Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Structural basis for activation and conformational plasticity of the GluA4 AMPA receptor
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 February 2026

Structural basis for activation and conformational plasticity of the GluA4 AMPA receptor

  • W. Dylan Hale1,2,
  • Haobo Wang  ORCID: orcid.org/0009-0003-3902-83261,2,
  • Richard L. Huganir  ORCID: orcid.org/0000-0001-9783-51831,3 &
  • …
  • Edward C. Twomey  ORCID: orcid.org/0000-0002-1855-15861,2,4,5 

Nature Communications , Article number:  (2026) Cite this article

  • 2697 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cryoelectron microscopy
  • Ion channels in the nervous system
  • Ligand-gated ion channels

Abstract

AMPA-subtype glutamate receptors (AMPARs) mediate excitatory synaptic transmission. AMPAR ion channels exhibit multiple subconductance states that tune neuronal responses to glutamate. GluA4 is the rarest subunit in the brain but is enriched in interneurons and the cerebellum. Rising evidence points to GluA4 AMPARs in the development of neurological diseases, but the structural mechanisms of GluA4 function remain enigmatic. Here, we show the distinct features of GluA4 that tune AMPAR function. We find that GluA4 AMPARs have a canonical “Y” shaped architecture where local dimer pairs are domain-swapped between the amino terminal domain (NTD) and ligand binding domain (LBD), both of which comprise the extracellular domain. All four LBDs are glutamate bound yet open the GluA4 ion channel by asymmetric hinging in all four channel helices. We observe that the glutamate-saturated LBD has conformational plasticity, which tunes the ion channel gate below. These data provide a framework for understanding channel subconductance, outline the distinct properties of GluA4, expand our understanding of conformational plasticity in AMPARs, and will inform therapeutic design.

Similar content being viewed by others

GluA4 AMPA receptor gating mechanisms and modulation by auxiliary proteins

Article 15 September 2025

Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor

Article Open access 13 September 2023

Architecture, dynamics and biogenesis of GluA3 AMPA glutamate receptors

Article Open access 01 July 2025

Data availability

The protein data bank (PDB) and electron microscopy data bank (EMD) accession codes for the GluA4 consensus and substates 1–5 are 9P9B and EMD-71405, 9P9C and EMD-71406, 9P9D and EMD-71407, 9P9E and EMD-71408, 9P9F and EMD-71409, 9P9G and EMD-71410, respectively. Source data are provided with this paper.

References

  1. Hansen, K. B. et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73, 1469–1658 (2021).

    Google Scholar 

  2. Twomey, E. C. & Sobolevsky, A. I. Structural mechanisms of gating in ionotropic glutamate receptors. Biochemistry 57, 267–276 (2018).

    Google Scholar 

  3. Keinänen, K. et al. A family of AMPA-selective glutamate receptors. Science 249, 556–560 (1990).

    Google Scholar 

  4. Diering, G. H. & Huganir, R. L. The AMPA receptor code of synaptic plasticity. Neuron 100, 314–329 (2018).

    Google Scholar 

  5. Zhao, Y., Chen, S., Swensen, A. C., Qian, W.-J. & Gouaux, E. Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science 364, 355–362 (2019).

    Google Scholar 

  6. Cull-Candy, S. G. & Farrant, M. Ca2+-permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. J. Physiol. 599, 2655–2671 (2021).

    Google Scholar 

  7. Miguez-Cabello, F. et al. GluA2-containing AMPA receptors form a continuum of Ca2+-permeable channels. Nature 641, 537–544 (2025).

    Google Scholar 

  8. Nakagawa, T., Wang, X., Miguez-Cabello, F. J. & Bowie, D. The open gate of the AMPA receptor forms a Ca2+ binding site critical in regulating ion transport. Nat. Struct. Mol. Biol. 31, 688–700 (2024).

    Google Scholar 

  9. Hong, I. et al. Calcium-permeable AMPA receptors govern PV neuron feature selectivity. Nature 635, 398–405 (2024).

    Google Scholar 

  10. Kwok, K. H. H., Tse, Y. C., Wong, R. N. S. & Yung, K. K. L. Cellular localization of GluR1, GluR2/3 and GluR4 glutamate receptor subunits in neurons of the rat neostriatum. Brain Res. 778, 43–55 (1997).

    Google Scholar 

  11. Mosbacher, J. et al. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266, 1059–1062 (1994).

    Google Scholar 

  12. Geiger, J. R. P. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Google Scholar 

  13. Swanson, G. T., Kamboj, S. K. & Cull-Candy, S. G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58–69 (1997).

    Google Scholar 

  14. Yang, Y.-M. et al. GluA4 is indispensable for driving fast neurotransmission across a high-fidelity central synapse. J. Physiol. 589, 4209–4227 (2011).

    Google Scholar 

  15. Chang, M. C. et al. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat. Neurosci. 13, 1090–1097 (2010).

    Google Scholar 

  16. Pelkey, K. A. et al. Pentraxins Coordinate Excitatory Synapse Maturation and Circuit Integration of Parvalbumin Interneurons. Neuron 85, 1257–1272 (2015).

    Google Scholar 

  17. XiangWei, W. et al. Clinical and functional consequences of GRIA variants in patients with neurological diseases. Cell. Mol. Life Sci. 80, 345 (2023).

    Google Scholar 

  18. Beyer, B. et al. Absence seizures in C3H/HeJ and knockout mice caused by mutation of the AMPA receptor subunit Gria4. Hum. Mol. Genet. 17, 1738–1749 (2008).

    Google Scholar 

  19. Paz, J. T. et al. A new mode of corticothalamic transmission revealed in the Gria4−/− model of absence epilepsy. Nat. Neurosci. 14, 1167–1173 (2011).

    Google Scholar 

  20. Wang, Y.-X., Wenthold, R. J., Ottersen, O. P. & Petralia, R. S. Endbulb Synapses in the Anteroventral Cochlear Nucleus Express a Specific Subset of AMPA-Type Glutamate Receptor Subunits. J. Neurosci. 18, 1148–1160 (1998).

    Google Scholar 

  21. Gardner, S. M., Trussell, L. O. & Oertel, D. Time course and permeation of synaptic AMPA receptors in cochlear nuclear neurons correlate with input. J. Neurosci. 19, 8721–8729 (1999).

    Google Scholar 

  22. Rubio, M. E. & Wenthold, R. J. Glutamate receptors are selectively targeted to postsynaptic sites in neurons. Neuron 18, 939–950 (1997).

    Google Scholar 

  23. Hunter, C., Petralia, R. S., Vu, T. & Wenthold, R. J. Expression of AMPA-selective glutamate receptor subunits in morphologically defined neurons of the mammalian cochlear nucleus. J. Neurosci. 13, 1932–1946 (1993).

    Google Scholar 

  24. Schmid, S., Guthmann, A., Ruppersberg, J. P. & Herbert, H. Expression of AMPA receptor subunit flip/flop splice variants in the rat auditory brainstem and inferior colliculus. J. Comp. Neurol. 430, 160–171 (2001).

    Google Scholar 

  25. Rubio, M. E. et al. The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells. Brain Struct. Funct. 222, 3375–3393 (2017).

    Google Scholar 

  26. Schwenk, J. et al. Regional diversity and developmental dynamics of the ampa-receptor proteome in the mammalian brain. Neuron 84, 41–54 (2014).

    Google Scholar 

  27. Gonzalez-Lozano, M. A. et al. Stitching the synapse: Cross-linking mass spectrometry into resolving synaptic protein interactions. Sci. Adv. 6, eaax5783 (2020).

    Google Scholar 

  28. Kita, K. et al. GluA4 facilitates cerebellar expansion coding and enables associative memory formation. eLife https://elifesciences.org/articles/65152, https://doi.org/10.7554/eLife.65152 (2021).

  29. García-Hernández, S. & Rubio, M. E. Role of GluA4 in the acoustic and tactile startle responses. Hear. Res. 414, 108410 (2022).

    Google Scholar 

  30. Huupponen, J., Atanasova, T., Taira, T. & Lauri, S. E. GluA4 subunit of AMPA receptors mediates the early synaptic response to altered network activity in the developing hippocampus. J. Neurophysiol. 115, 2989–2996 (2016).

    Google Scholar 

  31. Zhu, J. J., Esteban, J. A., Hayashi, Y. & Malinow, R. Postnatal synaptic potentiation: Delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat. Neurosci. 3, 1098–1106 (2000).

    Google Scholar 

  32. Taylor, K. R. et al. Glioma synapses recruit mechanisms of adaptive plasticity. Nature 623, 366–374 (2023).

    Google Scholar 

  33. Stepulak, A. et al. Expression of glutamate receptor subunits in human cancers. Histochem. Cell Biol. 132, 435–445 (2009).

    Google Scholar 

  34. Brocke, K. S. et al. Glutamate receptors in pediatric tumors of the central nervous system. Cancer Biol. Ther. 9, 455–468 (2010).

    Google Scholar 

  35. Tao, Y. et al. Erbin interacts with TARP γ−2 for surface expression of AMPA receptors in cortical interneurons. Nat. Neurosci. 16, 290–299 (2013).

    Google Scholar 

  36. Tomita, S. et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J. Cell Biol. 161, 805–816 (2003).

    Google Scholar 

  37. Zhang, W., Devi, S. P. S., Tomita, S. & Howe, J. R. Auxiliary proteins promote modal gating of AMPA- and kainate-type glutamate receptors. Eur. J. Neurosci. 39, 1138–1147 (2014).

    Google Scholar 

  38. Chen, L., Bao, S., Qiao, X. & Thompson, R. F. Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel γ subunit. Proc. Natl. Acad. Sci. 96, 12132–12137 (1999).

    Google Scholar 

  39. Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000).

    Google Scholar 

  40. Hashimoto, K. et al. Impairment of AMPA Receptor Function in Cerebellar Granule Cells of Ataxic Mutant Mouse Stargazer. J. Neurosci. 19, 6027–6036 (1999).

    Google Scholar 

  41. Yelshanskaya, M. V., Patel, D. S., Kottke, C. M., Kurnikova, M. G. & Sobolevsky, A. I. Opening of glutamate receptor channel to subconductance levels. Nature 605, 172–178 (2022).

    Google Scholar 

  42. Zhang, D. et al. Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor. Nature 621, 877–882 (2023).

    Google Scholar 

  43. Rossmann, M. et al. Subunit-selective N-terminal domain associations organize the formation of AMPA receptor heteromers. EMBO J. 30, 959–971 (2011).

    Google Scholar 

  44. Dutta, A., Shrivastava, I. H., Sukumaran, M., Greger, I. H. & Bahar, I. Comparative Dynamics of NMDA- and AMPA-Glutamate Receptor N-Terminal Domains. Structure 20, 1838–1849 (2012).

    Google Scholar 

  45. Nakagawa, T. Structures of the AMPA receptor in complex with its auxiliary subunit cornichon. Science 366, 1259–1263 (2019).

    Google Scholar 

  46. Dürr, K. L. et al. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 158, 778–792 (2014).

    Google Scholar 

  47. Hale, W. D. et al. Allosteric competition and inhibition in AMPA receptors. Nat. Struct. Mol. Biol. 1–11. https://doi.org/10.1038/s41594-024-01328-0 (2024).

  48. Hale, W. D. et al. Structure of transmembrane AMPA receptor regulatory protein subunit γ2. Nat. Commun. 16, 671 (2025).

    Google Scholar 

  49. Kumar Mondal, A., Carrillo, E., Jayaraman, V. & Twomey, E. C. Glutamate gating of AMPA-subtype iGluRs at physiological temperatures. Nature 641, 788–796 (2025).

    Google Scholar 

  50. Vega-Gutiérrez, C. et al. GluA4 AMPA receptor gating mechanisms and modulation by auxiliary proteins. Nat. Struct. Mol. Biol. 1–13. https://doi.org/10.1038/s41594-025-01666-7 (2025).

  51. Birdsey-Benson, A., Gill, A., Henderson, L. P. & Madden, D. R. Enhanced Efficacy without Further Cleft Closure: Reevaluating Twist as a Source of Agonist Efficacy in AMPA Receptors. J. Neurosci. 30, 1463–1470 (2010).

    Google Scholar 

  52. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    Google Scholar 

  53. Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549, 60–65 (2017).

    Google Scholar 

  54. Fang, C. et al. Gating and noelin clustering of native Ca2+-permeable AMPA receptors. Nature 1–9. https://doi.org/10.1038/s41586-025-09289-0 (2025).

  55. Smith, T. C., Wang, L.-Y. & Howe, J. R. Heterogeneous Conductance Levels of Native AMPA Receptors. J. Neurosci. 20, 2073–2085 (2000).

    Google Scholar 

  56. Prieto, M. L. & Wollmuth, L. P. Gating modes in AMPA receptors. J. Neurosci. J. Soc. Neurosci. 30, 4449–4459 (2010).

    Google Scholar 

  57. Smith, T. C. & Howe, J. R. Concentration-dependent substate behavior of native AMPA receptors. Nat. Neurosci. 3, 992–997 (2000).

    Google Scholar 

  58. Rosenmund, C., Stern-Bach, Y. & Stevens, C. F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998).

    Google Scholar 

  59. Poon, K., Nowak, L. M. & Oswald, R. E. Characterizing single-channel behavior of GluA3 receptors. Biophys. J. 99, 1437–1446 (2010).

    Google Scholar 

  60. Shi, E. Y. et al. Noncompetitive antagonists induce cooperative AMPA receptor channel gating. J. Gen. Physiol. 151, 156–173 (2019).

    Google Scholar 

  61. Yuan, C. L. et al. Modulation of AMPA receptor gating by the anticonvulsant drug, perampanel. ACS Med. Chem. Lett. 10, 237–242 (2019).

    Google Scholar 

  62. Robert, A. & Howe, J. R. How AMPA receptor desensitization depends on receptor occupancy. J. Neurosci. 23, 847–858 (2003).

    Google Scholar 

  63. Zhang, W., Cho, Y., Lolis, E. & Howe, J. R. Structural and Single-Channel Results Indicate That the Rates of Ligand Binding Domain Closing and Opening Directly Impact AMPA Receptor Gating. J. Neurosci. 28, 932–943 (2008).

    Google Scholar 

  64. Pokharna, A. et al. Architecture, dynamics and biogenesis of GluA3 AMPA glutamate receptors. Nature 645, 535–543 (2025).

    Google Scholar 

  65. Wang, H., Ahmed, F., Khau, J., Mondal, A. K. & Twomey, E. C. Delta-type glutamate receptors are ligand-gated ion channels. Nature 647, 1063–1071 (2025).

    Google Scholar 

  66. Soto, D. et al. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, γ-5. Nat. Neurosci. 12, 277–285 (2009).

    Google Scholar 

  67. Klykov, O., Gangwar, S. P., Yelshanskaya, M. V., Yen, L. & Sobolevsky, A. I. Structure and desensitization of AMPA receptor complexes with type II TARP γ5 and GSG1L. Mol. Cell 81, 4771–4783.e7 (2021).

    Google Scholar 

  68. Gangwar, S. P. et al. Modulation of GluA2–γ5 synaptic complex desensitization, polyamine block and antiepileptic perampanel inhibition by auxiliary subunit cornichon−2. Nat. Struct. Mol. Biol. 30, 1481–1494 (2023).

    Google Scholar 

  69. Shelley, C., Farrant, M. & Cull-Candy, S. G. TARP-associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states. J. Physiol. 590, 5723–5738 (2012).

    Google Scholar 

  70. Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy. Science 353, 83–86 (2016).

    Google Scholar 

  71. Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Structural bases of desensitization in AMPA receptor-auxiliary subunit complexes. Neuron 94, 569–580.e5 (2017).

    Google Scholar 

  72. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  73. Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Google Scholar 

  74. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Google Scholar 

  75. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. Sect. Struct. Biol. 74, 519–530 (2018).

    Google Scholar 

  76. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. Struct. Biol. 75, 861–877 (2019).

    Google Scholar 

  77. Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).

    Google Scholar 

  78. Williams, C. J. et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Google Scholar 

Download references

Acknowledgements

We would like to thank R. Johnson and C. Warrick for their assistance with developing the GluA4 expression system. We also thank members of the Huganir and Twomey labs for comments and helpful discussion. All cryo-EM data were collected at the Beckman Center for Cryo-EM at Johns Hopkins with assistance from D. Sousa, D. Ding and K. Cai. W.D.H. is supported by National Institutes of Health (NIH) grant K99 MH132811. R.L.H. is supported by NIH grant R37 NS036715. E.C.T. is supported by NIH grant R35GM154904, the Searle Scholars Program (Kinship Foundation 22098168) and the Diana Helis Henry Medical Research Foundation (142548).

Author information

Authors and Affiliations

  1. Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA

    W. Dylan Hale, Haobo Wang, Richard L. Huganir & Edward C. Twomey

  2. Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA

    W. Dylan Hale, Haobo Wang & Edward C. Twomey

  3. Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA

    Richard L. Huganir

  4. The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA

    Edward C. Twomey

  5. Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA

    Edward C. Twomey

Authors
  1. W. Dylan Hale
    View author publications

    Search author on:PubMed Google Scholar

  2. Haobo Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Richard L. Huganir
    View author publications

    Search author on:PubMed Google Scholar

  4. Edward C. Twomey
    View author publications

    Search author on:PubMed Google Scholar

Contributions

W.D.H., R.L.H., and E.C.T. designed the study. W.D.H. and H.W. carried out the experiments. W.D.H., H.W., R.L.H., and E.C.T. analyzed the data and wrote the paper.

Corresponding authors

Correspondence to Richard L. Huganir or Edward C. Twomey.

Ethics declarations

Competing interests

R.L.H. is a scientific cofounder and scientific advisory board (SAB) member of Neumora Therapeutics and an SAB member of MAZE Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Reporting Summary

Supplementary Movie 1

Supplementary Movie 2

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dylan Hale, W., Wang, H., Huganir, R.L. et al. Structural basis for activation and conformational plasticity of the GluA4 AMPA receptor. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68953-9

Download citation

  • Received: 21 November 2025

  • Accepted: 16 January 2026

  • Published: 09 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68953-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing