Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Inverse palladocenes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

Inverse palladocenes

  • Qing You1 na1,
  • Xue-Lian Jiang  ORCID: orcid.org/0000-0002-7215-33782 na1,
  • Yan Zhao3 na1,
  • Wanmiao Gu1,
  • Jun Li  ORCID: orcid.org/0000-0002-8456-39802,4,5 &
  • …
  • Zhikun Wu  ORCID: orcid.org/0000-0002-2711-38601,3,6 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemical bonding
  • Electronic properties and materials
  • Organic–inorganic nanostructures

Abstract

Metallocene research has influenced the development of organometallic chemistry, and the metal–nonmetal inverted half-sandwich structure (inverse metallocene) was very recently discovered. However, additional instances are required to propose the concept inverse metallocene and it remains uncertain whether metal five-membered ring structures analogous to the cyclopentadienyl anion structure exist. Herein we report the synthesis of a series of palladium analogs Pd8(PPh)2(PPh3)2(Ph2P=O)(S-Adm)5 (Pd8–P), Pd6(PPh)(PPh3)(S-Adm)6 (Pd6), Pd5(PPh)(S-Adm)4[(Ph2P)2O] (Pd5–O), and Pd5(PPh)(S-Adm)4[(Ph2P)2CH2] (Pd5–C), identify their fundamental metal building block named five-membered Pd aromatic ring, and reveal their conjugation‒photothermy correlation. In particular, we report an average NIR-II photothermal conversion efficiency per metal atom of 14.7% and the stability of the five-membered Pd aromatic ring, as illustrated by the fact that Pd5–C maintained photothermy performance for >10 heating–cooling cycles even after the ligands were removed. We further demonstrate the great potential of inverse palladocenes in areas such as laser shielding, high-temperature degradation, ignition, and temperature/light control. These results declare the research and application start of a type of materials named inverse palladocenes.

Data availability

The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Center (CCDC), under deposition numbers 2500802 for Pd5–C, 2500805 for Pd5–O, 2500806 for Pd6, 2500807 for Pd8–P, and 2500808 for (Ph2P=O)2, respectively. These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif. Checkcif file for Pd5–C, Pd5–O, Pd6, Pd8–P, and (Ph2P=O)2 CIF files and Supplementary Movie 1 are given as Supplementary Dataset. All data supporting the findings of this study are available within the article and its Supplementary Information files. All data are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Kealy, T. J. & Pauson, P. L. A new type of organo-iron compound. Nature 168, 1039–1040 (1951).

    Google Scholar 

  2. Wilkinson, G., Rosenblum, M., Whiting, M. C. & Woodward, R. B. The structure of iron bis-cyclopentadienyl. J. Am. Chem. Soc. 74, 2125–2126 (1952).

    Google Scholar 

  3. Miller, S. A., Tebboth, J. A. & Tremaine, J. F. Dicyclopentadienyliron. J. Chem. Soc. 114, 632–635 (1952).

    Google Scholar 

  4. Werner, H. At least 60 years of ferrocene: the discovery and rediscovery of the sandwich complexes. Angew. Chem. Int. Ed. 51, 6052–6058 (2012).

    Google Scholar 

  5. Consiglio, G. & Morandini, F. Half-sandwich chiral ruthenium complexes. Chem. Rev. 87, 761–778 (1987).

    Google Scholar 

  6. Green, M. L. H. & Ng, D. K. P. Cycloheptatriene and -enyl complexes of the early transition metals. Chem. Rev. 95, 439–473 (1995).

    Google Scholar 

  7. Arndt, S. & Okuda, J. Mono(cyclopentadienyl) complexes of the rare-earth metals. Chem. Rev. 102, 1953–1976 (2002).

    Google Scholar 

  8. Goodwin, C. A. P. et al. Isolation and electronic structures of derivatized manganocene, ferrocene and cobaltocene anions. Nat. Chem. 13, 243–248 (2021).

    Google Scholar 

  9. Siemeling, U. Chelate complexes of cyclopentadienyl ligands bearing pendant O-donors. Chem. Rev. 100, 1495–1526 (2000).

    Google Scholar 

  10. van Staveren, D. R. & Metzler-Nolte, N. Bioorganometallic chemistry of ferrocene. Chem. Rev. 104, 5931–5986 (2004).

    Google Scholar 

  11. Theys, R. D., Dudley, M. E. & Hossain, M. M. Recent chemistry of the η5-cyclopentadienyl dicarbonyl iron anion. Coord. Chem. Rev. 253, 180–234 (2009).

    Google Scholar 

  12. Patra, M. & Gasser, G. The medicinal chemistry of ferrocene and its derivatives. Nat. Rev. Chem. 1, 0066 (2017).

    Google Scholar 

  13. Mas-Roselló, J., Herraiz, A. G., Audic, B., Laverny, A. & Cramer, N. Chiral cyclopentadienyl ligands: design, syntheses, and applications in asymmetric catalysis. Angew. Chem. Int. Ed. 60, 13198–13224 (2021).

    Google Scholar 

  14. Kharitonov, V. B., Muratov, D. V. & Loginov, D. A. Cyclopentadienyl complexes of group 9 metals in the total synthesis of natural products. Coord. Chem. Rev. 471, 214744 (2022).

    Google Scholar 

  15. You, Q. et al. Pd8 nanocluster with nonmetal-to-metall- ring coordination and promising photothermal conversion efficiency. Angew. Chem. Int. Ed. 63, e202313491 (2024).

    Google Scholar 

  16. Murahashi, T. et al. Discrete sandwich compounds of monolayer palladium sheets. Science 313, 1104–1107 (2006).

    Google Scholar 

  17. Sunada, Y., Haige, R., Otsuka, K., Kyushin, S. & Nagashima, H. A ladder polysilane as a template for folding palladium nanosheets. Nat. Commun. 4, 2014 (2013).

    Google Scholar 

  18. Li, S., Li, N.-N., Dong, X.-Y., Zang, S.-Q. & Mak, T. C. W. Chemical flexibility of atomically precise metal clusters. Chem. Rev. 124, 7262–7378 (2024).

    Google Scholar 

  19. Yao, Q. et al. Molecule-like synthesis of ligand-protected metal nanoclusters. Nat. Rev. Mater. 10, 89–108 (2025).

    Google Scholar 

  20. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer–protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).

    Google Scholar 

  21. Desireddy, A. et al. Ultrastable silver nanoparticles. Nature 501, 399–402 (2013).

    Google Scholar 

  22. Narouz, M. R. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 11, 419–425 (2019).

    Google Scholar 

  23. Li, Y. et al. Double-helical assembly of heterodimeric nanoclusters into supercrystals. Nature 594, 380–384 (2021).

    Google Scholar 

  24. Li, Q. et al. Mechanical nanolattices printed using nanocluster-based photoresists. Science 378, 768–773 (2022).

    Google Scholar 

  25. Ma, F., Abboud, K. A. & Zeng, C. Precision synthesis of a CdSe semiconductor nanocluster via cation exchange. Nat. Synth. 2, 949–959 (2023).

    Google Scholar 

  26. Wang, X. et al. Ligand-protected metal nanoclusters as low-loss, highly polarized emitters for optical waveguides. Science 381, 784–790 (2023).

    Google Scholar 

  27. Yonesato, K. et al. Surface-exposed silver nanoclusters inside molecular metal oxide cavities. Nat. Chem. 15, 940–947 (2023).

    Google Scholar 

  28. Shi, W.-Q. et al. Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster. Science 383, 326–330 (2024).

    Google Scholar 

  29. Pei, X.-L. et al. Single-gold etching at the hypercarbon atom of C-centred hexagold(I) clusters protected by chiral N-heterocyclic carbenes. Nat. Commun. 15, 5024 (2024).

    Google Scholar 

  30. Tang, L. et al. Structure and optical properties of an Ag135Cu60 nanocluster incorporating an Ag135 buckminsterfullerene-like topology. Nat. Synth. 4, 506–513 (2025).

    Google Scholar 

  31. Jung, H. S. et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 47, 2280–2297 (2018).

    Google Scholar 

  32. Fang, L. et al. Sandwich-kernelled AgCu nanoclusters with golden ratio geometry and promising photothermal efficiency. Angew. Chem. Int. Ed. 62, e202305604 (2023).

    Google Scholar 

  33. Yan, T., Su, M., Wang, Z. & Zhang, J. Second near-infrared plasmonic nanomaterials for photoacoustic imaging and photothermal therapy. Small 19, 2300539 (2023).

    Google Scholar 

  34. Gu, W. et al. Concomitant near-infrared photothermy and photoluminescence of rod-shaped Au52(PET)32 and Au66(PET)38 synthesized concurrently. Angew. Chem. Int. Ed. 63, e202407518 (2024).

    Google Scholar 

  35. Wang, R. et al. Atomically precise nanometer-sized Pt catalysts with an additional photothermy functionality. Angew. Chem. Int. Ed. 63, e202402565 (2024).

    Google Scholar 

  36. Tang, J. et al. Selective hydrogenation of alkyne by atomically precise Pd6 nanocluster catalysts: Accurate construction of the coplanar and specific active sites. ACS Catal. 14, 2463–2472 (2024).

    Google Scholar 

  37. Ambreen, A. et al. Single thiolate replacement of metal nanoclusters. Sci. China Chem. 67, 523–528 (2024).

    Google Scholar 

  38. Zhuang, S. et al. Thiolated, reduced palladium nanoclusters with resolved structures for the electrocatalytic reduction of oxygen. Angew. Chem. Int. Ed. 61, e202208751 (2022).

    Google Scholar 

  39. Liu, Q. & Zhao, L. Low valent palladium clusters: synthesis, structures and catalytic applications. Chin. J. Chem. 38, 1897–1908 (2020).

    Google Scholar 

  40. Bastiansen, O. & Cyvin, S. J. Molecular vibrations and standard deviation of interatomic distances in benzene. Nature 180, 980–981 (1957).

    Google Scholar 

  41. Ingraham, K. A., Remy, C. D. & Rouse, E. J. The role of user preference in the customized control of robotic exoskeletons. Science 7, eabj3487 (2022).

    Google Scholar 

  42. Liao, Y. et al. Theoretical study on the optoelectronic properties of electron-withdrawing substituted diethynylfluorenyl gold(I) complexes. J. Phys. Chem. A 110, 13036–13044 (2006).

    Google Scholar 

  43. Gleiter, R. & Gebhard, H. Aromaticity and Other Conjugation Effects (Wiley-VCH, 2012).

  44. Chen, W.-X. et al. Capturing aromatic Cr5 pentagons in large main-group molecular cages. Nat. Synth. 4, 471–478 (2025).

    Google Scholar 

  45. Rienmüller, J. et al. Isolation of a planar π-aromatic Bi5− ring in a cobalt-based inverse-sandwich-type complex. Nat. Chem. 17, 547–555 (2025).

    Google Scholar 

  46. Hunter, C. A. & Sanders, J. K. M. The nature of π‒π interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

    Google Scholar 

  47. Johnson, G. et al. Nanocluster superstructures assembled via surface ligand switching at high temperature. Nat. Synth. 2, 828–837 (2023).

    Google Scholar 

  48. Li, H., Kang, X. & Zhu, M. Superlattice assembly for empowering metal nanoclusters. Acc. Chem. Res. 57, 3194–3205 (2024).

    Google Scholar 

  49. Zhao, H. et al. Assembly of air-stable copper(I) alkynide nanoclusters assisted by tripodal polydentate phosphoramide ligands. Nat. Synth. 3, 517–526 (2024).

    Google Scholar 

  50. Zhai, X.-J. et al. Hierarchical assembly of Ag40 nanowheel ranging from building blocks to diverse superstructure regulation. Nat. Commun. 15, 9155 (2024).

    Google Scholar 

  51. Li, Y. et al. Self-assembly of chiroptical ionic co-crystals from silver nanoclusters and organic macrocycles. Nat. Chem. 17, 169–176 (2025).

    Google Scholar 

  52. Patil, A. O., Heeger, A. J. & Wudl, F. Optical properties of conducting polymers. Chem. Rev. 88, 183–200 (1988).

    Google Scholar 

  53. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Google Scholar 

  54. Rumi, M. et al. Structure−property relationships for two-photon absorbing chromophores:  bis-donor diphenylpolyene and bis(styryl)benzene derivatives. J. Am. Chem. Soc. 122, 9500–9510 (2000).

    Google Scholar 

  55. Zhuang, S. et al. Kernel homology in gold nanoclusters. Angew. Chem. Int. Ed. 57, 15450–15454 (2018).

    Google Scholar 

  56. Li, Y. et al. Atomically precise Au42 nanorods with longitudinal excitons for an intense photothermal effect. J. Am. Chem. Soc. 144, 12381–12389 (2022).

    Google Scholar 

  57. Feng, L. et al. Long-pursued structure of Au23(S-Adm)16 and the unexpected doping effects. Acta Phys. Chim. Sin. 40, 2305029 (2024).

    Google Scholar 

  58. Wu, Z., Suhan, J. & Jin, R. One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J. Mater. Chem. 19, 622–626 (2009).

    Google Scholar 

  59. Breitwieser, K. et al. Pd8(PDip)6: cubic, unsaturated, zerovalent. Adv. Sci. 11, 2400699 (2024).

    Google Scholar 

  60. Cook, A. W., Hrobarik, P., Damon, P. L., Wu, G. & Hayton, T. W. A ketimide-stabilized palladium nanocluster with a hexagonal aromatic Pd7 core. Inorg. Chem. 59, 1471–1480 (2020).

    Google Scholar 

  61. Hooper, T. N. et al. The partial dehydrogenation of aluminium dihydrides. Chem. Sci. 10, 8083–8093 (2019).

    Google Scholar 

  62. Neese, F. Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1327 (2018).

    Google Scholar 

  63. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 111, 6158–6170 (1999).

    Google Scholar 

  64. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Google Scholar 

  65. Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 7.0: new vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. 40, 2234–2241 (2019).

    Google Scholar 

  66. Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).

    Google Scholar 

  67. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Google Scholar 

  68. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).

    Google Scholar 

  69. Michalak, A., Mitoraj, M. & Ziegler, T. Bond orbitals from chemical valence theory. J. Phys. Chem. A. 112, 1933–1939 (2008).

    Google Scholar 

  70. Mitoraj, M. P., Michalak, A. & Ziegler, T. A combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory Comput. 5, 962–975 (2009).

    Google Scholar 

  71. te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Google Scholar 

  72. Van Lenthe, E. & Baerends, E. J. Optimized slater-type basis sets for the elements 1-118. J. Comput. Chem. 24, 1142–1156 (2003).

    Google Scholar 

  73. van Lenthe, E., van Leeuwen, R., Baerends, E. J. & Snijders, J. G. Relativistic regular two-component hamiltonians. Int. J. Quantum Chem. 57, 281–293 (1996).

    Google Scholar 

  74. Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010).

    Google Scholar 

  75. Contreras-García, J. et al. NCIPLOT: a program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 7, 625–632 (2011).

    Google Scholar 

  76. Humphrey, W., Dalke, A. & Schulten, K. V. M. D. Visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Google Scholar 

  77. Perdew, J. P., Burke, K. & Emzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  78. Andrae, D., Häußermann, U., Dolg, M., Stoll, H. & Preuß, H. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta. 77, 123–141 (1990).

    Google Scholar 

  79. Bergner, A., Dolg, M., Küchle, W., Stoll, H. & Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 80, 1431–1441 (1993).

    Google Scholar 

  80. Petersson, G. A. et al. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 89, 2193–2218 (1988).

    Google Scholar 

  81. Petersson, G. A. & Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991).

    Google Scholar 

  82. Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D. & Windus, T. L. New basis set exchange: an open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model. 59, 4814–4820 (2019).

    Google Scholar 

  83. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, 1456–1465 (2011).

    Google Scholar 

  84. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Google Scholar 

  85. Gaussian 16 Revision C. 01 (Gaussian Inc., 2016).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22471275, 22403096, 21925303, 21829501, 22033005, 22171267, 21771186, 21222301, 21171170 and 21528303), to Q.Y., J.L., and Z.W., the National Key Research and Development Program of China (No. 2022YFA1503900), the Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), the NSFC Center for Single-Atom Catalysis (22388102) to J.L., and the Anhui Provincial Natural Science Foundation 2408085QB040 to Q.Y. Computational resources were supported by the Center for Computational Science and Engineering at Southern University of Science and Technology and the CHEM high-performance supercomputer cluster (CHEM-HPC) located at department of chemistry, SUSTech.

Author information

Author notes
  1. These authors contributed equally: Qing You, Xue-Lian Jiang, Yan Zhao.

Authors and Affiliations

  1. Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China

    Qing You, Wanmiao Gu & Zhikun Wu

  2. Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, PR China

    Xue-Lian Jiang & Jun Li

  3. Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, PR China

    Yan Zhao & Zhikun Wu

  4. Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, PR China

    Jun Li

  5. Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, PR China

    Jun Li

  6. Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, PR China

    Zhikun Wu

Authors
  1. Qing You
    View author publications

    Search author on:PubMed Google Scholar

  2. Xue-Lian Jiang
    View author publications

    Search author on:PubMed Google Scholar

  3. Yan Zhao
    View author publications

    Search author on:PubMed Google Scholar

  4. Wanmiao Gu
    View author publications

    Search author on:PubMed Google Scholar

  5. Jun Li
    View author publications

    Search author on:PubMed Google Scholar

  6. Zhikun Wu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Z.W and J.L. conceived the initial idea and managed the overall project. Q.Y. designed and performed the experiments. X.-L.J. performed the theoretical calculations and conducted the bonding analysis under the supervision of J.L. Q.Y. performed the electronic transition analyses using TD-DFT calculations. Y.Z. collected and analyzed the XPS, DPV, SEM, and TEM. data with the assistance of W.G., Q.Y., and Z.W. wrote the paper with the assistance of X.-L.J. and J.L.

Corresponding authors

Correspondence to Jun Li or Zhikun Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Tokuhisa Kawawaki, Qingming Shen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Q., Jiang, XL., Zhao, Y. et al. Inverse palladocenes. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68955-7

Download citation

  • Received: 22 May 2025

  • Accepted: 15 January 2026

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-68955-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing