Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
FANCD2 restrains fork progression and prevents fragility at early origins upon re-replication
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 07 February 2026

FANCD2 restrains fork progression and prevents fragility at early origins upon re-replication

  • Nibal Badra-Fajardo  ORCID: orcid.org/0000-0003-1577-18121,
  • Elena Karydi  ORCID: orcid.org/0009-0007-9765-87711,
  • Aleix Bayona-Feliu  ORCID: orcid.org/0000-0002-7412-16522,
  • Belén Gómez-González  ORCID: orcid.org/0000-0003-1655-84073,
  • Ourania Preza1,
  • Marina Arbi  ORCID: orcid.org/0000-0003-1586-13831,
  • Argyro Kalogeropoulou4,
  • Juha K. Rantala  ORCID: orcid.org/0000-0002-4999-55855,
  • Stavros Taraviras  ORCID: orcid.org/0000-0002-7455-647X4,
  • Andrés Aguilera3 &
  • …
  • Zoi Lygerou  ORCID: orcid.org/0000-0001-5683-02201 

Nature Communications , Article number:  (2026) Cite this article

  • 1305 Accesses

  • 9 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Double-strand DNA breaks
  • Origin firing
  • Stalled forks

Abstract

DNA replication is tightly regulated to ensure a single round of chromosome duplication per cell division. DNA licensing restricts origin firing to once-per-cell-cycle while aberrant licensing promotes re-replication and genome instability. Here, we investigate the mechanisms that protect genome integrity following re-replication induced by depletion of the licensing inhibitor Geminin. We find that re-replicating cells require FANCD2 to prevent genome instability. FANCD2 is rapidly recruited to chromatin upon Geminin loss, where it limits unrestrained fork progression and prevents single strand DNA gap accumulation and fork breakage. Genome-wide analyses reveal that upon re-replication, FANCD2 localizes to early origins within highly transcribed regions prone to accumulate R-loops and enriched in early replicating fragile sites. Importantly, reducing transcription and R-loops alleviates re-replication-induced genome fragility, whereas PARP inhibition exacerbates it. Our study uncovers a role for FANCD2 in safeguarding genome integrity during re-replication, offering avenues for selective targeting of cancer cells.

Similar content being viewed by others

FANCD2 maintains replication fork stability during misincorporation of the DNA demethylation products 5-hydroxymethyl-2’-deoxycytidine and 5-hydroxymethyl-2’-deoxyuridine

Article Open access 27 May 2022

Hypomorphic Brca2 and Rad51c double mutant mice display Fanconi anemia, cancer and polygenic replication stress

Article Open access 11 March 2023

The Fanconi anemia core complex promotes CtIP-dependent end resection to drive homologous recombination at DNA double-strand breaks

Article Open access 16 August 2024

Data availability

ChIP-seq data have been deposited in NCBI’s Gene Expression Omnibus with GEO Series accession number GSE285033. A full analysis of the Microscopy data is available at Zenodo (https://doi.org/10.5281/zenodo.18000043). Raw image files and reagents are available from the corresponding author. Source data are provided with this paper.

Code availability

The custom ImageJ/Fiji and Cell Profiler macros used for the analysis of nuclear areas, signal intensity, foci quantification, and colocalization have been deposited in a public GitHub repository [Link: https://github.com/ElenaKarydi/Image-analysis-pipelines/releases/tag/v1.0.0].

References

  1. Rhind, N. & Gilbert, D. M. DNA replication timing. Cold Spring Harb. Perspect. Biol. 5, a010132–a010132 (2013).

    Google Scholar 

  2. Marks, A. B., Fu, H. & Aladjem, M. I. Regulation of replication origins. Adv. Exp. Med Biol. 1042, 43–59 (2017).

    Google Scholar 

  3. Ticau, S. et al. Mechanism and timing of Mcm2-7 ring closure during DNA replication origin licensing. Nat. Struct. Mol. Biol. 24, 309–315 (2017).

    Google Scholar 

  4. Li, J. et al. The human pre-replication complex is an open complex. Cell 186, 98–111.e121 (2023).

    Google Scholar 

  5. Reuter, L. M. et al. MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing. Nat. Commun. 15, 7306 (2024).

    Google Scholar 

  6. Ticau, S., Friedman, L. J., Ivica, N. A., Gelles, J. & Bell, S. P. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161, 513–525 (2015).

    Google Scholar 

  7. Yang, R., Hunker, O., Wise, M. & Bleichert, F. Multiple mechanisms for licensing human replication origins. Nature (2024).

  8. Symeonidou, I.-E., Taraviras, S. & Lygerou, Z. Control over DNA replication in time and space. FEBS Lett. 586, 2803–2812 (2012).

    Google Scholar 

  9. Fragkos, M., Ganier, O., Coulombe, P. & Méchali, M. DNA replication origin activation in space and time. Nat. Rev. Mol. Cell Biol. 16, 360–374 (2015).

    Google Scholar 

  10. Aparicio, T., Guillou, E., Coloma, J., Montoya, G. & Méndez, J. The human GINS complex associates with Cdc45 and MCM and is essential for DNA replication. Nucleic Acids Res. 37, 2087–2095 (2009).

    Google Scholar 

  11. Ratnayeke, N., Baris, Y., Chung, M., Yeeles, J. T. P. & Meyer, T. CDT1 inhibits CMG helicase in early S phase to separate origin licensing from DNA synthesis. Mol. Cell 83, 26–42.e13 (2023).

    Google Scholar 

  12. Hiraga, S. I. et al. Human RIF1 and protein phosphatase 1 stimulate DNA replication origin licensing but suppress origin activation. EMBO Rep. 18, 403–419 (2017).

    Google Scholar 

  13. Ticau, S., Larry, N. ikola & Gelles, J. & Stephen. Single-Molecule Studies of Origin Licensing Reveal Mechanisms Ensuring Bidirectional Helicase Loading. Cell 161, 513–525 (2015).

    Google Scholar 

  14. Zhang, H. Regulation of DNA replication licensing and re-replication by Cdt1. Int. J. Mol. Sci. 22, (2021).

  15. Kiang, L., Heichinger, C., Watt, S., Bähler, J. & Nurse, P. Specific replication origins promote DNA amplification in fission yeast. J. Cell Sci. 123, 3047–3051 (2010).

    Google Scholar 

  16. Thomer, M., May, N. R., Aggarwal, B. D., Kwok, G. & Calvi, B. R. Drosophila double-parkedis sufficient to induce re-replication during development and is regulated by cyclin E/CDK2. Development 131, 4807–4818 (2004).

    Google Scholar 

  17. Davidson, I. F., Li, A. & Blow, J. J. Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol. Cell 24, 433–443 (2006).

    Google Scholar 

  18. Liontos, M. et al. Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior. Cancer Res. 67, 10899–10909 (2007).

    Google Scholar 

  19. Galanos, P. et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 18, 777–789 (2016).

    Google Scholar 

  20. Muñoz, S. et al. In Vivo DNA Re-replication Elicits Lethal Tissue Dysplasias. Cell Rep. 19, 928–938 (2017).

    Google Scholar 

  21. Petropoulos, M. et al. Cdt1 overexpression drives colorectal carcinogenesis through origin overlicensing and DNA damage. J. Pathol. 259, 10–20 (2023).

    Google Scholar 

  22. Petropoulou, C. Cdt1 and Geminin in cancer: markers or triggers of malignant transformation? Front. Biosci. 4485 (2008).

  23. Vanderdys, V. et al. The neddylation inhibitor pevonedistat (MLN4924) suppresses and radiosensitizes head and neck squamous carcinoma cells and tumors. Mol. Cancer Therapeutics 17, 368–380 (2018).

    Google Scholar 

  24. Yoshimura, C. et al. TAS4464, a highly potent and selective inhibitor of NEDD8-activating enzyme, suppresses neddylation and shows antitumor activity in diverse cancer models. Mol. Cancer Ther. 18, 1205–1216 (2019).

    Google Scholar 

  25. Pozo, P. & Cook, J. Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability. Genes 8, 2 (2016).

    Google Scholar 

  26. De Marco, V. et al. Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing. Proc. Natl. Acad. Sci. USA 106, 19807–19812 (2009).

    Google Scholar 

  27. Dimaki, M. et al. Cell cycle-dependent subcellular translocation of the human DNA licensing inhibitor geminin. J. Biol. Chem. 288, 23953–23963 (2013).

    Google Scholar 

  28. McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).

    Google Scholar 

  29. Tada, S., Li, A., Maiorano, D., Méchali, M. & Blow, J. J. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat. Cell Biol. 3, 107–113 (2001).

    Google Scholar 

  30. Zhu, W. & Depamphilis, M. L. Selective killing of cancer cells by suppression of geminin activity. Cancer Res 69, 4870–4877 (2009).

    Google Scholar 

  31. Shreeram, S., Sparks, A., Lane, D. P. & Blow, J. J. Cell type-specific responses of human cells to inhibition of replication licensing. Oncogene 21, 6624–6632 (2002).

    Google Scholar 

  32. Petropoulos, M., Champeris Tsaniras, S., Taraviras, S. & Lygerou, Z. Replication licensing aberrations, replication stress, and genomic instability. Trends Biochem. Sci. 44, 752–764 (2019).

    Google Scholar 

  33. Champeris Tsaniras, S. et al. Geminin ablation in vivo enhances tumorigenesis through increased genomic instability. J. Pathol. 246, 134–140 (2018).

    Google Scholar 

  34. Kalogeropoulou, A. et al. Intrinsic neural stem cell properties define brain hypersensitivity to genotoxic stress. Stem Cell Rep. 17, 1395–1410 (2022).

    Google Scholar 

  35. Karantzelis, N. et al. Small molecule inhibitor targeting CDT1/geminin protein complex promotes DNA damage and cell death in cancer cells. Front. Pharmacol. 13, (2022).

  36. Pappas, K. et al. BRCA2 reversion mutation-independent resistance to PARP inhibition through impaired DNA prereplication complex function. Proc. Natl. Acad. Sci. USA 122, e2426743122 (2025).

    Google Scholar 

  37. Semlow, D. R. & Walter, J. C. Mechanisms of vertebrate DNA interstrand cross-link repair. Annu. Rev. Biochem. 90, 107–135 (2021).

    Google Scholar 

  38. Badra Fajardo, N., Taraviras, S. & Lygerou, Z. Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy. Trends Cancer 8, 467–481 (2022).

    Google Scholar 

  39. Zhu, W., Chen, Y. & Dutta, A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M Checkpoint. Mol. Cell. Biol. 24, 7140–7150 (2004).

    Google Scholar 

  40. O’Connell, M. J., Raleigh, J. M., Verkade, H. M. & Nurse, P. Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. Embo J. 16, 545–554 (1997).

    Google Scholar 

  41. Sørensen, C. S. & Syljuåsen, R. G. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res. 40, 477–486 (2012).

    Google Scholar 

  42. Panagopoulos, A., Taraviras, S., Nishitani, H. & Lygerou, Z. CRL4(Cdt2): coupling genome stability to ubiquitination. Trends Cell Biol. 30, 290–302 (2020).

    Google Scholar 

  43. Lee, J. & Zhou, P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26, 775–780 (2007).

    Google Scholar 

  44. Kawasaki, T. et al. BCL2L2 is a probable target for novel 14q11.2 amplification detected in a non-small cell lung cancer cell line. Cancer Sci. 98, 1070–1077 (2007).

    Google Scholar 

  45. Natsume, T., Kiyomitsu, T., Saga, Y. & Kanemaki, M. T. Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep. 15, 210–218 (2016).

    Google Scholar 

  46. Thakur, B. L., Ray, A., Redon, C. E. & Aladjem, M. I. Preventing excess replication origin activation to ensure genome stability. Trends Genet. 38, 169–181 (2022).

    Google Scholar 

  47. Ceccaldi, R., Sarangi, P. & D’Andrea, A. D. The Fanconi anaemia pathway: new players and new functions. Nat. Rev. Mol. Cell Biol. 17, 337–349 (2016).

    Google Scholar 

  48. Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012).

    Google Scholar 

  49. Kais, Z. et al. FANCD2 maintains fork stability in BRCA1/2-deficient tumors and promotes alternative end-joining DNA repair. Cell Rep. 15, 2488–2499 (2016).

    Google Scholar 

  50. Liu, W. et al. FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Res. 51, 9144–9165 (2023).

    Google Scholar 

  51. Alexander, J. L., Barrasa, M. I. & Orr-Weaver, T. L. Replication fork progression during re-replication requires the DNA damage checkpoint and double-strand break repair. Curr. Biol. 25, 1654–1660 (2015).

    Google Scholar 

  52. Lin, J. J. & Dutta, A. ATR Pathway Is the Primary Pathway for Activating G2/M Checkpoint Induction After Re-replication. J. Biol. Chem. 282, 30357–30362 (2007).

    Google Scholar 

  53. Zhu, W. & Dutta, A. An ATR- and BRCA1-mediated Fanconi anemia pathway is required for activating the G2/M checkpoint and DNA damage repair upon rereplication. Mol. Cell Biol. 26, 4601–4611 (2006).

    Google Scholar 

  54. Lossaint, G. et al. FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling. Mol. Cell 51, 678–690 (2013).

    Google Scholar 

  55. Neelsen, K. J. et al. Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template. Genes Dev. 27, 2537–2542 (2013).

    Google Scholar 

  56. Luis et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155, 1088–1103 (2013).

    Google Scholar 

  57. Maya-Mendoza, A. et al. High speed of fork progression induces DNA replication stress and genomic instability. Nature 559, 279–284 (2018).

    Google Scholar 

  58. Cong, K. et al. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol. Cell 81, 3128–3144.e3127 (2021).

    Google Scholar 

  59. Machacova, Z., Chroma, K., Lukac, D., Protivankova, I. & Moudry, P. DNA polymerase α-primase facilitates PARP inhibitor-induced fork acceleration and protects BRCA1-deficient cells against ssDNA gaps. Nat. Commun. 15, 7375 (2024).

    Google Scholar 

  60. Thompson, E. L. et al. FANCI and FANCD2 have common as well as independent functions during the cellular replication stress response. Nucleic Acids Res. 45, 11837–11857 (2017).

    Google Scholar 

  61. Raghunandan, M., Chaudhury, I., Kelich, S. L., Hanenberg, H. & Sobeck, A. FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independently of the Fanconi Anemia core complex. Cell Cycle 14, 342–353 (2015).

    Google Scholar 

  62. Chen, X., Bosques, L., Sung, P. & Kupfer, G. M. A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage. Oncogene 35, 22–34 (2016).

    Google Scholar 

  63. Zhou, B. et al. Comprehensive, integrated, and phased whole-genome analysis of the primary ENCODE cell line K562. Genome Res. 29, 472–484 (2019).

    Google Scholar 

  64. Madireddy, A. et al. FANCD2 facilitates replication through common fragile sites. Mol. Cell 64, 388–404 (2016).

    Google Scholar 

  65. Okamoto, Y. et al. FANCD2 protects genome stability by recruiting RNA processing enzymes to resolve R-loops during mild replication stress. FEBS J. 286, 139–150 (2019).

    Google Scholar 

  66. Picard, F. et al. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells. PLoS Genet. 10, e1004282 (2014).

    Google Scholar 

  67. Chen, Y.-H. et al. Transcription shapes DNA replication initiation and termination in human cells. Nat. Struct. Mol. Biol. 26, 67–77 (2019).

    Google Scholar 

  68. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).

    Google Scholar 

  69. Abe, K., Schauer, T. & Torres-Padilla, M. E. Distinct patterns of RNA polymerase II and transcriptional elongation characterize mammalian genome activation. Cell Rep. 41, 111865 (2022).

    Google Scholar 

  70. Local, A. et al. Identification of H3K4me1-associated proteins at mammalian enhancers. Nat. Genet. 50, 73–82 (2018).

    Google Scholar 

  71. Shoaib, M. et al. Histone H4K20 methylation mediated chromatin compaction threshold ensures genome integrity by limiting DNA replication licensing. Nat. Commun. 9, (2018).

  72. Macheret, M. & Halazonetis, T. D. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature 555, 112–116 (2018).

    Google Scholar 

  73. Audit, B. et al. Open chromatin encoded in DNA sequence is the signature of ‘master’ replication origins in human cells. Nucleic Acids Res. 37, 6064–6075 (2009).

    Google Scholar 

  74. Cayrou, C. et al. The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Res. 25, 1873–1885 (2015).

    Google Scholar 

  75. Hansen, R. S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl. Acad. Sci. USA 107, 139–144 (2010).

    Google Scholar 

  76. Barlow, J. H. et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620–632 (2013).

    Google Scholar 

  77. Mortusewicz, O., Herr, P. & Helleday, T. Early replication fragile sites: where replication–transcription collisions cause genetic instability. EMBO J. 32, 493–495 (2013).

    Google Scholar 

  78. Pang, B., de Jong, J., Qiao, X., Wessels, L. F. A. & Neefjes, J. Chemical profiling of the genome with anti-cancer drugs defines target specificities. Nat. Chem. Biol. 11, 472–480 (2015).

    Google Scholar 

  79. Bayona-Feliu, A., Barroso, S., Muñoz, S. & Aguilera, A. The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription–replication conflicts. Nat. Genet. 53, 1050–1063 (2021).

    Google Scholar 

  80. Fu, H. et al. Dynamics of replication origin over-activation. Nat. Commun. 12, 3448 (2021).

    Google Scholar 

  81. Lin, J. J., Milhollen, M. A., Smith, P. G., Narayanan, U. & Dutta, A. NEDD8-targeting drug MLN4924 Elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res. 70, 10310–10320 (2010).

    Google Scholar 

  82. Green, B. M., Finn, K. J. & Li, J. J. Loss of DNA replication control is a potent inducer of gene amplification. Science 329, 943–946 (2010).

    Google Scholar 

  83. Finn, K. J. & Li, J. J. Single-stranded annealing induced by re-initiation of replication origins provides a novel and efficient mechanism for generating copy number expansion via non-allelic homologous recombination. PLoS Genet. 9, e1003192 (2013).

    Google Scholar 

  84. Muñoz, S. et al. RAD51 restricts DNA over-replication from re-activated origins. Embo J. 43, 1043–1064 (2024).

    Google Scholar 

  85. Liu, Z., Jiang, H., Lee, S. Y., Kong, N. & Chan, Y. W. FANCM promotes PARP inhibitor resistance by minimizing ssDNA gap formation and counteracting resection inhibition. Cell Rep. 43, 114464 (2024).

    Google Scholar 

  86. Alexander, J. L. & Orr-Weaver, T. L. Replication fork instability and the consequences of fork collisions from rereplication. Genes Dev. 30, 2241–2252 (2016).

    Google Scholar 

  87. Blow, J. J., Gillespie, P. J., Francis, D. & Jackson, D. A. Replication origins in Xenopus egg extract Are 5-15 kilobases apart and are activated in clusters that fire at different times. J. Cell Biol. 152, 15–25 (2001).

    Google Scholar 

  88. Nathanailidou, P. et al. Aberrant replication licensing drives Copy Number Gains across species (Cold Spring Harbor Laboratory, 2020).

  89. Panneerselvam, J. et al. Basal level of FANCD2 monoubiquitination is required for the maintenance of a sufficient number of licensed-replication origins to fire at a normal rate. Oncotarget 5, 1326–1337 (2014).

    Google Scholar 

  90. Luebben, S. W., Kawabata, T., Johnson, C. S., O’Sullivan, M. G. & Shima, N. A concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression. Nucleic Acids Res. 42, 5605–5615 (2014).

    Google Scholar 

  91. Alcón, P. et al. FANCD2-FANCI is a clamp stabilized on DNA by monoubiquitination of FANCD2 during DNA repair. Nat. Struct. Mol. Biol. 27, 240–248 (2020).

    Google Scholar 

  92. Alcón, P. et al. FANCD2–FANCI surveys DNA and recognizes double- to single-stranded junctions. Nature 632, 1165–1173 (2024).

    Google Scholar 

  93. Chaudhury, I., Sareen, A., Raghunandan, M. & Sobeck, A. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res. 41, 6444–6459 (2013).

    Google Scholar 

  94. Higgs, M. R. et al. Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2. Mol. Cell 71, 25–41.e26 (2018).

    Google Scholar 

  95. Sato, K. et al. FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5’-DNA end. Nucleic Acids Res. 44, 10758–10771 (2016).

    Google Scholar 

  96. Pentzold, C. et al. FANCD2 binding identifies conserved fragile sites at large transcribed genes in avian cells. Nucleic Acids Res. 46, 1280–1294 (2018).

    Google Scholar 

  97. Debatisse, M. & Rosselli, F. A journey with common fragile sites: From S phase to telophase. Genes Chromosomes Cancer 58, 305–316 (2019).

    Google Scholar 

  98. Dellino, G. I. et al. Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing. Genome Res 23, 1–11 (2013).

    Google Scholar 

  99. Karnani, N., Taylor, C. M., Malhotra, A. & Dutta, A. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol. Biol. Cell 21, 393–404 (2010).

    Google Scholar 

  100. Chen, Y. H. et al. Transcription shapes DNA replication initiation and termination in human cells. Nat. Struct. Mol. Biol. 26, 67–77 (2019).

    Google Scholar 

  101. Mei, L., Kedziora, K. M., Song, E. A., Purvis, J. E. & Cook, J. G. The consequences of differential origin licensing dynamics in distinct chromatin environments. Nucleic Acids Res 50, 9601–9620 (2022).

    Google Scholar 

  102. Liang, Z. et al. Binding of FANCI-FANCD2 complex to RNA and R-loops stimulates robust FANCD2 monoubiquitination. Cell Rep. 26, 564–572.e565 (2019).

    Google Scholar 

  103. García-Rubio, M. L. et al. The Fanconi anemia pathway protects genome integrity from R-loops. PLoS Genet. 11, e1005674 (2015).

    Google Scholar 

  104. Jones, R. M. et al. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene 32, 3744–3753 (2013).

    Google Scholar 

  105. Gómez, M. & Antequera, F. Overreplication of short DNA regions during S phase in human cells. Genes Dev. 22, 375–385 (2008).

    Google Scholar 

  106. Tsantoulis, P. K. et al. Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. Oncogene 27, 3256–3264 (2008).

    Google Scholar 

  107. Brison, O. et al. Mistimed origin licensing and activation stabilize common fragile sites under tight DNA-replication checkpoint activation. Nat. Struct. Mol. Biol. 30, 539–550 (2023).

    Google Scholar 

  108. Arbi, M. et al. GemC1 controls multiciliogenesis in the airway epithelium. EMBO Rep. 17, 400–413 (2016).

    Google Scholar 

  109. Kilgas, S., Kiltie, A. E. & Ramadan, K. Immunofluorescence microscopy-based detection of ssDNA foci by BrdU in mammalian cells. STAR Protoc. 2, 100978 (2021).

    Google Scholar 

  110. Mäkelä, R. et al. Ex vivo analysis of DNA repair targeting in extreme rare cutaneous apocrine sweat gland carcinoma. Oncotarget 12, 1100–1109 (2021).

    Google Scholar 

  111. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Google Scholar 

  112. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Google Scholar 

  113. Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Google Scholar 

  114. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Google Scholar 

  115. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Google Scholar 

  116. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Google Scholar 

  117. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Google Scholar 

  118. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Google Scholar 

  119. Bayona-Feliu, A. et al. The chromatin network helps prevent cancer-associated mutagenesis at transcription-replication conflicts. Nat. Commun. 14, 6890 (2023).

    Google Scholar 

  120. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Google Scholar 

Download references

Acknowledgements

We thank the Advanced Light Microscopy facility at the Medical School of the University of Patras for their support with experiments and the members of our groups for insightful discussions. We are also grateful to Dr. Raphael Ceccaldi for sharing the PD20 cells, Dr. Bert van de Kooij for sharing the FANCD2-KO and corrected U2OS cells and Dr. Vassilis Roukos for scientific advice in the generation of the mAID-Geminin HCT116 cells. This study was supported by research funding from the European Union Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 722729, the European Union Horizon Europe (2021-2027), “ESPERANCE” ERA Chair program (GA 101087215), the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers” (Project Number: 2728) and the project TAEDR-0539180 implemented within the framework of “Actions in interdisciplinary scientific areas with special interests for the connection with the productive fabric”, Greece 2.0 - National Recovery and Resilience Plan to Z.L. N.B.F. received fellowships from the Federation of European Biochemical Societies (FEBS) and the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014- 2020» (IKY). This work was also funded by grants from the Spanish Agencia Estatal de Investigación (PID2022-138251NB-I00 funded by MCIN/AEI/10.13039/501100011033 “ERDF A way of making Europe”) and the Caixa Research Foundation (LCF/PR/HR22/52420014) to A.A. The publication fees of this manuscript have been financed by the Research Council of the University of Patras.

Author information

Authors and Affiliations

  1. Department of General Biology, Medical School, University of Patras, Patras, Greece

    Nibal Badra-Fajardo, Elena Karydi, Ourania Preza, Marina Arbi & Zoi Lygerou

  2. Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain

    Aleix Bayona-Feliu

  3. Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla, Seville, Spain

    Belén Gómez-González & Andrés Aguilera

  4. Department of Physiology, Medical School, University of Patras, Patras, Greece

    Argyro Kalogeropoulou & Stavros Taraviras

  5. Misvik Biology Oy, Turku, Finland

    Juha K. Rantala

Authors
  1. Nibal Badra-Fajardo
    View author publications

    Search author on:PubMed Google Scholar

  2. Elena Karydi
    View author publications

    Search author on:PubMed Google Scholar

  3. Aleix Bayona-Feliu
    View author publications

    Search author on:PubMed Google Scholar

  4. Belén Gómez-González
    View author publications

    Search author on:PubMed Google Scholar

  5. Ourania Preza
    View author publications

    Search author on:PubMed Google Scholar

  6. Marina Arbi
    View author publications

    Search author on:PubMed Google Scholar

  7. Argyro Kalogeropoulou
    View author publications

    Search author on:PubMed Google Scholar

  8. Juha K. Rantala
    View author publications

    Search author on:PubMed Google Scholar

  9. Stavros Taraviras
    View author publications

    Search author on:PubMed Google Scholar

  10. Andrés Aguilera
    View author publications

    Search author on:PubMed Google Scholar

  11. Zoi Lygerou
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, N.B.F., and Z.L.; Methodology, N.B.F., A.B.F., B.G.G., J.K.R., S.T., A.A. and Z.L.; Investigation, N.B.F., E.K., M.A. and A.K.; Data analysis, N.B.F., E.K., A.B.F. and O.P.; Writing of original draft, review & editing, N.B.F., B.G.G., A.A. and Z.L.; Supervision, S.T., A.A. and Z.L.

Corresponding author

Correspondence to Zoi Lygerou.

Ethics declarations

Competing interests

Juha K. Rantala is the founder of Misvik Biology Oy. All other authors of this manuscript declare that they have no competing interests.

Peer review

Peer review information

Nature Communications thanks Corrado Santocanale and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badra-Fajardo, N., Karydi, E., Bayona-Feliu, A. et al. FANCD2 restrains fork progression and prevents fragility at early origins upon re-replication. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68966-4

Download citation

  • Received: 06 February 2025

  • Accepted: 21 January 2026

  • Published: 07 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68966-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing