Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Continuous fabrication of Janus liquid crystal elastomer fibers with programmable actuation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

Continuous fabrication of Janus liquid crystal elastomer fibers with programmable actuation

  • Jie Xu1 na1,
  • Hong Wan2,3 na1,
  • Zizheng Fang2 na1,
  • Xinyang Peng1,
  • Jinteng Sun2,
  • Jing Liang1,
  • Xinxin Wang1,
  • Changming Lan1,
  • Ming-Bang Wu4,
  • Ning Zheng  ORCID: orcid.org/0000-0002-8114-553X2,
  • Junqiu Liu1 &
  • …
  • Baiheng Wu  ORCID: orcid.org/0000-0003-3753-54071 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Actuators
  • Liquid crystals
  • Polymers

Abstract

Smart fibers, particularly liquid crystal elastomer (LCE) fibers, are pivotal in soft robotics and adaptive textiles. However, existing fabrication methods are limited to simple monolithic structures, hindering the realization of complex actuation behaviors. To overcome this limitation, we develop a continuous extrusion platform for producing Janus LCE fibers that emulate asymmetric biological structures, such as plant tendrils, thereby enabling sophisticated actuation. This approach seamlessly integrates an LCE network with a dynamic covalent polymer network, allowing programmable on-demand liquid crystal orientation for actuation via dynamic bond exchange. The resulting Janus fibers exhibit enhanced mechanical properties and multifunctional capabilities, including adaptive object manipulation, stimuli-responsive directional motion, and scalable integration into smart fabrics for thermal management. By unifying material intelligence with structural programmability, this work advances the development of bioinspired soft robotic systems with enhanced environmental adaptability.

Data availability

The authors declare that the data supporting the findings of this study are provided within the article and its Supplementary Information file. Additional data were available upon request from the corresponding author. Source data are provided with this paper.

References

  1. Kim, D. S., Lee, Y.-J., Kim, Y. B., Wang, Y. & Yang, S. Autonomous, untethered gait-like synchronization of lobed loops made from liquid crystal elastomer fibers via spontaneous snap-through. Sci. Adv. 9, eadh5107 (2023).

    Google Scholar 

  2. Wang, Y., Sun, J., Liao, W. & Yang, Z. Liquid crystal elastomer twist fibers toward rotating microengines. Adv. Mater. 34, 2107840 (2022).

    Google Scholar 

  3. Kanik, M. et al. Strain-programmable fiber-based artificial muscle. Science 365, 145–150 (2019).

    Google Scholar 

  4. Hu, Z., Zhang, Y., Jiang, H. & Lv, J. Bioinspired helical-artificial fibrous muscle structured tubular soft actuators. Sci. Adv. 9, eadh3350 (2023).

    Google Scholar 

  5. Hu, Z., Li, Y. & Lv, J. Phototunable self-oscillating system driven by a self-winding fiber actuator. Nat. Commun. 12, 3211 (2021).

    Google Scholar 

  6. Zhang, M. et al. Mandrel-free fabrication of giant spring-index and stroke muscles for diverse applications. Science 387, 1101–1108 (2025).

    Google Scholar 

  7. Guo, X. et al. Encoded sewing soft textile robots. Sci. Adv. 10, eadk3855 (2024).

    Google Scholar 

  8. Geng, Y., Kizhakidathazhath, R. & Lagerwall, J. P. F. Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles. Nat. Mater. 21, 1441–1447 (2022).

    Google Scholar 

  9. Xiong, J., Chen, J. & Lee, P. S. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv. Mater. 33, 2002640 (2021).

    Google Scholar 

  10. Wu, M. et al. Biomimetic, knittable aerogel fiber for thermal insulation textile. Science 382, 1379–1383 (2023).

    Google Scholar 

  11. Weng, W. et al. A route toward smart system integration: from fiber design to device construction. Adv. Mater. 32, 1902301 (2020).

    Google Scholar 

  12. Jung, Y., Kwon, K., Lee, J. & Ko, S. H. Untethered soft actuators for soft standalone robotics. Nat. Commun. 15, 3510 (2024).

    Google Scholar 

  13. Wang, X.-Q. et al. Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. Nat. Commun. 13, 3369 (2022).

    Google Scholar 

  14. Wang, Q. et al. Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites. Nat. Commun. 14, 3869 (2023).

    Google Scholar 

  15. Puza, F. & Lienkamp, K. 3D Printing of polymer hydrogels—from basic techniques to programmable actuation. Adv. Funct. Mater. 32, 2205345 (2022).

    Google Scholar 

  16. Wei, S. et al. Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators. Angew. Chem. Int. Ed. 58, 16243–16251 (2019).

    Google Scholar 

  17. Lendlein, A. Fabrication of reprogrammable shape-memory polymer actuators for robotics. Sci. Robot. 3, eaat9090 (2018).

    Google Scholar 

  18. Apsite, I., Salehi, S. & Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 122, 1349–1415 (2022).

    Google Scholar 

  19. Li, T. et al. Fast-moving soft electronic fish. Sci. Adv. 3, e1602045 (2017).

    Google Scholar 

  20. Saed, M. O., Gablier, A. & Terentjev, E. M. Exchangeable liquid crystalline elastomers and their applications. Chem. Rev. 122, 4927–4945 (2022).

    Google Scholar 

  21. Roach, D. J. et al. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl. Mater. Interfaces 11, 19514–19521 (2019).

    Google Scholar 

  22. Hou, W., Wang, J. & Lv, J. Bioinspired liquid crystalline spinning enables scalable fabrication of high-performing fibrous artificial muscles. Adv. Mater. 35, 2211800 (2023).

    Google Scholar 

  23. Javadzadeh, M., Del Barrio, J. & Sánchez-Somolinos, C. Melt electrowriting of liquid crystal elastomer scaffolds with programmed mechanical response. Adv. Mater. 35, 2209244 (2023).

    Google Scholar 

  24. Kotikian, A. et al. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv. Mater. 33, 2101814 (2021).

    Google Scholar 

  25. Xue, J., Wu, T., Dai, Y. & Xia, Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019).

    Google Scholar 

  26. He, Q. et al. Electrospun liquid crystal elastomer microfiber actuator. Sci. Robot. 6, eabi9704 (2021).

    Google Scholar 

  27. Gerbode, S. J., Puzey, J. R., McCormick, A. G. & Mahadevan, L. How the cucumber tendril coils and overwinds. Science 337, 1087–1091 (2012).

    Google Scholar 

  28. Hu, Z., Li, Y., Zhao, T. & Lv, J. Self-winding liquid crystal elastomer fiber actuators with high degree of freedom and tunable actuation. Appl. Mater. Today 27, 101449 (2022).

    Google Scholar 

  29. Zhang, C., Fei, G., Lu, X., Xia, H. & Zhao, Y. Liquid crystal elastomer artificial tendrils with asymmetric core-sheath structure showing evolutionary biomimetic locomotion. Adv. Mater. 36, 2307210 (2024).

    Google Scholar 

  30. Yu, Y. et al. Versatile synthesis of metal-compound based mesoporous Janus nanoparticles. Nat. Commun. 14, 4249 (2023).

    Google Scholar 

  31. Guo, X.-Y. et al. Janus channel of membranes enables concurrent oil and water recovery from emulsions. Science 386, 654–659 (2024).

    Google Scholar 

  32. Ding, Z. et al. Janus hydrogel microrobots with bioactive ions for the regeneration of tendon-bone interface. Nat. Commun. 16, 2189 (2025).

    Google Scholar 

  33. Xu, C. et al. Biospinning of hierarchical fibers for a self-sensing actuator. Chem. Eng. J. 485, 150014 (2024).

    Google Scholar 

  34. Zheng, N., Xu, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 121, 1716–1745 (2021).

    Google Scholar 

  35. Fang, Z. et al. 3D printable elastomers with exceptional strength and toughness. Nature 631, 783–788 (2024).

    Google Scholar 

  36. Feng, H. et al. Ultratough yet dynamic crystalline poly(thiourethane) network directly from low viscosity precursors. CCS Chem 6, 682–692 (2024).

    Google Scholar 

  37. Lu, H.-F., Wang, M., Chen, X.-M., Lin, B.-P. & Yang, H. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property. J. Am. Chem. Soc. 141, 14364–14369 (2019).

    Google Scholar 

  38. Zhu, P. et al. Bioinspired soft microactuators. Adv. Mater. 33, 2008558 (2021).

    Google Scholar 

  39. Yao, M., Wu, B., Feng, X., Sun, S. & Wu, P. A highly robust ionotronic fiber with unprecedented mechanomodulation of ionic conduction. Adv. Mater. 33, 2103755 (2021).

    Google Scholar 

  40. Martinez, A. P., Ng, A., Nah, S. H. & Yang, S. Active-textile yarns and embroidery enabled by wet-spun liquid crystalline elastomer filaments. Adv. Funct. Mater. 34, 2400742 (2024).

    Google Scholar 

  41. Sun, J., Liao, W. & Yang, Z. Additive manufacturing of liquid crystal elastomer actuators based on knitting technology. Adv. Mater. 35, 2302706 (2023).

    Google Scholar 

  42. Zhao, L. et al. Bio-inspired soft-rigid hybrid smart artificial muscle based on liquid crystal elastomer and helical metal wire. Small 19, 2206342 (2023).

    Google Scholar 

  43. Li, M. et al. Coaxial-spun hollow liquid crystal elastomer fiber as a versatile platform for functional composites. Adv. Funct. Mater. 34, 2406847 (2024).

    Google Scholar 

  44. Liu, Q. et al. Dynamic liquid crystal elastomers for body heat-and sunlight-driven self-sustaining motion via material-structure synergy. Angew. Chem. Int. Ed. 64, e202500527 (2025).

    Google Scholar 

  45. Escobar, M. C. & White, T. J. Fast and slow-twitch actuation via twisted liquid crystal elastomer fibers. Adv. Mater. 36, 2401140 (2024).

    Google Scholar 

  46. Guo, H., Ruoko, T., Zeng, H. & Priimagi, A. Hydrogen-bonded liquid crystal elastomers combining shape memory programming and reversible actuation. Adv. Funct. Mater. 34, 2312068 (2024).

    Google Scholar 

  47. Chen, W. et al. Knotted artificial muscles for bio-mimetic actuation under deepwater. Adv. Mater. 36, 2400763 (2024).

    Google Scholar 

  48. Schlafmann, K. R., Alahmed, M. S., Lewis, K. L. & White, T. J. Large range thermochromism in liquid crystalline elastomers prepared with intra-mesogenic supramolecular bonds. Adv. Funct. Mater. 33, 2305818 (2023).

    Google Scholar 

  49. Deng, Z., Li, K., Priimagi, A. & Zeng, H. Light-steerable locomotion using zero-elastic-energy modes. Nat. Mater. 23, 1728–1735 (2024).

    Google Scholar 

  50. Ma, J., Wang, Y., Sun, J. & Yang, Z. Liquid crystal elastomer hollow fibers as artificial muscles with large and rapid actuation enabled by thermal-pneumatic enhanced effect. Adv. Funct. Mater. 34, 2402403 (2024).

    Google Scholar 

  51. Lugger, S. J. D. et al. Melt-extruded thermoplastic liquid crystal elastomer rotating fiber actuators. Adv. Funct. Mater. 33, 2306853 (2023).

    Google Scholar 

  52. Wu, D. et al. Novel biomimetic “Spider Web” robust, super-contractile liquid crystal elastomer active yarn soft actuator. Adv. Sci. 11, 2400557 (2024).

    Google Scholar 

  53. Zhou, X. et al. Geometrically insensitive deform-and-go liquid crystal elastomer actuators through controlled radical diffusion. Nat. Commun. 16, 7536 (2025).

    Google Scholar 

  54. Zhou, X. et al. Metal-ligand bonds based reprogrammable and re-processable supramolecular liquid crystal elastomer network. Angew. Chem. Int. Ed. 63, e202409182 (2024).

    Google Scholar 

  55. Wang, Z. et al. Photoinduced, swift, and reversible spatiotemporal programming of double dynamically bonded liquid crystal elastomer actuators. Adv. Mater. 37, 2501815 (2025).

    Google Scholar 

  56. Wang, Y. et al. Thermally gated covalent adaptivity in liquid crystal elastomers for stable actuation. Angew. Chem. Int. Ed. 64, e202506571 (2025).

    Google Scholar 

Download references

Acknowledgements

The authors thank the following programs for the financial support: National Natural Science Foundation of China (No. 22205052 to B.W. and 22275162 to N.Z.), Zhejiang Provincial Natural Science Foundation of China (No. LMS25B040002 to B.W. and No. LZ25E030007 to N.Z.), Hangzhou Leading Innovation and Entrepreneurship Team Project (No. TD2022001 to J.L.), the Interdisciplinary Research Project of Hangzhou Normal University (No. 2024JCXK01 to J.L.), and the Research Start-up Fund from Hangzhou Normal University (No. 2021QDL083 to B.W.).

Author information

Author notes
  1. These authors contributed equally: Jie Xu, Hong Wan, Zizheng Fang.

Authors and Affiliations

  1. Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, China

    Jie Xu, Xinyang Peng, Jing Liang, Xinxin Wang, Changming Lan, Junqiu Liu & Baiheng Wu

  2. State Key Laboratory of Chemical Engineering and Low-Carbon Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China

    Hong Wan, Zizheng Fang, Jinteng Sun & Ning Zheng

  3. Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang, China

    Hong Wan

  4. School of Materials Science and Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Park, Hangzhou, China

    Ming-Bang Wu

Authors
  1. Jie Xu
    View author publications

    Search author on:PubMed Google Scholar

  2. Hong Wan
    View author publications

    Search author on:PubMed Google Scholar

  3. Zizheng Fang
    View author publications

    Search author on:PubMed Google Scholar

  4. Xinyang Peng
    View author publications

    Search author on:PubMed Google Scholar

  5. Jinteng Sun
    View author publications

    Search author on:PubMed Google Scholar

  6. Jing Liang
    View author publications

    Search author on:PubMed Google Scholar

  7. Xinxin Wang
    View author publications

    Search author on:PubMed Google Scholar

  8. Changming Lan
    View author publications

    Search author on:PubMed Google Scholar

  9. Ming-Bang Wu
    View author publications

    Search author on:PubMed Google Scholar

  10. Ning Zheng
    View author publications

    Search author on:PubMed Google Scholar

  11. Junqiu Liu
    View author publications

    Search author on:PubMed Google Scholar

  12. Baiheng Wu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.X. and B.W. conceived the concept. N.Z., J.L., and B.W. directed the project. J.X. and B.W. designed the experiments. J.X., H.W., Z.F., X.P., J.S., J.L., X.W., and C.L. conducted the experiments. J.X., N.Z., J.L., and B.W. wrote the paper. J.X., H.W., Z.F., X.P., J.S., J.L., X.W., C.L., M.-B.W., N.Z., J.L., and B.W. participated in the discussion of the results.

Corresponding authors

Correspondence to Junqiu Liu or Baiheng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Lin Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Supplementary Movie 4

Supplementary Movie 5

Supplementary Movie 6

Supplementary Movie 7

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Wan, H., Fang, Z. et al. Continuous fabrication of Janus liquid crystal elastomer fibers with programmable actuation. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68992-2

Download citation

  • Received: 28 September 2025

  • Accepted: 22 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-68992-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing