Abstract
Understanding how the human brain encodes visual objects involves deciphering the neural computations and circuits in the temporal lobe. Here, we recorded intracranial EEG from the human ventral temporal cortex (VTC) and medial temporal lobe (MTL), as well as single-neuron activity in the MTL, to investigate the computational mechanisms of neural object coding. The VTC exhibited axis-based feature coding, and a neural feature space could be constructed using VTC neural axes, within which visual objects clustered according to high-level categorical relationships. Importantly, MTL neurons encoded receptive fields within this VTC neural feature space, exhibiting selective responses to objects that shared perceptual and conceptual similarities. This computational framework, therefore, explains how dense, feature-based representations in the VTC are transformed into sparse, high-level representations in the MTL. We further validated our findings using an additional dataset with different stimuli. Notably, we uncovered the physiological basis of this computational framework by demonstrating VTC-MTL interactions at multiple levels. Together, our neural computational framework provides a mechanistic understanding of the neural processes underlying object recognition.
Data availability
All data that support the findings of this study are publicly available on OSF (https://osf.io/x9u84/). Source data are provided with this paper.
Code availability
The source code for this study is publicly available on OSF (https://osf.io/x9u84/).
References
Potter, M. C. Meaning in visual search. Science 187, 965–966 (1975).
Biederman, I. Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94, 115–147 (1987).
Logothetis, N. K. & Sheinberg, D. L. Visual object recognition. Annu. Rev. Neurosci. 19, 577–621 (1996).
Marr, D. Vision (W. H. Freeman, 1982).
DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).
Behrmann, M. & Vida, M. Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience 1–37 (John Wiley & Sons, 2018).
Ayzenberg, V. & Behrmann, M. Development of visual object recognition. Nat. Rev. Psychol. 3, 73–90 (2023).
Gauthier, I. & Tarr, M. J. Visual object recognition: do we (finally) know more now than we did? Annu. Rev. Vis. Sci. 2, 377–396 (2016).
Bracci, S. & Op de Beeck, H. P. Understanding human object vision: a picture is worth a thousand representations. Annu. Rev. Psychol. 74, 113–135 (2023).
Kar, K. & DiCarlo, J. J. The quest for an integrated set of neural mechanisms underlying object recognition in primates. Annu. Rev. Vis. Sci. https://doi.org/10.1146/annurev-vision-112823-030616 (2024).
Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G. & Mishkin, M. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17, 26–49 (2013).
Duchaine, B. & Yovel, G. A revised neural framework for face processing. Annu. Rev. Vis. Sci. 1, 393–416 (2015).
Loffler, G., Yourganov, G., Wilkinson, F. & Wilson, H. R. fMRI evidence for the neural representation of faces. Nat. Neurosci. 8, 1386–1391 (2005).
Cao, R., Li, X., Todorov, A. & Wang, S. A flexible neural representation of faces in the human brain. Cereb. Cortex Commun. 1, tgaa055 (2020).
Chang, L. & Tsao, D. Y. The code for facial identity in the primate brain. Cell 169, 1013–1028.e1014 (2017).
Bashivan, P., Kar, K. & DiCarlo, J. J. Neural population control via deep image synthesis. Science 364, eaav9436 (2019).
Ponce, C. R. et al. Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences. Cell 177, 999–1009.e1010 (2019).
Bao, P., She, L., McGill, M. & Tsao, D. Y. A map of object space in primate inferotemporal cortex. Nature 583, 103–108 (2020).
Freeman, W. J. Mass Action in the Nervous System, Vol. 2004 (Citeseer, 1975).
Hinton, G. E. Distributed Representations (Carnegie Mellon University, Computer Science Department, 1984).
Rolls, E. T., Treves, A. & Tovee, M. J. The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex. Exp. Brain Res. 114, 149–162 (1997).
Churchland, P. S. & Sejnowski, T. J. The Computational Brain (MIT Press, 2016).
Barlow, H. B. Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1, 371–394 (1972).
Valentine, T. A unified account of the effects of distinctiveness, inversion, and race in face recognition. Q. J. Exp. Psychol. Sect. A 43, 161–204 (1991).
Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).
Quiroga, R. Q. Concept cells: the building blocks of declarative memory functions. Nat. Rev. Neurosci. 13, 587 (2012).
Cao, R. et al. Feature-based encoding of face identity by single neurons in the human amygdala and hippocampus. Nat. Hum. Behav. 9, 1959–1974 (2025).
Cao, R. et al. A neuronal code for object representation and memory in the human amygdala and hippocampus. Nat. Commun. 16, 1510 (2025).
Kriegeskorte, N. et al. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008).
Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad. Sci. USA 111, 8619 (2014).
Deng, J. et al. In 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).
Grossman, S. et al. Convergent evolution of face spaces across human face-selective neuronal groups and deep convolutional networks. Nat. Commun. 10, 4934 (2019).
Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J. & Hsiao, S. S. Neural correlates of high-gamma oscillations (60-200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci. 28, 11526–11536 (2008).
Lachaux, J. P., Axmacher, N., Mormann, F., Halgren, E. & Crone, N. E. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog. Neurobiol. 98, 279–301 (2012).
Parvizi, J. & Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 21, 474–483 (2018).
De Renzi, E. Disorders of visual recognition. Semin. Neurol. 20, 479–485 (2000).
Kanwisher, N. Domain specificity in face perception. Nat. Neurosci. 3, 759–763 (2000).
Rossion, B. & Lochy, A. Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Struct. Funct. 227, 599–629 (2022).
Cao, R., Li, X., Brandmeir, N. J. & Wang, S. Encoding of facial features by single neurons in the human amygdala and hippocampus. Commun. Biol. 4, 1394 (2021).
Lin, T. Y. et al. Microsoft COCO: Common Objects in Context. In Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science (eds Fleet, D., Pajdla, T., Schiele, B. & Tuytelaars, T.) Vol. 8693, 740–755 (Springer Cham, 2014).
Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007).
Bastos, A. M. et al. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85, 390–401 (2015).
Tang, H. et al. Spatiotemporal dynamics underlying object completion in human ventral visual cortex. Neuron 83, 736–748 (2014).
Jacques, C. et al. Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex. Neuropsychologia 83, 14–28 (2016).
Vlcek, K. et al. Mapping the scene and object processing networks by intracranial EEG. Front. Hum. Neurosci. 14, 561399 (2020).
Singer, J. J. D., Cichy, R. M. & Hebart, M. N. The spatiotemporal neural dynamics of object recognition for natural images and line drawings. J. Neurosci. 43, 484–500 (2023).
Yao, M. et al. High-dimensional topographic organization of visual features in the primate temporal lobe. Nat. Commun. 14, 5931 (2023).
Grill-Spector, K., Sayres, R. & Ress, D. High-resolution imaging reveals highly selective nonface clusters in the fusiform face area. Nat. Neurosci. 9, 1177–1185 (2006).
Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014).
Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999).
Lerner, Y., Hendler, T., Ben-Bashat, D., Harel, M. & Malach, R. A hierarchical axis of object processing stages in the human visual cortex. Cereb. Cortex 11, 287–297 (2001).
Rossion, B., Jacques, C. & Jonas, J. The anterior fusiform gyrus: the ghost in the cortical face machine. Neurosci. Biobehav. Rev. 158, 105535 (2024).
Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).
Manns, J. R., Hopkins, R. O. & Squire, L. R. Semantic memory and the human hippocampus. Neuron 38, 127–133 (2003).
Squire, L. R., Wixted, J. T. & Clark, R. E. Recognition memory and the medial temporal lobe: a new perspective. Nat. Rev. Neurosci. 8, 872–883 (2007).
Wais, P. E., Wixted, J. T., Hopkins, R. O. & Squire, L. R. The hippocampus supports both the recollection and the familiarity components of recognition memory. Neuron 49, 459–466 (2006).
Wixted, J. T. Dual-process theory and signal-detection theory of recognition memory. Psychol. Rev. 114, 152–176 (2007).
Yonelinas, A. P. The contribution of recollection and familiarity to recognition and source-memory judgments: a formal dual-process model and an analysis of receiver operating characterstics. J. Exp. Psychol. Learn. Mem. Cogn. 25, 1415–1434 (1999).
De Falco, E., Ison, M. J., Fried, I. & Quian Quiroga, R. Long-term coding of personal and universal associations underlying the memory web in the human brain. Nat. Commun. 7, 13408 (2016).
Rey, H. G. et al. Single neuron coding of identity in the human hippocampal formation. Curr. Biol. https://doi.org/10.1016/j.cub.2020.01.035 (2020).
Murray, E. A., Bussey, T. J. & Saksida, L. M. Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu. Rev. Neurosci. 30, 99–122 (2007).
Bonnen, T., Yamins, D. L. K. & Wagner, A. D. When the ventral visual stream is not enough: a deep learning account of medial temporal lobe involvement in perception. Neuron 109, 2755–2766 (2021).
Palmeri, T. J. & Tarr, M. J. in Visual Memory 163–208 (Oxford University Press, 2008).
Wang, Y., Cao, R. & Wang, S. Encoding of visual objects in the human medial temporal lobe. J. Neurosci. 44, e2135232024 (2024).
Herweg, N. A., Solomon, E. A. & Kahana, M. J. Theta oscillations in human memory. Trends Cogn. Sci. 24, 208–227 (2020).
Seger, S. E., Kriegel, J. L. S., Lega, B. C. & Ekstrom, A. D. Memory-related processing is the primary driver of human hippocampal theta oscillations. Neuron 111, 3119–3130.e3114 (2023).
Wang, Y., Brunner. P., Willie, J. T., Cao, R. & Wang, S. Characterization of the spatiotemporal representations of visual, semantic, and memorability features in the human brain. PLOS Biol. 24, e3003614 (2026).
Wadia, V. S. et al. A shared code for perceiving and imagining objects in human ventral temporal cortex. bioRxiv https://doi.org/10.1101/2024.10.05.616828 (2024).
Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).
Daume, J. et al. Control of working memory by phase-amplitude coupling of human hippocampal neurons. Nature 629, 393–401 (2024).
Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N. & Wolpaw, J. R. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004).
Rutishauser, U., Schuman, E. M. & Mamelak, A. N. Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. J. Neurosci. Methods 154, 204–224 (2006).
Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).
Devlin, J. T. et al. Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. NeuroImage 11, 589–600 (2000).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (2016).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. In Proc. 25th International Conference on Neural Information Processing Systems—Vol. 1, 1097–1105 (Curran Associates Inc., 2012).
Rainer, G., Asaad, W. F. & Miller, E. K. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393, 577–579 (1998).
Minxha, J. et al. Fixations gate species-specific responses to free viewing of faces in the human and macaque amygdala. Cell Rep. 18, 878–891 (2017).
Wang, S., Mamelak, A. N., Adolphs, R. & Rutishauser, U. Encoding of target detection during visual search by single neurons in the human brain. Curr. Biol. 28, 2058–2069.e2054 (2018).
Liu, H., Agam, Y., Madsen, J. R. & Kreiman, G. Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron 62, 281–290 (2009).
Schrouff, J. et al. Fast temporal dynamics and causal relevance of face processing in the human temporal cortex. Nat. Commun. 11, 656 (2020).
Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).
Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10, e1003553 (2014).
Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).
Lachaux, J. P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999).
Barnett, L. & Seth, A. K. The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J. Neurosci. Methods 223, 50–68 (2014).
Vinck, M., van Wingerden, M., Womelsdorf, T., Fries, P. & Pennartz, C. M. A. The pairwise phase consistency: a bias-free measure of rhythmic neuronal synchronization. NeuroImage 51, 112–122 (2010).
Vinck, M., Battaglia, F. P., Womelsdorf, T. & Pennartz, C. Improved measures of phase-coupling between spikes and the Local Field Potential. J. Comput. Neurosci. 33, 53–75 (2012).
Vinck, M., Womelsdorf, T., Buffalo, E. A., Desimone, R. & Fries, P. Attentional modulation of cell-class-specific gamma-band synchronization in awake monkey area V4. Neuron 80, 1077–1089 (2013).
Rey, H. G., Fried, I. & Quian Quiroga, R. Timing of single-neuron and local field potential responses in the human medial temporal lobe. Curr. Biol. 24, 299–304 (2014).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
Acknowledgements
We thank all patients for their participation. This research was supported by the NIH (K99EY036650 [R.C.], R01MH129426 [S.W.], R01MH120194 [J.T.W.], R01EB026439 [P.B.], U24NS109103 [P.B.], U01NS108916 [P.B.], U01NS128612 [P.B.], R21NS128307 [P.B.], P41EB018783 [P.B.]), AFOSR (FA9550-21-1-0088 [S.W.]), NSF (BCS-1945230 [S.W.]), Brain & Behavior Research Foundation (33261 [R.C.]), and McDonnell Center for Systems Neuroscience ([R.C.]). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
R.C. and S.W. designed the research. R.C., J.Zhang, Y.W., P.B., and S.W. performed experiments. J.T.W. performed surgery. R.C., J.Zhang, J.Zheng, and S.W. analyzed data. R.C., J.T.W., and S.W. wrote the paper. All authors discussed the results and contributed toward the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Guy Orban, Keisuke Kawasaki, and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Cao, R., Zhang, J., Zheng, J. et al. Computational single-neuron mechanisms of visual object coding in the human temporal lobe. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68954-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-68954-8