Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Prefrontal chandelier cells encode stimulus salience to influence learning in male mice
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Prefrontal chandelier cells encode stimulus salience to influence learning in male mice

  • Kai Zhang  ORCID: orcid.org/0009-0003-0492-557X1,2 na1,
  • Mengmeng Shao1,2 na1,
  • Qingdan Kong1,2 na1,
  • Baihui Ren1,2,
  • Rui Zhao3,
  • Mengying Li  ORCID: orcid.org/0000-0002-4699-50104,
  • Yanqing Qi3,
  • Dongping Huang1,2,
  • Tianle Xu  ORCID: orcid.org/0000-0002-1438-00382,5,6,
  • Z. Josh Huang  ORCID: orcid.org/0000-0003-0592-028X7,8,
  • Miao He  ORCID: orcid.org/0000-0003-0731-68013,
  • Yilin Tai  ORCID: orcid.org/0009-0005-7440-02633 &
  • …
  • Jiangteng Lu  ORCID: orcid.org/0000-0001-6233-42661,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cellular neuroscience
  • Classical conditioning
  • Neural circuits

Abstract

Detecting and utilizing salience information are essential for organisms to prioritize behaviorally relevant stimuli. While the prefrontal cortex is critical for cognition and learning, how it leverages salience information remains unclear. We report that chandelier cells (ChCs) in the medial prefrontal cortex (mPFC), a unique GABAergic interneuron, encode salience information and influence learning. Using cell-type-specific calcium signal recording in male mice, we demonstrate that ChCs respond robustly to stimuli across modalities, with responses dependent on stimulus salience, as determined by novelty and intensity. Circuit-specific manipulations reveal that ChC salience coding is attributable to synaptic inputs from the anterior insular cortex and paraventricular thalamus. Furthermore, ChCs acquire salience-coding property for behaviorally relevant stimuli through associative learning. Notably, bidirectional manipulations of ChC-mediated salience detection correspondingly led to improved or impaired associative learning. Together, these findings establish mPFC ChCs as a key circuit element for processing salience information to shape learning and behavior.

Data availability

The data generated in this study are provided in the Supplementary Information and the Source Data file. Source data are provided with this paper.

Code availability

Scripts used to process the data are available at: https://doi.org/10.5281/zenodo.1807319261.

References

  1. Knudsen, E. I. Fundamental components of attention. Annu. Rev. Neurosci. 30, 57–78 (2007).

    Google Scholar 

  2. Fecteau, J. H. & Munoz, D. P. Salience, relevance, and firing: a priority map for target selection. Trends Cogn. Sci. 10, 382–390 (2006).

    Google Scholar 

  3. Uddin, L. Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 55–61 (2015).

    Google Scholar 

  4. Ghazizadeh, A., Griggs, W. & Hikosaka, O. Ecological origins of object salience: reward, uncertainty, aversiveness, and novelty. Front. Neurosci. 10, 378 (2016).

    Google Scholar 

  5. Menon, V. Salience network. In Brain Mapping: An Encyclopedic Reference (ed. Toga, A. W.). Vol. 5, 598–599 (Elsevier Inc, 2015).

  6. Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23 (2003).

    Google Scholar 

  7. White, T. P., Joseph, V., Francis, S. T. & Liddle, P. F. Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia. Schizophr. Res. 123, 105–115 (2010).

    Google Scholar 

  8. Lawson, R. P., Rees, G. & Friston, K. J. An aberrant precision account of autism. Front Hum. Neurosci. 8, 302 (2014).

    Google Scholar 

  9. Uddin, L. Q. & Menon, V. The anterior insula in autism: under-connected and under-examined. Neurosci. Biobehav. Rev. 33, 1198–1203 (2009).

    Google Scholar 

  10. Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

    Google Scholar 

  11. Wang, F. et al. Salience processing by glutamatergic neurons in the ventral pallidum. Sci. Bull. 65, 389–401 (2019).

  12. Zhu, Y. et al. Dynamic salience processing in paraventricular thalamus gates associative learning. Science 362, 423–429 (2018).

    Google Scholar 

  13. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Google Scholar 

  14. Carlén, M. What constitutes the prefrontal cortex?. Science 358, 478–482 (2017).

    Google Scholar 

  15. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Google Scholar 

  16. Fishell, G. & Kepecs, A. Interneuron types as attractors and controllers. Annu. Rev. Neurosci. 43, 1–30 (2020).

    Google Scholar 

  17. Huang, Z. J. & Paul, A. The diversity of GABAergic neurons and neural communication elements. Nat. Rev. Neurosci. 20, 563–572 (2019).

    Google Scholar 

  18. Viney, T. J. et al. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo. Nat. Neurosci. 16, 1802–1811 (2013).

    Google Scholar 

  19. Buzsáki, G. & Schomburg, E. W. What does gamma coherence tell us about inter-regional neural communication?. Nat. Neurosci. 18, 484–489 (2015).

    Google Scholar 

  20. Somogyi, P. A specific ‘axo-axonal’ interneuron in the visual cortex of the rat. Brain Res. 136, 345–350 (1977).

    Google Scholar 

  21. Taniguchi, H., Lu, J. & Huang, Z. J. The spatial and temporal origin of chandelier cells in mouse neocortex. Science 339, 70–74 (2013).

    Google Scholar 

  22. Lu, J. et al. Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nat. Neurosci. 20, 1377–1383 (2017).

    Google Scholar 

  23. Somogyi, P. et al. Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res. 332, 143–149 (1985).

    Google Scholar 

  24. DeFelipe, J., Hendry, S. H., Jones, E. G. & Schmechel, D. Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex. J. Comp. Neurol. 231, 364–384 (1985).

    Google Scholar 

  25. Crick, F. H. C. & Asanuma, C. Certain Aspects of the Anatomy and Physiology of the Cerebral Cortex. in Parallel Distributed Processing: Explorations in the Microstructure of Cognition(eds. James L. McClelland, David E. Rumelhart, PDP Research Group), Vol. 2: Psychological and Biological Models. 333–371 (MIT Press, 1986).

  26. Inda, M. C., Defelipe, J. & Muñoz, A. The distribution of chandelier cell axon terminals that express the GABA plasma membrane transporter GAT-1 in the human neocortex. Cereb. Cortex 17, 2060–2071 (2007).

    Google Scholar 

  27. Raudales, R. et al. Specific and comprehensive genetic targeting reveals brain-wide distribution and synaptic input patterns of GABAergic axo-axonic interneurons. Elife 13, RP93481 (2024).

  28. Woo, T. U., Whitehead, R. E., Melchitzky, D. S. & Lewis, D. A. A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc. Natl. Acad. Sci. USA 95, 5341–5346 (1998).

    Google Scholar 

  29. Ariza, J., Rogers, H., Hashemi, E., Noctor, S. C. & Martínez-Cerdeño, V. The number of chandelier and basket cells are differentially decreased in prefrontal cortex in autism. Cereb. Cortex 28, 411–420 (2018).

    Google Scholar 

  30. Woodruff, A. & Yuste, R. Of mice and men, and chandeliers. PLoS Biol. 6, e243 (2008).

    Google Scholar 

  31. Dudok, B. et al. Recruitment and inhibitory action of hippocampal axo-axonic cells during behavior. Neuron 109, 3838–3850.e3838 (2021).

    Google Scholar 

  32. Zhao, R. et al. Axo-axonic synaptic input drives homeostatic plasticity by tuning the axon initial segment structurally and functionally. Sci. Adv. 10, eadk4331 (2024).

    Google Scholar 

  33. Cummings, K. A. & Clem, R. L. Prefrontal somatostatin interneurons encode fear memory. Nat. Neurosci. 23, 61–74 (2020).

    Google Scholar 

  34. Kim, D. et al. Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory. Neuron 92, 902–915 (2016).

    Google Scholar 

  35. Schneider-Mizell, C. M. et al. Structure and function of axo-axonic inhibition. eLife 10, e73783 (2021).

    Google Scholar 

  36. Jung, K. et al. An adaptive behavioral control motif mediated by cortical axo-axonic inhibition. Nat. Neurosci. 26, 1379–1393 (2023).

    Google Scholar 

  37. Seeley, W. W. The salience network: a neural system for perceiving and responding to homeostatic demands. J. Neurosci. 39, 9878–9882 (2019).

    Google Scholar 

  38. Ovsepian, S. V. et al. Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. Pharm. Ther. 193, 135–155 (2019).

    Google Scholar 

  39. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Google Scholar 

  40. Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    Google Scholar 

  41. Mackintosh, N. J. A theory of attention: variations in the associability of stimuli with reinforcement. Psychol. Rev. 82, 276–298 (1975).

    Google Scholar 

  42. Gilmartin, M. R. & Helmstetter, F. J. Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex. Learn Mem. 17, 289–296 (2010).

    Google Scholar 

  43. Gilmartin, M. R., Balderston, N. L. & Helmstetter, F. J. Prefrontal cortical regulation of fear learning. Trends Neurosci. 37, 455–464 (2014).

    Google Scholar 

  44. Otis, J. M. et al. Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543, 103–107 (2017).

    Google Scholar 

  45. Seignette, K. et al. Experience shapes chandelier cell function and structure in the visual cortex. eLife 12, RP91153 (2024).

    Google Scholar 

  46. Dahl, M. J., Mather, M. & Werkle-Bergner, M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn. Sci. 26, 38–52 (2022).

    Google Scholar 

  47. Winton-Brown, T. T., Fusar-Poli, P., Ungless, M. A. & Howes, O. D. Dopaminergic basis of salience dysregulation in psychosis. Trends Neurosci. 37, 85–94 (2014).

    Google Scholar 

  48. Do-Monte, F. H., Minier-Toribio, A., Quiñones-Laracuente, K., Medina-Colón, E. M. & Quirk, G. J. Thalamic regulation of sucrose seeking during unexpected reward omission. Neuron 94, 388–400.e384 (2017).

    Google Scholar 

  49. Vollmer, K. M. et al. An opioid-gated thalamoaccumbal circuit for the suppression of reward seeking in mice. Nat. Commun. 13, 6865 (2022).

    Google Scholar 

  50. Paniccia, J. E. et al. Restoration of a paraventricular thalamo-accumbal behavioral suppression circuit prevents reinstatement of heroin seeking. Neuron 112, 772–785.e779 (2024).

    Google Scholar 

  51. Pi, H.-J. et al. Cortical interneurons that specialize in disinhibitory control. Nature 503, 521–524 (2013).

    Google Scholar 

  52. Malik, R., Li, Y., Schamiloglu, S. & Sohal, V. S. Top-down control of hippocampal signal-to-noise by prefrontal long-range inhibition. Cell 185, 1602–1617.e1617 (2022).

    Google Scholar 

  53. Paquelet, G. E. et al. Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors. Neuron 110, 2664–2679.e2668 (2022).

    Google Scholar 

  54. Courtin, J. et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505, 92–96 (2014).

    Google Scholar 

  55. Pan-Vazquez, A., Wefelmeyer, W., Gonzalez Sabater, V., Neves, G. & Burrone, J. Activity-dependent plasticity of axo-axonic synapses at the axon initial segment. Neuron 106, 265–276.e6 (2020).

  56. Wang, B. S. et al. Retinal and callosal activity-dependent chandelier cell elimination shapes binocularity in primary visual cortex. Neuron 109, 502–515.e507 (2021).

    Google Scholar 

  57. Grant, R. I. et al. Specialized coding patterns among dorsomedial prefrontal neuronal ensembles predict conditioned reward seeking. Elife 10, e65764 (2021).

  58. Fernandez-Leon, J. A. et al. Neural correlates and determinants of approach-avoidance conflict in the prelimbic prefrontal cortex. Elife 10, e74950 (2021).

  59. Do-Monte, F. H., Quiñones-Laracuente, K. & Quirk, G. J. A temporal shift in the circuits mediating retrieval of fear memory. Nature 519, 460–463 (2015).

    Google Scholar 

  60. Abe, K. et al. Functional diversity of dopamine axons in prefrontal cortex during classical conditioning. Elife 12, RP91136 (2024).

  61. Zhang, K. Analysis code for chandelier cell salience encoding. Zenodo https://doi.org/10.5281/zenodo.18073192876 (2025).

Download references

Acknowledgements

We thank Ninglong Xu and members of the Lu laboratory for helpful comments on the manuscript. We thank Wen Fang for head fixation stimulation experiment and Ninglong Xu for head-plate. The mouse and behavioral paradigm illustrations in Figs. 1–8 and Supplementary Figs. 2, 5, 6, 7, 8, 10, 11, 12, 15, 16, and 17 were adapted from SciDraw.io (Andrew Hardaway, Federico Claudi, and Alex Harston) under a CC-BY license. We thank Federico Claudi and SciDraw.io for providing the original illustrations. This work was supported by National Science and Technology Innovation 2030 Major Projects of China STI2030-Major Projects (2021ZD0202801 to J.L.), National Natural Science Foundation of China (31972903 to J.L., 32371073 to J.L., 82071450 to Y.T., 32000681 to Y.T., 31970971 to M.H.), National Science and Technology Innovation 2030 Major Projects of China STI2030-Major Projects (2022ZD0206500 to M.H.), Shanghai Science and Technology Innovation Action Plan (22YF1421000 to D.H.).

Author information

Author notes
  1. These authors contributed equally: Kai Zhang, Mengmeng Shao, Qingdan Kong.

Authors and Affiliations

  1. Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

    Kai Zhang, Mengmeng Shao, Qingdan Kong, Baihui Ren, Dongping Huang & Jiangteng Lu

  2. Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China

    Kai Zhang, Mengmeng Shao, Qingdan Kong, Baihui Ren, Dongping Huang, Tianle Xu & Jiangteng Lu

  3. State Key Laboratory of Brain Function and Disorders and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, China

    Rui Zhao, Yanqing Qi, Miao He & Yilin Tai

  4. Department of Nephrology, Rheumatology and Immunology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

    Mengying Li

  5. Department of Anesthesiology, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China

    Tianle Xu

  6. Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China

    Tianle Xu

  7. Department of Neurobiology, Duke University Medical Center, Durham, NC, USA

    Z. Josh Huang

  8. Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC, USA

    Z. Josh Huang

Authors
  1. Kai Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Mengmeng Shao
    View author publications

    Search author on:PubMed Google Scholar

  3. Qingdan Kong
    View author publications

    Search author on:PubMed Google Scholar

  4. Baihui Ren
    View author publications

    Search author on:PubMed Google Scholar

  5. Rui Zhao
    View author publications

    Search author on:PubMed Google Scholar

  6. Mengying Li
    View author publications

    Search author on:PubMed Google Scholar

  7. Yanqing Qi
    View author publications

    Search author on:PubMed Google Scholar

  8. Dongping Huang
    View author publications

    Search author on:PubMed Google Scholar

  9. Tianle Xu
    View author publications

    Search author on:PubMed Google Scholar

  10. Z. Josh Huang
    View author publications

    Search author on:PubMed Google Scholar

  11. Miao He
    View author publications

    Search author on:PubMed Google Scholar

  12. Yilin Tai
    View author publications

    Search author on:PubMed Google Scholar

  13. Jiangteng Lu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.T. and J.L. conceived the project. K.Z., M.S., and Q.K. performed most of the experiments. M.L., B.R., R.Z., D.H., Q.Y., T.X., M.H., and Z.J.H. helped interpret results. K.Z., Y.T., and J.L. wrote the original draft of the paper. All of the authors provided comments on and approved the final manuscript.

Corresponding authors

Correspondence to Yilin Tai or Jiangteng Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Kanghoon Jung and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Shao, M., Kong, Q. et al. Prefrontal chandelier cells encode stimulus salience to influence learning in male mice. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68959-3

Download citation

  • Received: 10 January 2025

  • Accepted: 21 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68959-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing