Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Divergent representation and processing of task cues in sensory and prefrontal cortices of preterm-born mice
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Divergent representation and processing of task cues in sensory and prefrontal cortices of preterm-born mice

  • Emily M. McCoy  ORCID: orcid.org/0009-0005-5660-79651,
  • Vyshnavi Pendala1,
  • Mona Fariborzi1,
  • Lara Y. Demir1,
  • Olivia P. Buell1,
  • Samuel C. Fedde  ORCID: orcid.org/0009-0004-0884-31571,
  • Jacqueline B. Stinger1,
  • Luciano Elbaum1,
  • Troy D. Holsworth1,
  • Phillip Amenyo-Awude1,
  • Xin Tong1 &
  • …
  • Adema Ribic  ORCID: orcid.org/0000-0001-6653-86451 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Developmental disorders
  • Neural circuits

Abstract

Preterm birth is a leading risk factor for atypicalities in cognitive and sensory processing, but it is unclear how prematurity impacts circuits that support these functions. To address this, we trained adult male and female mice born a day early (preterm mice) on a visual discrimination task and found that they fail to achieve high levels of performance due to increased responding to the non-rewarded cue. The representation of the non-rewarded cue in the prefrontal cortex (PFC), a brain area that mediates response inhibition, is significantly weaker in regular spiking, putative pyramidal neurons in preterm mice, while their fast-spiking interneurons show blunted responses to both task cues. Similar cue representation is present in the PFC of adolescent term-born mice, suggesting that preterm birth disrupts prefrontal maturation. Altogether, our study describes the long-term impact of preterm birth on prefrontal circuits and highlights their sensitivity to traumatic experiences during the perinatal period.

Data availability

Data associated with figures is provided in the Source Data file. All raw data can be obtained by contacting the corresponding author. Source data are provided with this paper.

Code availability

All analysis codes used in this study are available online (CED website) under https://ced.co.uk/downloads/scriptspkexpr.

References

  1. Heuvelman, H. et al. Gestational age at birth and risk of intellectual disability without a common genetic cause. Eur. J. Epidemiol. 33, 667–678 (2018).

    Google Scholar 

  2. Perapoch, J. et al. Prematurity and ADHD in Childhood: An Observational Register-Based Study in Catalonia. J. Atten. Disord. 25, 933–941 (2021).

    Google Scholar 

  3. Crump, C., Sundquist, J. & Sundquist, K. Preterm or early term birth and risk of attention-deficit/hyperactivity disorder: a national cohort and co-sibling study. Ann. Epidemiol. 86, 119–125.e4 (2023).

    Google Scholar 

  4. Allen, L., Leon-Attia, O., Shaham, M., Shefer, S. & Gabis, L. V. Autism risk linked to prematurity is more accentuated in girls. PLoS ONE 15, e0236994 (2020).

    Google Scholar 

  5. Crump, C., Sundquist, J. & Sundquist, K. Preterm or early term birth and risk of autism. Pediatrics 148, (2021).

  6. Husby, A., Wohlfahrt, J. & Melbye, M. Gestational age at birth and cognitive outcomes in adolescence: population based full sibling cohort study. BMJ 380, e072779 (2023).

    Google Scholar 

  7. van Houdt, C. A., Oosterlaan, J., van Wassenaer-Leemhuis, A. G., van Kaam, A. H. & Aarnoudse-Moens, C. S. H. Executive function deficits in children born preterm or at low birthweight: a meta-analysis. Dev. Med. Child Neurol. 61, 1015–1024 (2019).

    Google Scholar 

  8. Schnider, B. et al. Executive function deficits mediate the association between very preterm birth and behavioral problems at school-age. Early Hum. Dev. 146, 105076 (2020).

    Google Scholar 

  9. Johnson, S. & Marlow, N. Preterm birth and childhood psychiatric disorders. Pediatr. Res. 69, 11R–18RR (2011).

    Google Scholar 

  10. Johnson, S. & Marlow, N. Early and long-term outcome of infants born extremely preterm. Arch. Dis. Child. 102, 97–102 (2017).

    Google Scholar 

  11. Tokariev, A. et al. Preterm birth changes networks of newborn cortical activity. Cereb. Cortex 29, 814–826 (2019).

    Google Scholar 

  12. Chini, M. & Hanganu-Opatz, I. L. Prefrontal Cortex development in health and disease: lessons from rodents and humans. Trends Neurosci 44, 227–240 (2021).

    Google Scholar 

  13. Ball, G. et al. The effect of preterm birth on thalamic and cortical development. Cereb. Cortex 22, 1016–1024 (2012).

    Google Scholar 

  14. Nosarti, C. et al. Preterm birth and structural brain alterations in early adulthood. Neuroimage Clin 6, 180–191 (2014).

    Google Scholar 

  15. Wehrle, F. M. et al. Multimodal assessment shows misalignment of structural and functional thalamocortical connectivity in children and adolescents born very preterm. Neuroimage 215, 116779 (2020).

    Google Scholar 

  16. Yrjölä, P., Stjerna, S., Palva, J. M., Vanhatalo, S. & Tokariev, A. Phase-Based Cortical Synchrony Is Affected by Prematurity. Cereb. Cortex 32, 2265–2276 (2022).

    Google Scholar 

  17. Lacaille, H., Vacher, C.-M. & Penn, A. A. Preterm birth alters the maturation of the gabaergic system in the human prefrontal cortex. Front. Mol. Neurosci. 14, 827370 (2021).

    Google Scholar 

  18. Lacaille, H. et al. Impaired interneuron development in a novel model of neonatal brain injury. eNeuro 6, (2019).

  19. Panda, S. et al. Estrogen Treatment Reverses Prematurity-Induced Disruption in Cortical Interneuron Population. J. Neurosci. 38, 7378–7391 (2018).

    Google Scholar 

  20. Tibrewal, M. et al. Disruption of Interneuron Neurogenesis in Premature Newborns and Reversal with Estrogen Treatment. J. Neurosci. 38, 1100–1113 (2018).

    Google Scholar 

  21. Komitova, M. et al. Hypoxia-induced developmental delays of inhibitory interneurons are reversed by environmental enrichment in the postnatal mouse forebrain. J. Neurosci. 33, 13375–13387 (2013).

    Google Scholar 

  22. Moloney, R. A. et al. Ongoing effects of preterm birth on the dopaminergic and noradrenergic pathways in the frontal cortex and hippocampus of guinea pigs. Dev. Neurobiol. 84, 93–110 (2024).

    Google Scholar 

  23. Moloney, R. A., Palliser, H. K., Pavy, C. L., Shaw, J. C. & Hirst, J. J. Zuranolone therapy protects frontal cortex neurodevelopment and improves behavioral outcomes after preterm birth. Brain Behav 14, e70009 (2024).

    Google Scholar 

  24. Gramatté, T. & Schmidt, J. The effect of early postnatal hypoxia on the development of locomotor activity in rats. Biomed. Biochim. Acta 45, 523–529 (1986).

    Google Scholar 

  25. Speiser, Z., Korczyn, A. D., Teplitzky, I. & Gitter, S. Hyperactivity in rats following postnatal anoxia. Behav. Brain Res. 7, 379–382 (1983).

    Google Scholar 

  26. van der Kooij, M. A. et al. Mild neonatal hypoxia-ischemia induces long-term motor- and cognitive impairments in mice. Brain Behav. Immun. 24, 850–856 (2010).

    Google Scholar 

  27. Domnick, N.-K. et al. Neonatal hypoxia-ischemia impairs juvenile recognition memory by disrupting the maturation of prefrontal-hippocampal networks. Exp. Neurol. 273, 202–214 (2015).

    Google Scholar 

  28. Witteveen, I. F. et al. Preterm birth accelerates the maturation of spontaneous and resting activity in the visual cortex. Front. Integr. Neurosci. 17, 1149159 (2023).

    Google Scholar 

  29. Jurjut, O., Georgieva, P., Busse, L. & Katzner, S. Learning Enhances Sensory Processing in Mouse V1 before Improving Behavior. J. Neurosci. 37, 6460–6474 (2017).

    Google Scholar 

  30. Liu, D. et al. Orbitofrontal control of visual cortex gain promotes visual associative learning. Nat. Commun. 11, 2784 (2020).

    Google Scholar 

  31. Murray, S. A. et al. Mouse gestation length is genetically determined. PLoS ONE 5, e12418 (2010).

    Google Scholar 

  32. Castillo-Ruiz, A., Hite, T. A., Yakout, D. W., Rosen, T. J. & Forger, N. G. Does birth trigger cell death in the developing brain? eNeuro 7, (2020).

  33. Ribic, A., Crair, M. C. & Biederer, T. Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1. Cell Rep 26, 381–393.e6 (2019).

    Google Scholar 

  34. Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    Google Scholar 

  35. Guo, Z. V. et al. Procedures for behavioral experiments in head-fixed mice. PLoS ONE 9, e88678 (2014).

    Google Scholar 

  36. Berditchevskaia, A., Cazé, R. D. & Schultz, S. R. Performance in a GO/NOGO perceptual task reflects a balance between impulsive and instrumental components of behaviour. Sci. Rep. 6, 27389 (2016).

    Google Scholar 

  37. Gemperli, K. et al. Preterm birth is associated with dystonic features and reduced cortical parvalbumin immunoreactivity in mice. Pediatr Res. 97, 2475-2484 (2025).

  38. Patel, T. P. et al. An open-source toolbox for automated phenotyping of mice in behavioral tasks. Front. Behav. Neurosci. 8, 349 (2014).

    Google Scholar 

  39. Del Rosario, J. et al. Diminished cortical excitation and elevated inhibition during perceptual impairments in a mouse model of autism. Cereb. Cortex 31, 3462–3474 (2021).

    Google Scholar 

  40. Goel, A. et al. Impaired perceptual learning in a mouse model of Fragile × syndrome is mediated by parvalbumin neuron dysfunction and is reversible. Nat. Neurosci. 21, 1404–1411 (2018).

    Google Scholar 

  41. Poort, J. et al. Learning Enhances sensory and multiple non-sensory representations in primary visUAL CORtex. Neuron 86, 1478–1490 (2015).

    Google Scholar 

  42. Henschke, J. U. et al. Reward Association Enhances Stimulus-Specific Representations in Primary Visual Cortex. Curr. Biol. 30, 1866–1880.e5 (2020).

    Google Scholar 

  43. Corbo, J., McClure, J. P., Erkat, O. B. & Polack, P.-O. Dynamic Distortion of Orientation Representation after Learning in the Mouse Primary Visual Cortex. J. Neurosci. 42, 4311–4325 (2022).

    Google Scholar 

  44. StBoughter, J. D., John, S. J., Noel, D. T., Ndubuizu, O. & Smith, D. V. A brief-access test for bitter taste in mice. Chem. Senses 27, 133–142 (2002).

    Google Scholar 

  45. Durand, S. et al. A comparison of visual response properties in the lateral geniculate nucleus and primary visual cortex of awake and anesthetized mice. J. Neurosci. 36, 12144–12156 (2016).

    Google Scholar 

  46. Niell, C. M. & Stryker, M. P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).

    Google Scholar 

  47. Xing, D., Yeh, C.-I., Burns, S. & Shapley, R. M. Laminar analysis of visually evoked activity in the primary visual cortex. Proc. Natl. Acad. Sci USA 109, 13871–13876 (2012).

    Google Scholar 

  48. Stringer, C., Michaelos, M., Tsyboulski, D., Lindo, S. E. & Pachitariu, M. High-precision coding in visual cortex. Cell 184, 2767–2778.e15 (2021).

    Google Scholar 

  49. Zhang, S. et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014).

    Google Scholar 

  50. Norman, K. J. et al. Post-error recruitment of frontal sensory cortical projections promotes attention in mice. Neuron 109, 1202–1213.e5 (2021).

    Google Scholar 

  51. Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A. & Keller, G. B. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95, 1420–1432.e5 (2017).

    Google Scholar 

  52. Zhang, S. et al. Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat. Neurosci. 19, 1733–1742 (2016).

    Google Scholar 

  53. Le Merre, P. et al. Reward-Based Learning Drives Rapid Sensory Signals in Medial Prefrontal Cortex and Dorsal Hippocampus Necessary for Goal-Directed Behavior. Neuron 97, 83–91.e5 (2018).

    Google Scholar 

  54. Peters, A. J., Marica, A.-M., Fabre, J. M. J., Harris, K. D. & Carandini, M. Visuomotor learning promotes visually evoked activity in the medial prefrontal cortex. Cell Rep 41, 111487 (2022).

    Google Scholar 

  55. Wal, A., Klein, F. J., Born, G., Busse, L. & Katzner, S. Evaluating visual cues modulates their representation in mouse visual and cingulate cortex. J. Neurosci. 41, 3531–3544 (2021).

    Google Scholar 

  56. Kim, J.-H., Ma, D.-H., Jung, E., Choi, I. & Lee, S.-H. Gated feedforward inhibition in the frontal cortex releases goal-directed action. Nat. Neurosci. 24, 1452–1464 (2021).

    Google Scholar 

  57. Tervo, D. G. R. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Google Scholar 

  58. Lima, S. Q., Hromádka, T., Znamenskiy, P. & Zador, A. M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE 4, e6099 (2009).

    Google Scholar 

  59. Cardin, J. A. Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity. J. Physiol. Paris 106, 104–111 (2012).

    Google Scholar 

  60. Vormstein-Schneider, D. et al. Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nat. Neurosci. 23, 1629–1636 (2020).

    Google Scholar 

  61. Courcelles, E. J. et al. Association cortical areas in the mouse contain a large population of fast-spiking GABAergic neurons that do not express parvalbumin. Eur. J. Neurosci. 59, 3236–3255 (2024).

    Google Scholar 

  62. Le Merre, P., Ährlund-Richter, S. & Carlén, M. The mouse prefrontal cortex: Unity in diversity. Neuron 109, 1925–1944 (2021).

    Google Scholar 

  63. Jeong, J. H. & Choi, J.-S. Population analyses reveal heterogenous encoding in the medial prefrontal cortex during naturalistic foraging. https://doi.org/10.7554/eLife.93994.2 (2025).

  64. Lui, J. H. et al. Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks. Cell 184, 489–506.e26 (2021).

    Google Scholar 

  65. Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).

    Google Scholar 

  66. Réveillon, M., Hüppi, P. S. & Barisnikov, K. Inhibition difficulties in preterm children: Developmental delay or persistent deficit? Child Neuropsychol 24, 734–762 (2018).

    Google Scholar 

  67. Nieves, G. M., Rahn, R. M., Baskoylu, S. N. & Liston, C. M. Divergent reward cue representations in prefrontal cortex underlie differences in reward motivation between adolescents and adults. BioRxiv https://doi.org/10.1101/2023.11.07.565069 (2024).

  68. Orso, R. et al. Early environmental enrichment rescues memory impairments provoked by mild neonatal hypoxia-ischemia in adolescent mice. Behav. Brain Res. 407, 113237 (2021).

    Google Scholar 

  69. Bartoletti, A., Medini, P., Berardi, N. & Maffei, L. Environmental enrichment prevents effects of dark-rearing in the rat visual cortex. Nat. Neurosci. 7, 215–216 (2004).

    Google Scholar 

  70. Cancedda, L. et al. Acceleration of visual system development by environmental enrichment. J. Neurosci. 24, 4840–4848 (2004).

    Google Scholar 

  71. Forbes, T. A. et al. Environmental enrichment ameliorates perinatal brain injury and promotes functional white matter recovery. Nat. Commun. 11, 964 (2020).

    Google Scholar 

  72. Akhund-Zade, J., Ho, S., O’Leary, C. & de Bivort, B. The effect of environmental enrichment on behavioral variability depends on genotype, behavior, and type of enrichment. J. Exp. Biol. 222, 10.1242/jeb.202234 (2019).

  73. Martínez-Cué, C. et al. Differential effects of environmental enrichment on behavior and learning of male and female Ts65Dn mice, a model for Down syndrome. Behav. Brain Res. 134, 185–200 (2002).

    Google Scholar 

  74. Stolp, H. B. et al. Interneuron development is disrupted in preterm brains with diffuse white matter injury: observations in mouse and human. Front. Physiol. 10, 955 (2019).

    Google Scholar 

  75. Parnaudeau, S. et al. Mediodorsal thalamus hypofunction impairs flexible goal-directed behavior. Biol. Psychiatry 77, 445–453 (2015).

    Google Scholar 

  76. Marton, T. F., Seifikar, H., Luongo, F. J., Lee, A. T. & Sohal, V. S. Roles of prefrontal cortex and mediodorsal thalamus in task engagement and behavioral flexibility. J. Neurosci. 38, 2569–2578 (2018).

    Google Scholar 

  77. Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature 526, 705–709 (2015).

    Google Scholar 

  78. Mukherjee, A. et al. Variation of connectivity across exemplar sensory and associative thalamocortical loops in the mouse. eLife 9, 10.7554/eLife.62554 (2020).

  79. Delevich, K., Tucciarone, J., Huang, Z. J. & Li, B. The mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons. J. Neurosci. 35, 5743–5753 (2015).

    Google Scholar 

  80. Molnár, Z. & Rutherford, M. Brain maturation after preterm birth. Sci. Transl. Med. 5, 168ps2 (2013).

    Google Scholar 

  81. Toda, T. et al. Birth regulates the initiation of sensory map formation through serotonin signaling. Dev. Cell 27, 32–46 (2013).

    Google Scholar 

  82. Leung, M. P., Thompson, B., Black, J., Dai, S. & Alsweiler, J. M. The effects of preterm birth on visual development. Clin. Exp. Optom. 101, 4–12 (2018).

    Google Scholar 

  83. Hunt, B. A. E. et al. Disrupted visual cortex neurophysiology following very preterm birth. Biol. Psychiatry Cogn. Neurosci. Neuroimaging https://doi.org/10.1016/j.bpsc.2019.08.012 (2019).

  84. Emberson, L. L., Boldin, A. M., Riccio, J. E., Guillet, R. & Aslin, R. N. Deficits in Top-Down Sensory Prediction in Infants At Risk due to Premature Birth. Curr. Biol. 27, 431–436 (2017).

    Google Scholar 

  85. Boldin, A. M., Geiger, R. & Emberson, L. L. The emergence of top-down, sensory prediction during learning in infancy: A comparison of full-term and preterm infants. Dev. Psychobiol. 60, 544–556 (2018).

    Google Scholar 

  86. Jaffe-Dax, S., Boldin, A. M., Daw, N. D. & Emberson, L. L. A Computational Role for Top-Down Modulation from Frontal Cortex in Infancy. J. Cogn. Neurosci. 32, 508–514 (2020).

    Google Scholar 

  87. Siegle, J. H. et al. Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology. eLife 10, https://pubmed.ncbi.nlm.nih.gov/33893166/ (2021).

  88. Wei, Z. et al. A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology. PLoS Comput. Biol. 16, e1008198 (2020).

    Google Scholar 

  89. Kerstjens, J. M., de Winter, A. F., Bocca-Tjeertes, I. F., Bos, A. F. & Reijneveld, S. A. Risk of developmental delay increases exponentially as gestational age of preterm infants decreases: a cohort study at age 4 years. Dev. Med. Child Neurol. 54, 1096–1101 (2012).

    Google Scholar 

  90. Pierrat, V. et al. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study. BMJ 358, j3448 (2017).

    Google Scholar 

  91. Tang, Y. P., Wang, H., Feng, R., Kyin, M. & Tsien, J. Z. Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 41, 779–790 (2001).

    Google Scholar 

  92. Imperio, C. G. et al. Exposure to environmental enrichment attenuates addiction-like behavior and alters molecular effects of heroin self-administration in rats. Neuropharmacology 139, 26–40 (2018).

    Google Scholar 

  93. Zheng, H. J. V. et al. Environmental enrichment sharpens sensory acuity by enhancing information coding in barrel cortex and premotor cortex. eNeuro 8, 10.1523/ENEURO.0309-20.2021 (2021).

  94. Jendryka, M. M. et al. Control of sustained attention and impulsivity by Gq-protein signalling in parvalbumin interneurons of the anterior cingulate cortex. Transl. Psychiatry 13, 243 (2023).

    Google Scholar 

  95. Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010).

    Google Scholar 

  96. Bitzenhofer, S. H., Pöpplau, J. A., Chini, M., Marquardt, A. & Hanganu-Opatz, I. L. A transient developmental increase in prefrontal activity alters network maturation and causes cognitive dysfunction in adult mice. Neuron 109, 1350–1364.e6 (2021).

    Google Scholar 

  97. Sargin, D., Jeoung, H.-S., Goodfellow, N. M. & Lambe, E. K. Serotonin regulation of the prefrontal cortex: cognitive relevance and the impact of developmental perturbation. ACS Chem. Neurosci. 10, 3078–3093 (2019).

    Google Scholar 

  98. Rebello, T. J. et al. Postnatal day 2 to 11 constitutes a 5-HT-sensitive period impacting adult mPFC function. J. Neurosci. 34, 12379–12393 (2014).

    Google Scholar 

  99. Sinclair-Wilson, A. et al. Plasticity of thalamocortical axons is regulated by serotonin levels modulated by preterm birth. Proc. Natl. Acad. Sci. USA 120, e2301644120 (2023).

    Google Scholar 

  100. Ogelman, R. et al. Serotonin modulates excitatory synapse maturation in the developing prefrontal cortex. Nat. Commun. 15, 1368 (2024).

    Google Scholar 

  101. Shah, R., Courtiol, E., Castellanos, F. X. & Teixeira, C. M. Abnormal serotonin levels during perinatal development lead to behavioral deficits in adulthood. Front. Behav. Neurosci. 12, 114 (2018).

    Google Scholar 

  102. Ansorge, M. S., Zhou, M., Lira, A., Hen, R. & Gingrich, J. A. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306, 879–881 (2004).

    Google Scholar 

  103. Whitaker-Azmitia, P. M., Zhang, X. & Clarke, C. Effects of gestational exposure to monoamine oxidase inhibitors in rats: preliminary behavioral and neurochemical studies. Neuropsychopharmacology 11, 125–132 (1994).

    Google Scholar 

  104. Breese, G. R., Vogel, R. A. & Mueller, R. A. Biochemical and behavioral alterations in developing rats treated with 5,7-dihydroxytryptamine. J. Pharmacol. Exp. Ther. 205, 587–595 (1978).

    Google Scholar 

  105. González-Burgos, I., del Angel-Meza, A. R., Barajas-López, G. & Feria-Velasco, A. Tryptophan restriction causes long-term plastic changes in corticofrontal pyramidal neurons. Int. J. Dev. Neurosci. 14, 673–679 (1996).

    Google Scholar 

  106. Mazer, C. et al. Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: a possible model of neurodevelopmental disorders with cognitive deficits. Brain Res 760, 68–73 (1997).

    Google Scholar 

  107. Zoratto, F., Fiore, M., Ali, S. F., Laviola, G. & Macrì, S. Neonatal tryptophan depletion and corticosterone supplementation modify emotional responses in adult male mice. Psychoneuroendocrinology 38, 24–39 (2013).

    Google Scholar 

  108. Colonnese, M. T. et al. A conserved switch in sensory processing prepares developing neocortex for vision. Neuron 67, 480–498 (2010).

    Google Scholar 

  109. Salmaso, N., Jablonska, B., Scafidi, J., Vaccarino, F. M. & Gallo, V. Neurobiology of premature brain injury. Nat. Neurosci. 17, 341–346 (2014).

    Google Scholar 

  110. Allen, T. A. et al. Imaging the spread of reversible brain inactivations using fluorescent muscimol. J. Neurosci. Methods 171, 30–38 (2008).

    Google Scholar 

  111. Ingrao, J. C. et al. Aqueous stability and oral pharmacokinetics of meloxicam and carprofen in male C57BL/6 mice. J. Am. Assoc. Lab. Anim. Sci. 52, 553–559 (2013).

    Google Scholar 

  112. Hayar, A., Bryant, J. L., Boughter, J. D. & Heck, D. H. A low-cost solution to measure mouse licking in an electrophysiological setup with a standard analog-to-digital converter. J. Neurosci. Methods 153, 203–207 (2006).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Department of Psychology at the University of Virginia, the National Center For Advancing Translational Sciences of the National Institutes of Health under Award Numbers KL2TR003016/ULTR003015, the Brain Institute at the University of Virginia, Owens Family Foundation and R01MH140184 to A.R. L.Y. D. was in part supported by Summer Research Internship Program (SRIP), O.P.B. by the Harrison Undergraduate Research Award, and S.C.F. by the College Council Student Research Grant at the University of Virginia. The authors would like to thank the Cang and Liu labs at the Departments of Biology and Psychology, as well as the Program in Fundamental Neuroscience, for generous access to their confocal microscopes. The authors would like to acknowledge Dr. Francesca Sciaccotta, Fatima Ribic and Alia Minaya for their help with data analysis.

Author information

Authors and Affiliations

  1. Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, USA

    Emily M. McCoy, Vyshnavi Pendala, Mona Fariborzi, Lara Y. Demir, Olivia P. Buell, Samuel C. Fedde, Jacqueline B. Stinger, Luciano Elbaum, Troy D. Holsworth, Phillip Amenyo-Awude, Xin Tong & Adema Ribic

Authors
  1. Emily M. McCoy
    View author publications

    Search author on:PubMed Google Scholar

  2. Vyshnavi Pendala
    View author publications

    Search author on:PubMed Google Scholar

  3. Mona Fariborzi
    View author publications

    Search author on:PubMed Google Scholar

  4. Lara Y. Demir
    View author publications

    Search author on:PubMed Google Scholar

  5. Olivia P. Buell
    View author publications

    Search author on:PubMed Google Scholar

  6. Samuel C. Fedde
    View author publications

    Search author on:PubMed Google Scholar

  7. Jacqueline B. Stinger
    View author publications

    Search author on:PubMed Google Scholar

  8. Luciano Elbaum
    View author publications

    Search author on:PubMed Google Scholar

  9. Troy D. Holsworth
    View author publications

    Search author on:PubMed Google Scholar

  10. Phillip Amenyo-Awude
    View author publications

    Search author on:PubMed Google Scholar

  11. Xin Tong
    View author publications

    Search author on:PubMed Google Scholar

  12. Adema Ribic
    View author publications

    Search author on:PubMed Google Scholar

Contributions

E.M.M. and A.R. performed all electrophysiological experiments and confocal imaging, and E.M.M. V.P., and A.R. performed all behavioral experiments, with assistance from M.F., L.Y.D., O.B., S.F., J.S., L.E., T.D.H., and P. A.-A. All authors contributed to the analysis of the behavioral data. Electrophysiological data were analyzed by X.T. and A.R. A.R. conceived the study and wrote the manuscript with input from all authors. All authors of this study have fulfilled the criteria for authorship required by Nature Portfolio journals, as their participation was essential for the design and implementation of the study.

Corresponding author

Correspondence to Adema Ribic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Hidenobu Mizuno who co-reviewed with Elvira Abzhanova; and Matthew Colonnese for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCoy, E.M., Pendala, V., Fariborzi, M. et al. Divergent representation and processing of task cues in sensory and prefrontal cortices of preterm-born mice. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68948-6

Download citation

  • Received: 26 November 2024

  • Accepted: 21 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68948-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing