., Marcel, V., Catez, F. & Diaz, J. J. Emerging Role of Eukaryote Ribosomes in Translational Control. Int. J. Mol Sci. 20, 1226 (2019).

  11. Joo, M. et al. Specialised ribosomes as versatile regulators of gene expression. RNA Biol. 19, 1103–1114 (2022).

    Google Scholar 

  12. Brombin, A., Joly, J. S. & Jamen, F. New tricks for an old dog: ribosome biogenesis contributes to stem cell homeostasis. Curr. Opin. Genet Dev. 34, 61–70 (2015).

    Google Scholar 

  13. Ruggero, D. Translational control in cancer etiology. Cold Spring Harb. Perspect Biol. 5, a012336 (2013).

  14. White, R. J. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet 24, 622–629 (2008).

    Google Scholar 

  15. Drygin, D., Rice, W. G. & Grummt, I. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev. Pharm. Toxicol. 50, 131–156 (2010).

    Google Scholar 

  16. Bustelo, X. R. & Dosil, M. Ribosome biogenesis and cancer: basic and translational challenges. Curr. Opin. Genet Dev. 48, 22–29 (2018).

    Google Scholar 

  17. Ingolia, N. T., Hussmann, J. A. & Weissman, J. S. Ribosome Profiling: Global Views of Translation. Cold Spring Harb. Perspect Biol. 11, a032698 (2019).

  18. Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).

    Google Scholar 

  19. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Google Scholar 

  20. Saady, A., Varon, E., Jacob, A., Shav-Tal, Y. & Fischer, B. Applying styryl quinolinium fluorescent probes for imaging of ribosomal RNA in living cells. Dyes Pigments 174, 107986 (2020).

    Google Scholar 

  21. Cao, C. et al. Ribosomal RNA-Selective Light-Up Fluorescent Probe for Rapidly Imaging the Nucleolus in Live Cells. ACS Sens 4, 1409–1416 (2019).

    Google Scholar 

  22. Burke, K. S., Antilla, K. A. & Tirrell, D. A. A Fluorescence in Situ Hybridization Method To Quantify mRNA Translation by Visualizing Ribosome-mRNA Interactions in Single Cells. ACS Cent. Sci. 3, 425–433 (2017).

    Google Scholar 

  23. Ignacio, B. J. et al. THRONCAT: metabolic labeling of newly synthesized proteins using a bioorthogonal threonine analog. Nat. Commun. 14, 3367 (2023).

    Google Scholar 

  24. Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 103, 9482–9487 (2006).

    Google Scholar 

  25. Bastide, A., Yewdell, J. W. & David, A. The RiboPuromycylation Method (RPM): an Immunofluorescence Technique to Map Translation Sites at the Sub-cellular Level. Bio Protoc 8, e2669 (2018).

  26. Tsai, Y. J., Lee, H. I. & Lin, A. Ribosome distribution in HeLa cells during the cell cycle. PLoS One 7, e32820 (2012).

    Google Scholar 

  27. Shore, D. & Albert, B. Ribosome biogenesis and the cellular energy economy. Curr. Biol. 32, R611–R617 (2022).

    Google Scholar 

  28. Metelev, M. et al. Direct measurements of mRNA translation kinetics in living cells. Nat. Commun. 13, 1852 (2022).

    Google Scholar 

  29. Katz, Z. B. et al. Mapping translation ‘hot-spots’ in live cells by tracking single molecules of mRNA and ribosomes. Elife 5, e10415 (2016).

  30. Junod, S. L. et al. Dynamics of nuclear export of pre-ribosomal subunits revealed by high-speed single-molecule microscopy in live cells. iScience 26, 107445 (2023).

    Google Scholar 

  31. Halstead, J. M. et al. Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347, 1367–1671 (2015).

    Google Scholar 

  32. Ruijtenberg, S., Hoek, T. A., Yan, X. & Tanenbaum, M. E. Imaging Translation Dynamics of Single mRNA Molecules in Live Cells. Methods Mol. Biol. 1649, 385–404 (2018).

    Google Scholar 

  33. Schneider-Poetsch, T. et al. Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat. Chem. Biol. 6, 209–217 (2010).

    Google Scholar 

  34. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Google Scholar 

  35. Sharma, P., Wu, J., Nilges, B. S. & Leidel, S. A. Humans and other commonly used model organisms are resistant to cycloheximide-mediated biases in ribosome profiling experiments. Nat. Commun. 12, 5094 (2021).

    Google Scholar 

  36. Park, Y. et al. Versatile Synthetic Route to Cycloheximide and Analogues That Potently Inhibit Translation Elongation. Angew. Chem. Int Ed. Engl. 58, 5387–5391 (2019).

    Google Scholar 

  37. Abou-Zeid, A. Z., Abd El Hamid, M. M. & El-Sherbini, S. H. Biogenesis and production of cycloheximide by Streptomyces species. Zentralbl Bakteriol. Parasitenkd. Infektionskr Hyg. 131, 419–487 (1976).

    Google Scholar 

  38. Paoletti, F. et al. Novel fluorescent cycloheximide derivatives for the imaging of protein synthesis. Biochem Biophys. Res Commun. 396, 258–264 (2010).

    Google Scholar 

  39. Roizen, J. L., Zalatan, D. N. & Du Bois, J. Selective intermolecular amination of C-H bonds at tertiary carbon centers. Angew. Chem. Int Ed. Engl. 52, 11343–11346 (2013).

    Google Scholar 

  40. Koga, Y. et al. Discovery of C13-Aminobenzoyl Cycloheximide Derivatives that Potently Inhibit Translation Elongation. J. Am. Chem. Soc. 143, 13473–13477 (2021).

    Google Scholar 

  41. Chyan, W. & Raines, R. T. Enzyme-Activated Fluorogenic Probes for Live-Cell and in Vivo Imaging. ACS Chem. Biol. 13, 1810–1823 (2018).

    Google Scholar 

  42. Jradi, F. M. & Lavis, L. D. Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy. ACS Chem. Biol. 14, 1077–1090 (2019).

    Google Scholar 

  43. Wang, L., Frei, M. S., Salim, A. & Johnsson, K. Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy. J. Am. Chem. Soc. 141, 2770–2781 (2019).

    Google Scholar 

  44. Pals, M. J. & Velema, W. A. A Quenched Size-Expanded Nucleotide Reports Activity of the Leukemia Biomarker Terminal Deoxynucleotidyl Transferase (TdT). Angew. Chem. Int Ed. Engl. 62, e202302796 (2023).

    Google Scholar 

  45. Dziuba, D., Pohl, R. & Hocek, M. Polymerase synthesis of DNA labelled with benzylidene cyanoacetamide-based fluorescent molecular rotors: fluorescent light-up probes for DNA-binding proteins. Chem. Commun. 51, 4880–4882 (2015).

    Google Scholar 

  46. Yu, W. T., Wu, T. W., Huang, C. L., Chen, I. C. & Tan, K. T. Protein sensing in living cells by molecular rotor-based fluorescence-switchable chemical probes. Chem. Sci. 7, 301–307 (2016).

    Google Scholar 

  47. Wilson, D. L. & Kool, E. T. Ultrafast Oxime Formation Enables Efficient Fluorescence Light-up Measurement of DNA Base Excision. J. Am. Chem. Soc. 141, 19379–19388 (2019).

    Google Scholar 

  48. Mondal, I. C. et al. Julolidine-based small molecular probes for fluorescence imaging of RNA in live cells. Org. Biomol. Chem. 21, 7831–7840 (2023).

    Google Scholar 

  49. Zuo, F. et al. Imaging the dynamics of messenger RNA with a bright and stable green fluorescent RNA. Nat. Chem. Biol. 20, 1272–1281 (2024).

    Google Scholar 

  50. Paez-Perez, M. & Kuimova, M. K. Molecular Rotors: Fluorescent Sensors for Microviscosity and Conformation of Biomolecules. Angew. Chem. Int Ed. Engl. 63, e202311233 (2024).

    Google Scholar 

  51. Liu, J., Xu, Y., Stoleru, D. & Salic, A. Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc. Natl. Acad. Sci. USA 109, 413–418 (2012).

    Google Scholar 

  52. Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).

    Google Scholar 

  53. Myasnikov, A. G. et al. Structure-function insights reveal the human ribosome as a cancer target for antibiotics. Nat. Commun. 7, 12856 (2016).

    Google Scholar 

  54. Garreau de Loubresse, N. et al. Structural basis for the inhibition of the eukaryotic ribosome. Nature 513, 517–522 (2014).

    Google Scholar 

  55. Dorner, K., Ruggeri, C., Zemp, I. & Kutay, U. Ribosome biogenesis factors-from names to functions. EMBO J. 42, e112699 (2023).

    Google Scholar 

  56. Lavdovskaia, E. et al. A roadmap for ribosome assembly in human mitochondria. Nat. Struct. Mol. Biol. 31, 1898–1908 (2024).

    Google Scholar 

  57. Jagannathan, S., Reid, D. W., Cox, A. H. & Nicchitta, C. V. De novo translation initiation on membrane-bound ribosomes as a mechanism for localization of cytosolic protein mRNAs to the endoplasmic reticulum. RNA 20, 1489–1498 (2014).

    Google Scholar 

  58. Ruthardt, N., Lamb, D. C. & Brauchle, C. Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol. Ther. 19, 1199–1211 (2011).

    Google Scholar 

  59. Wang, C., Han, B., Zhou, R. & Zhuang, X. Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells. Cell 165, 990–1001 (2016).

    Google Scholar 

  60. Renner, M., Wang, L., Levi, S., Hennekinne, L. & Triller, A. A Simple and Powerful Analysis of Lateral Subdiffusion Using Single Particle Tracking. Biophys. J. 113, 2452–2463 (2017).

    Google Scholar 

  61. Stephens, S. B. & Nicchitta, C. V. Divergent regulation of protein synthesis in the cytosol and endoplasmic reticulum compartments of mammalian cells. Mol. Biol. Cell 19, 623–632 (2008).

    Google Scholar 

  62. Yan, X., Hoek, T. A., Vale, R. D. & Tanenbaum, M. E. Dynamics of Translation of Single mRNA Molecules In. Vivo. Cell 165, 976–989 (2016).

    Google Scholar 

  63. Carter, S. D. et al. Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells. Sci. Adv. 6, eaay9572 (2020).

    Google Scholar 

  64. Waisman, A. et al. Cell cycle dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripotency. Sci. Rep. 9, 8051 (2019).

    Google Scholar 

  65. Lin, L., Zou, Y. & Zhang, D. Silencing ribosome biogenesis regulator 1 homolog (RRS1) inhibits angiogenesis and cisplatin resistance of lung cancer cells by activating ferroptosis mediated by p53 pathway. Tissue Cell 94, 102796 (2025).

    Google Scholar 

  66. Pan, H. et al. RBIS regulates ribosome biogenesis to affect progression in lung adenocarcinoma. J. Transl. Med. 22, 1147 (2024).

    Google Scholar 

  67. Fan, H. & Penman, S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J. Mol. Biol. 50, 655–670 (1970).

    Google Scholar 

  68. Xu, C.S.P., S., Hayworth, K. J. & Hess, H. F. (ed. J.R.C. OpenOrganelle) (2020).

  69. Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J. & Eisen, M. B. Noise minimization in eukaryotic gene expression. PLoS Biol. 2, e137 (2004).

    Google Scholar 

  70. Tahmasebi, S., Amiri, M. & Sonenberg, N. Translational Control in Stem Cells. Front. Genet. 9, 709 (2018).

    Google Scholar 

  71. Breznak, S. M., Kotb, N. M. & Rangan, P. Dynamic regulation of ribosome levels and translation during development. Semin. Cell Dev. Biol. 136, 27–37 (2023).

    Google Scholar 

  72. Wang, R. & Amoyel, M. mRNA Translation Is Dynamically Regulated to Instruct Stem Cell Fate. Front. Mol. Biosci. 9, 863885 (2022).

    Google Scholar 

  73. Atlasi, Y. et al. The translational landscape of ground state pluripotency. Nat. Commun. 11, 1617 (2020).

    Google Scholar 

  74. Loebel, D. A., Watson, C. M., De Young, R. A. & Tam, P. P. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev. Biol. 264, 1–14 (2003).

    Google Scholar 

  75. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Google Scholar 

  76. Semrau, S. et al. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat. Commun. 8, 1096 (2017).

    Google Scholar 

  77. Garcia-Blay, O. et al. Multimodal screen identifies noise-regulatory proteins. Dev. Cell 60, 133–151.e112 (2025).

    Google Scholar 

  78. Li, D. & Wang, J. Ribosome heterogeneity in stem cells and development. J. Cell Biol 219 (2020).

  79. Holt, C. E., Martin, K. C. & Schuman, E. M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol. 26, 557–566 (2019).

    Google Scholar 

  80. You, K. T., Park, J. & Kim, V. N. Role of the small subunit processome in the maintenance of pluripotent stem cells. Genes Dev. 29, 2004–2009 (2015).

    Google Scholar 

  81. Saba, J. A., Liakath-Ali, K., Green, R. & Watt, F. M. Translational control of stem cell function. Nat. Rev. Mol. Cell Biol. 22, 671–690 (2021).

    Google Scholar 

  82. Sampath, P. et al. A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2, 448–460 (2008).

    Google Scholar 

  83. Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    Google Scholar 

  84. Blair, J. D., Hockemeyer, D., Doudna, J. A., Bateup, H. S. & Floor, S. N. Widespread Translational Remodeling during Human Neuronal Differentiation. Cell Rep. 21, 2005–2016 (2017).

    Google Scholar 

  85. Baser, A. et al. Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. Nature 566, 100–104 (2019).

    Google Scholar 

  86. Corsini, N. S. et al. Coordinated Control of mRNA and rRNA Processing Controls Embryonic Stem Cell Pluripotency and Differentiation. Cell Stem Cell 22, 543–558.e512 (2018).

    Google Scholar 

  87. Pauklin, S. & Vallier, L. The cell-cycle state of stem cells determines cell fate propensity. Cell 155, 135–147 (2013).

    Google Scholar 

  88. Koledova, Z. et al. Cdk2 inhibition prolongs G1 phase progression in mouse embryonic stem cells. Stem Cells Dev. 19, 181–194 (2010).

    Google Scholar 

  89. Martínková, S. et al. Ribosome transfer via tunnelling nanotubes rescues protein synthesis in pancreatic cancer cells. bioRxiv, 2024.2006.2006.597772 (2025).

  90. Gatie, M. I., Assabgui, A. R. & Kelly, G. M. The Zen of XEN: insight into differentiation, metabolism and genomic integrity. Cell Death Dis. 9, 1075 (2018).

    Google Scholar 

  91. Shimosato, D., Shiki, M. & Niwa, H. Extra-embryonic endoderm cells derived from ES cells induced by GATA Factors acquire the character of XEN cells. BMC Dev.ol. 7, 80 (2007).

    Google Scholar 

  92. Besse, F. & Ephrussi, A. Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat. Rev. Mol. Cell Biol. 9, 971–980 (2008).

    Google Scholar 

  93. Steward, O. & Schuman, E. M. Protein synthesis at synaptic sites on dendrites. Annu Rev. Neurosci. 24, 299–325 (2001).

    Google Scholar 

  94. Parekkadan, B. et al. Cell-cell interaction modulates neuroectodermal specification of embryonic stem cells. Neurosci. Lett. 438, 190–195 (2008).

    Google Scholar 

  95. Hardin, J. & Armstrong, N. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo. Dev. Biol. 182, 134–149 (1997).

    Google Scholar 

  96. Denes, L. T., Kelley, C. P. & Wang, E. T. Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat. Commun. 12, 6079 (2021).

    Google Scholar 

  97. Simpson, L. J., Tzima, E. & Reader, J. S. Mechanical Forces and Their Effect on the Ribosome and Protein Translation Machinery. Cells 9, 650 (2020).

    Google Scholar 

  98. Ni, C. & Buszczak, M. The homeostatic regulation of ribosome biogenesis. Semin Cell Dev. Biol. 136, 13–26 (2023).

    Google Scholar 

  99. Ni, C. et al. A programmed decline in ribosome levels governs human early neurodevelopment. Nat. Cell Biol. 27, 1240–1255 (2025).

    Google Scholar 

  100. Rangaraju, V., Lauterbach, M. & Schuman, E. M. Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity. Cell 176, 73–84.e15 (2019).

    Google Scholar 

  101. Genuth, N. R. et al. A stem cell roadmap of ribosome heterogeneity reveals a function for RPL10A in mesoderm production. Nat. Commun. 13, 5491 (2022).

    Google Scholar 

  102. McHedlov-Petrossyan, N. O., Cheipesh, T. A., Roshal, A. D., Doroshenko, A. O. & Vodolazkaya, N. A. Fluorescence of aminofluoresceins as an indicative process allowing one to distinguish between micelles of cationic surfactants and micelle-like aggregates. Methods Appl Fluoresc. 4, 034002 (2016).

    Google Scholar 

  103. van Mierlo, G. et al. Integrative Proteomic Profiling Reveals PRC2-Dependent Epigenetic Crosstalk Maintains Ground-State Pluripotency. Cell Stem Cell 24, 123–137.e128 (2019).

    Google Scholar 

  104. Desai, R. V. et al. A DNA repair pathway can regulate transcriptional noise to promote cell fate transitions. Science 373, eabc6506 (2021).

    Google Scholar 

  105. Incarnato, D., Morandi, E., Simon, L. M. & Oliviero, S. RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications. Nucleic Acids Res 46, e97 (2018).

    Google Scholar 

  106. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  107. Ershov, D. et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 19, 829–832 (2022).

    Google Scholar 

  108. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Google Scholar 

  109. Rossum, G. V. & Drake, F. L. Python 3 Reference Manual. (CreateSpace, 2009).

  110. Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform. (Apress, Berkeley, CA; 2019).

  111. Waskom, M. L. Seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Hendrik Marks (Radboud University) for the mESC-E14 cells; Prof. Leor Weinberger (University of Miami) for the NANOG-GFP mESC-E14 cells; Prof. Ger Pruijn (Radboud University) for providing SH-SY5Y cells, Dr. Klaas Mulder (Radboud University) for providing HCT 116 and U2OS cells, Prof. Wilhelm Huck (Radboud University) for providing HeLa cells and Dr. Wenny Peeters (Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc) for providing MCF 10A cells. This work has received funding from the European Research Council under the European Union’s Horizon Europe research and innovation program under grant agreement number 101041939 (ChOICE) to M.M.K.H and 101041938 (RIBOCHEM) to W.A.V. M.M.K.H. further acknowledges generous support from Oncode Institute, which is partly financed by the Dutch Cancer Society.

Author information

Author notes
  1. These authors contributed equally: Georgia Poulladofonou, Carmen Grandi, Xinyu Hu.

Authors and Affiliations

  1. Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands

    Georgia Poulladofonou, Carmen Grandi, Xinyu Hu, Phillip Yesley, Willem A. Velema & Maike M. K. Hansen

  2. Oncode Institute, Nijmegen, The Netherlands

    Carmen Grandi, Xinyu Hu & Maike M. K. Hansen

Authors
  1. Georgia Poulladofonou
    View author publications

    Search author on:PubMed Google Scholar

  2. Carmen Grandi
    View author publications

    Search author on:PubMed Google Scholar

  3. Xinyu Hu
    View author publications

    Search author on:PubMed Google Scholar

  4. Phillip Yesley
    View author publications

    Search author on:PubMed Google Scholar

  5. Willem A. Velema
    View author publications

    Search author on:PubMed Google Scholar

  6. Maike M. K. Hansen
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: W.A.V., M.M.K.H. Methodology: G.P., C.G., X.H., W.A.V., M.M.K.H. Investigation: G.P., C.G., X.H., P.Y. Visualization: G.P., C.G., X.H. Funding acquisition: W.A.V., M.M.K.H. Project administration: G.P., C.G., X.H., W.A.V., M.M.K.H. Supervision: W.A.V., M.M.K.H. Writing – original draft: G.P., C.G., X.H., W.A.V., M.M.K.H. Writing – review & editing: G.P., C.G., X.H., P.Y., W.A.V., M.M.K.H.

Corresponding authors

Correspondence to Willem A. Velema or Maike M. K. Hansen.

Ethics declarations

Competing interests

A patent related to this work has been filed with: Applicant: STICHTING RADBOUD UNIVERSITEIT. Inventors: Maike Hansen, Willem Velema. Application Number: NL2025/150006. Status of the application: PCT application filed Specific aspects of the manuscript covered in the patent application: Probe for single cell ribosome imaging and tracking; RiboBright probe. Application claims priority from: NL 2039232 (NL application). All other authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Lei Lei, who co-reviewed with Yuchen Sun; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Supplementary Movie 4

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poulladofonou, G., Grandi, C., Hu, X. et al. RiboBright reveals cell-type-specific differences in ribosome organization and movement. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68947-7

Download citation

  • Received: 30 April 2025

  • Accepted: 15 January 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68947-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing