Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Environmental and societal costs of maize production decrease by addressing the uncertainty in nitrogen rate recommendations
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Environmental and societal costs of maize production decrease by addressing the uncertainty in nitrogen rate recommendations

  • Francisco Palmero  ORCID: orcid.org/0000-0003-0550-60031,
  • Eric A. Davidson  ORCID: orcid.org/0000-0002-8525-86972,
  • Kaiyu Guan  ORCID: orcid.org/0000-0002-3499-63823,4,
  • Alison J. Eagle  ORCID: orcid.org/0000-0003-0841-23795,
  • Hannah E. Birgé6,
  • P. V. Vara Prasad  ORCID: orcid.org/0000-0001-6632-33617,
  • Trevor J. Hefley  ORCID: orcid.org/0000-0002-5850-328X8,
  • Jeffrey R. Schussler  ORCID: orcid.org/0000-0002-0766-59329 &
  • …
  • Ignacio A. Ciampitti  ORCID: orcid.org/0000-0001-9619-51291 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Agroecology
  • Sustainability

Abstract

Excessive crop nitrogen (N) fertilization has negative environmental and social consequences. Using maize grain yield response to nitrogen field trials, we consider the uncertainty surrounding N rate recommendations to demonstrate that fertilizer N rates can be reduced by 12─16% in the US Corn Belt, with negligible risk of maize yield losses. This reduction in N fertilizer applications decrease N2O–N emissions by 10% and N leaching by 13%, leading to a social benefit of 230─$530 M, due to enhanced air and water quality. Additional N reductions could benefit ecosystems and human health. However, the high risk of yield loss associated with additional N reductions makes this practice unacceptable for farmers. This emphasizes the need for incentive programs that consider the responsibilities and limitations of all actors along the food supply chain.

Data availability

All data used in this study are publicly available. The dataset of maize grain yield response to N used in this study are available in the ref. 92 database under accession code https://doi.org/10.5061/dryad.66t1g1k2g. The dataset of maize grain and fertilizer prices to define probability distribution of the price ratio used in this study are available in the USDA-Economic Research Survey under the accession codes https://www.ers.usda.gov/data-products/fertilizer-use-and-price/documentation-and-data-sources and https://www.ers.usda.gov/data-products/season-average-price-forecasts. The literature review process about N-N2O emissions and \(N-N{O}_{3}^{-}\) leaching in the US Corn Belt data generated in this study are provided in the Supplementary Information file (Table S3). The data to build the plots presented in Fig. 3A and Figs. S1, S7–S9 can be reproduced from raw data and code that have already been shared in public repositories. The dataset for the area cultivated with maize presented in Fig. 1C can be obtained under the accession code https://croplandcros.scinet.usda.gov/. The plots shown in Figs. 1A, B and 5 are illustrations, no data was used to build those figures. Source data are provided with this paper in ref. 93 under accession code [https://doi.org/10.6084/m9.figshare.30524483]. Source data are provided with this paper.

Code availability

The codes to fit the Bayesian quadratic and quadratic plateau models in this paper are available with open access at ref. 86 with accession code [https://doi.org/10.5281/zenodo.17868489].

References

  1. Guilpart, N., Grassini, P., Sadras, V. O., Timsina, J. & Cassman, K. G. Estimating yield gaps at the cropping system level. Field Crops Res. 206, 21–32 (2017).

    Google Scholar 

  2. USDA Foreign Agricultural Service. World agricultural production. https://fas.usda.gov/data/world-agricultural-production (2024).

  3. USDA/NASS. USDA/NASS QuickStats ad-hoc query tool. https://quickstats.nass.usda.gov/ (2024).

  4. Duvick, D. N. & Cassman, K. G. Post–Green Revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci. 39, 1622–1630 (1999).

    Google Scholar 

  5. DeBruin, J. L., Schussler, J. R., Mo, H. & Cooper, M. Grain yield and nitrogen accumulation in maize hybrids released during 1934 to 2013 in the US midwest. Crop Sci. 57, 1431–1446 (2017).

    Google Scholar 

  6. Duvick, D. N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86, 83–145 (2005).

  7. Duvick, D. N., Smith, J. S. C. & Cooper, M. in Plant Breeding Reviews (ed. Janick, J.) Ch. 4 (John Wiley & Sons, Ltd, 2004).

  8. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Google Scholar 

  9. USDA ERS. USDA ERS - Documentation and data sources. https://www.ers.usda.gov/data-products/fertilizer-use-and-price/documentation-and-data-sources (2024).

  10. Ciampitti, I. A. & Lemaire, G. From use efficiency to effective use of nitrogen: A dilemma for maize breeding improvement. Sci. Total Environ. 826, 154125 (2022).

    Google Scholar 

  11. Baum, M. E. et al. The optimum nitrogen fertilizer rate for maize in the US Midwest is increasing. Nat. Commun. 16, 404 (2025).

    Google Scholar 

  12. Sinclair, T. R. & Rufty, T. W. Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Glob. Food Secur. 1, 94–98 (2012).

    Google Scholar 

  13. Eagle, J. A. et al. Greenhouse Gas Mitigation Potential of Agricultural Land Management in the United States: A Synthesis of the Literature (Nicholas Institute for Environmental Policy Solutions, Duke University, 2012).

  14. Moss, B. Water pollution by agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363, 659–666 (2007).

    Google Scholar 

  15. Cassman, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31, 132–140 (2002).

    Google Scholar 

  16. Ladha, J. K. et al. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv. Agron. 87, 85–156 (2005).

  17. Smil, V. Nitrogen in crop production: an account of global flows. Glob. Biogeochem. Cycles 13, 647–662 (1999).

    Google Scholar 

  18. Galloway, J. N. et al. The nitrogen cascade. BioScience 53, 341–356 (2003).

    Google Scholar 

  19. Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    Google Scholar 

  20. Mendy, A. & Thorne, P. S. Long-term cancer and overall mortality associated with drinking water nitrate in the United States. Public Health 228, 82–84 (2024).

    Google Scholar 

  21. Ouattara, B. Agrichemicals (Nitrate and Atrazine) in Drinking Water and Adverse Health Outcomes in Children in Nebraska. (University of Nebraska Medical Center, 2022).

  22. Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2, 410–416 (2012).

    Google Scholar 

  23. Krabbe, O. et al. Aligning corporate greenhouse-gas emissions targets with climate goals. Nat. Clim. Change 5, 1057–1060 (2015).

    Google Scholar 

  24. Luo, L., Ran, L., Rasool, Q. Z. & Cohan, D. S. Integrated modeling of U.S. agricultural soil emissions of reactive nitrogen and associated impacts on air pollution, health, and climate. Environ. Sci. Technol. 56, 9265–9276 (2022).

    Google Scholar 

  25. Lu, X. et al. The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nat. Commun. 12, 5021 (2021).

    Google Scholar 

  26. Ghavam, S., Vahdati, M., Wilson, I. A. G. & Styring, P. Sustainable ammonia production processes. Front. Energy Res. 9, 580808 (2021).

  27. Turner, M. C. et al. Long-term ozone exposure and mortality in a large prospective study. Am. J. Respir. Crit. Care Med. 193, 1134–1142 (2016).

    Google Scholar 

  28. Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 11, 306–312 (2021).

    Google Scholar 

  29. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Google Scholar 

  30. IPNI. 4R Plant Nutrition Manual: A Manual for Improving the Management of Plant Nutrition (International Plant Nutrition Institute, 2012).

  31. Sanchez, P. A. & Swaminathan, M. S. Hunger in Africa: the link between unhealthy people and unhealthy soils. Lancet 365, 442–444 (2005).

    Google Scholar 

  32. van Grinsven, H. J. M. et al. Establishing long-term nitrogen response of global cereals to assess sustainable fertilizer rates. Nat. Food 3, 122–132 (2022).

    Google Scholar 

  33. Wang, G. L., Ye, Y. L., Chen, X. P. & Cui, Z. L. Determining the optimal nitrogen rate for summer maize in China by integrating agronomic, economic, and environmental aspects. Biogeosciences 11, 3031–3041 (2014).

    Google Scholar 

  34. Correndo, A. A. et al. Unraveling uncertainty drivers of the maize yield response to nitrogen: a Bayesian and machine learning approach. Agric. For. Meteorol. 311, 108668 (2021).

    Google Scholar 

  35. Nigon, T. J., Yang, C., Mulla, D. J. & Kaiser, D. E. Computing uncertainty in the optimum nitrogen rate using a generalized cost function. Comput. Electron. Agric. 167, 105030 (2019).

    Google Scholar 

  36. Lobell, D. B. The cost of uncertainty for nitrogen fertilizer management: a sensitivity analysis. Field Crops Res. 100, 210–217 (2007).

    Google Scholar 

  37. Morris, T. F. et al. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 110, 1–37 (2018).

    Google Scholar 

  38. Ransom, C. J. et al. Corn nitrogen rate recommendation tools’ performance across eight US midwest corn belt states. Agron. J. 112, 470–492 (2020).

    Google Scholar 

  39. Babcock, B. A. The effects of uncertainty on optimal nitrogen applications. Appl. Econ. Perspect. Policy 14, 271–280 (1992).

    Google Scholar 

  40. Paulson, N. D. & Babcock, B. A. Readdressing the fertilizer problem. J. Agric. Resour. Econ. 35, 368–384 (2010).

    Google Scholar 

  41. Good, A. G. & Beatty, P. H. Fertilizing nature: a tragedy of excess in the commons. PLoS Biol. 9, e1001124 (2011).

    Google Scholar 

  42. Sheriff, G. Efficient waste? Why farmers over-apply nutrients and the implications for policy design. Appl. Econ. Perspect. Policy 27, 542–557 (2005).

    Google Scholar 

  43. Goodkind, A. L., Thakrar, S. K., Polasky, S., Hill, J. D. & Tilman, D. Managing nitrogen in maize production for societal gain. PNAS Nexus 2, pgad319 (2023).

    Google Scholar 

  44. Kim, T. et al. Quantifying nitrogen loss hotspots and mitigation potential for individual fields in the US Corn Belt with a metamodeling approach. Environ. Res. Lett. 16, 075008 (2021).

    Google Scholar 

  45. Zhang, X., Mauzerall, D. L., Davidson, E. A., Kanter, D. R. & Cai, R. The economic and environmental consequences of implementing nitrogen-efficient technologies and management practices in agriculture. J. Environ. Qual. 44, 312–324 (2015).

    Google Scholar 

  46. Keeler, B. L. et al. The social costs of nitrogen. Sci. Adv. 2, e1600219 (2016).

    Google Scholar 

  47. Mesbah, M., Pattey, E. & Jégo, G. A model-based methodology to derive optimum nitrogen rates for rainfed crops – a case study for corn using STICS in Canada. Comput. Electron. Agric. 142, 572–584 (2017).

    Google Scholar 

  48. Kanter, D. R., Zhang, X. & Mauzerall, D. L. Reducing nitrogen pollution while decreasing farmers’ costs and increasing fertilizer industry profits. J. Environ. Qual. 44, 325–335 (2015).

    Google Scholar 

  49. Gourevitch, J. D., Keeler, B. L. & Ricketts, T. H. Determining socially optimal rates of nitrogen fertilizer application. Agric. Ecosyst. Environ. 254, 292–299 (2018).

    Google Scholar 

  50. Yadav, S. N., Peterson, W. & Easter, K. W. Do farmers overuse nitrogen fertilizer to the detriment of the environment?. Environ. Resour. Econ. 9, 323–340 (1997).

    Google Scholar 

  51. Houser, M. Farmer motivations for excess nitrogen use in the U.S. Corn Belt. Case Stud. Environ. 6, 1688823 (2022).

    Google Scholar 

  52. Sellars, S. C., Schnitkey, G. D. & Gentry, L. F. Do Illinois farmers follow university-based nitrogen recommendations? In Proc. 2020 Annual Meeting. https://ageconsearch.umn.edu/record/304617?ln=en&v=pdf (Agricultural and Applied Economics Association, Kansas City, Missouri, 2020).

  53. Hernandez, J. A. & Mulla, D. J. Estimating uncertainty of economically optimum fertilizer rates. Agron. J. 100, 1221–1229 (2008).

    Google Scholar 

  54. De Laporte, A. et al. Economic and environmental consequences of nitrogen application rates, timing and methods on corn in Ontario. Agric. Syst. 188, 103018 (2021).

    Google Scholar 

  55. Archer, D. W. & Halvorson, A. D. Greenhouse gas mitigation economics for irrigated cropping systems in Northeastern Colorado. Soil Sci. Soc. Am. J. 74, 446–452 (2010).

    Google Scholar 

  56. McSwiney, C. P. & Robertson, G. P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Glob. Change Biol. 11, 1712–1719 (2005).

    Google Scholar 

  57. Hoben, J. P., Gehl, R. J., Millar, N., Grace, P. R. & Robertson, G. P. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob. Change Biol. 17, 1140–1152 (2011).

    Google Scholar 

  58. Segerson, K. Group incentives for environmental protection and natural resource management. Annu. Rev. Resour. Econ. 14, 597–619 (2022).

    Google Scholar 

  59. UNEA-4. United Nations Environment Assembly of the United Nations Environment Programme Fourth Session “Sustainable Nitrogen Management. (2019).

  60. Environment, U. N. Frontiers 2018/19: Emerging issues of environmental concern. UNEP - UN Environment Programme. http://www.unep.org/resources/frontiers-201819-emerging-issues-environmental-concern (2019).

  61. Chen, F. et al. Cropland carbon stocks driven by soil characteristics, rainfall and elevation. Sci. Total Environ. 862, 160602 (2023).

    Google Scholar 

  62. Smith, P. Soils and climate change. Curr. Opin. Environ. Sustain. 4, 539–544 (2012).

    Google Scholar 

  63. Mathew, I., Shimelis, H., Mutema, M., Minasny, B. & Chaplot, V. Crops for increasing soil organic carbon stocks – a global meta analysis. Geoderma 367, 114230 (2020).

    Google Scholar 

  64. Smith, J. et al. Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob. Change Biol. 11, 2141–2152 (2005).

    Google Scholar 

  65. Eagle, A. J. et al. Quantifying on-farm nitrous oxide emission reductions in food supply chains. Earth’s. Future 8, e2020EF001504 (2020).

    Google Scholar 

  66. Snapp, S. et al. Spatially differentiated nitrogen supply is key in a global food–fertilizer price crisis. Nat. Sustain 6, 1268–1278 (2023).

    Google Scholar 

  67. Nasielski, J. et al. Effect of nitrogen source, placement and timing on the environmental performance of economically optimum nitrogen rates in maize. Field Crops Res. 246, 107686 (2020).

    Google Scholar 

  68. Venterea, R. T., Coulter, J. A. & Dolan, M. S. Evaluation of intensive “4R” strategies for decreasing nitrous oxide emissions and nitrogen surplus in rainfed corn. J. Environ. Qual. 45, 1186–1195 (2016).

    Google Scholar 

  69. Brummitt, C. D. et al. Solutions and insights for agricultural monitoring, reporting, and verification (MRV) from three consecutive issuances of soil carbon credits. J. Environ. Manag. 369, 122284 (2024).

    Google Scholar 

  70. Gu, B. et al. A credit system to solve agricultural nitrogen pollution. Innovation 2, 100079 (2021).

    Google Scholar 

  71. Maaz, T. M. et al. Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Glob. Change Biol. 27, 2343–2360 (2021).

    Google Scholar 

  72. Oldfield, E. E. et al. Crediting agricultural soil carbon sequestration. Science 375, 1222–1225 (2022).

    Google Scholar 

  73. Kotchen, M. J. & Segerson, K. On the use of group performance and rights for environmental protection and resource management. Proc. Natl. Acad. Sci. USA 116, 5285–5292 (2019).

    Google Scholar 

  74. Vyas, S., Dalhaus, T., Kropff, M., Aggarwal, P. & Meuwissen, M. P. M. Mapping global research on agricultural insurance. Environ. Res. Lett. 16, 103003 (2021).

    Google Scholar 

  75. Alexander, P. et al. High energy and fertilizer prices are more damaging than food export curtailment from Ukraine and Russia for food prices, health and the environment. Nat. Food 4, 84–95 (2023).

    Google Scholar 

  76. Kanter, D. R., Del Grosso, S., Scheer, C., Pelster, D. E. & Galloway, J. N. Why future nitrogen research needs the social sciences. Curr. Opin. Environ. Sustain. 47, 54–60 (2020).

    Google Scholar 

  77. Kanter, D. R. et al. Nitrogen pollution policy beyond the farm. Nat. Food 1, 27–32 (2020).

    Google Scholar 

  78. Kitchen, N. R. et al. A public–industry partnership for enhancing corn nitrogen research and datasets: project description, methodology, and outcomes. Agron. J. 109, 2371–2389 (2017).

    Google Scholar 

  79. Ransom, C. J. et al. Data from a public–industry partnership for enhancing corn nitrogen research. Agron. J. 113, 4429–4436 (2021).

    Google Scholar 

  80. Tremblay, N. et al. Corn Response to nitrogen is influenced by soil texture and weather. Agron. J. 104, 1658–1671 (2012).

    Google Scholar 

  81. USDA ERS. Season-average price forecasts. https://www.ers.usda.gov/data-products/season-average-price-forecasts (2024).

  82. Hobbs, N. T. & Hooten, M. B. Bayesian Models: A Statistical Primer for Ecologists (Princeton Univ. Press, 2015).

  83. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Google Scholar 

  84. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2020).

  85. Plummer, M. rjags: Bayesian graphical models using MCMC. (2023).

  86. Francisco Palmero. FranciscoPalmero/AONR_EONR_uncertainty: uncertainty estimation in optimum nitrogen rates. Zenodo https://doi.org/10.5281/ZENODO.17868489 (2025).

  87. McLellan, E. L. et al. The nitrogen balancing act: tracking the environmental performance of food production. BioScience 68, 194–203 (2018).

    Google Scholar 

  88. Pachauri, R. K. & Meyer, L. A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ed IPCC (IPCC, 2014).

  89. Interagency Working Group. Technical Update on the Social Cost of Carbon for Regulatory Impact Analysis-under Executive Order 12866. (2016).

  90. Revesz, R. et al. Best cost estimate of greenhouse gases. Science 357, 655–655 (2017).

    Google Scholar 

  91. Sobota, D. J., Compton, J. E., McCrackin, M. L. & Singh, S. Cost of reactive nitrogen release from human activities to the environment in the United States. Environ. Res. Lett. 10, 025006 (2015).

    Google Scholar 

  92. Ransom, C. et al. Performance and refinement of nitrogen fertilization tools. Dryad https://doi.org/10.5061/DRYAD.66T1G1K2G (2021).

  93. Palmero, F. et al. Uncertainty associated with optimal N rates (AONR, EONR) in maize and its environmental and social impacts. figshare. https://doi.org/10.6084/m9.figshare.30524483 (2025).

  94. USDA. CroplandCROS. https://croplandcros.scinet.usda.gov/ (2024).

Download references

Acknowledgements

The authors thank Curtis Ransom for providing feedback on an early version of this manuscript. Science is a continuous process built by a community that shares knowledge. Therefore, the authors thank the efforts of those scientists who make their data freely available, contributing to faster scientific knowledge development.

Author information

Authors and Affiliations

  1. Department of Agronomy, Purdue University, West Lafayette, Indiana, IN, USA

    Francisco Palmero & Ignacio A. Ciampitti

  2. Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA

    Eric A. Davidson

  3. National Center for Supercomputing Center, University of Illinois at Urbana Champaign, Urbana, IL, USA

    Kaiyu Guan

  4. Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA

    Kaiyu Guan

  5. Environmental Defense Fund, Raleigh, NC, USA

    Alison J. Eagle

  6. The Nature Conservancy, Arlington, VA, USA

    Hannah E. Birgé

  7. Department of Agronomy, Kansas State University, Manhattan, KS, USA

    P. V. Vara Prasad

  8. Department of Statistics, Kansas State University, Manhattan, KS, USA

    Trevor J. Hefley

  9. Schussler Ag Research Solutions, Marion, IA, USA

    Jeffrey R. Schussler

Authors
  1. Francisco Palmero
    View author publications

    Search author on:PubMed Google Scholar

  2. Eric A. Davidson
    View author publications

    Search author on:PubMed Google Scholar

  3. Kaiyu Guan
    View author publications

    Search author on:PubMed Google Scholar

  4. Alison J. Eagle
    View author publications

    Search author on:PubMed Google Scholar

  5. Hannah E. Birgé
    View author publications

    Search author on:PubMed Google Scholar

  6. P. V. Vara Prasad
    View author publications

    Search author on:PubMed Google Scholar

  7. Trevor J. Hefley
    View author publications

    Search author on:PubMed Google Scholar

  8. Jeffrey R. Schussler
    View author publications

    Search author on:PubMed Google Scholar

  9. Ignacio A. Ciampitti
    View author publications

    Search author on:PubMed Google Scholar

Contributions

F.P. and I.A.C. conceived the study. F.P., I.A.C., E.A.D., P.V.V.P., J.R.S., and T.J.H. conceptualized the manuscript. F.P. analyzed the data and wrote the initial draft of the manuscript. F.P., E.A.D., K.G., A.J.E., H.E.B., P.V.V.P., T.J.H., J.R.S., and I.A.C. reviewed and edited the paper. E.A.D., K.G., A.J.E., and H.E.B. contributed disciplinary expertise to broaden the scope and interpretation of the results. F.P., E.A.D., K.G., A.J.E., H.E.B., P.V.V.P., T.J.H., J.R.S., and I.A.C. contributed to and approved the final version.

Corresponding authors

Correspondence to Francisco Palmero or Ignacio A. Ciampitti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jiakun Duan, Baojing Gu, Linda Young, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review file

Reporting Summary

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmero, F., Davidson, E.A., Guan, K. et al. Environmental and societal costs of maize production decrease by addressing the uncertainty in nitrogen rate recommendations. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68988-y

Download citation

  • Received: 05 May 2025

  • Accepted: 22 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68988-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing