Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
A molecularly defined basalo-prefrontal-thalamic circuit regulates sensory and affective dimensions of pain in male mice
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 29 January 2026

A molecularly defined basalo-prefrontal-thalamic circuit regulates sensory and affective dimensions of pain in male mice

  • Guoguang Xie  ORCID: orcid.org/0009-0007-7049-76481,2,3,
  • Yiqiong Liu1,2,3,
  • Xuetao Qi  ORCID: orcid.org/0000-0003-1449-72681,2,3,
  • Aritra Bhattacherjee1,2,3,
  • Chao Zhang  ORCID: orcid.org/0000-0003-4167-48721,2,3 &
  • …
  • Yi Zhang  ORCID: orcid.org/0000-0002-2789-08111,2,3,4,5 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Neural circuits
  • Somatosensory system

Abstract

Both the medial prefrontal cortex (mPFC) and thalamus have been implicated in pain regulation. However, the roles of the mPFC-thalamus connection in pain and how the mPFC modulates nociceptive processing remain unclear. Here, we show that the mPFC neurons projecting to thalamus, marked by Foxp2 expression, are deactivated in both acute and chronic pain in male mice. Persistent inactivation of the mPFC Foxp2+ neurons enhances nociceptive sensitivity, while their activation alleviates multiple aspects of pain. Circuit-specific manipulations revealed that the projections to parataenial nucleus, mediodorsal and ventromedial thalamus differentially modulate sensory and affective pain. Additionally, the mPFC Foxp2+ neurons receive cholinergic input from the basal forebrain, particularly the horizontal diagonal band (HDB). Notably, activation of the α4β2-containing nicotinic acetylcholine receptor in mPFC exerts antinociceptive effects in Foxp2+ neuron-dependent manner. Together, our study defines an HDB→mPFCFoxp2→thalamus circuit essential for sensory and affective pain modulation and underscores the therapeutic potential of targeting mPFC cholinergic signaling in chronic pain management.

Data availability

All data necessary to evaluate the conclusions of this study are available in the main text or the Supplementary Information files. Source data are provided with this paper.

References

  1. Raja, S. N. et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161, 1976–1982 (2020).

    Google Scholar 

  2. Treede, R. D. et al. Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 160, 19–27 (2019).

    Google Scholar 

  3. Kang, Y., Trewern, L., Jackman, J., McCartney, D. & Soni, A. Chronic pain: definitions and diagnosis. BMJ 381, e076036 (2023).

    Google Scholar 

  4. Cohen, S. P., Vase, L. & Hooten, W. M. Chronic pain: an update on burden, best practices, and new advances. Lancet 397, 2082–2097 (2021).

    Google Scholar 

  5. Kuner, R. & Kuner, T. Cellular circuits in the brain and their modulation in acute and chronic pain. Physiol. Rev. 101, 213–258 (2021).

    Google Scholar 

  6. Descalzi, G. et al. Epigenetic mechanisms of chronic pain. Trends Neurosci. 38, 237–246 (2015).

    Google Scholar 

  7. Mercer Lindsay, N., Chen, C., Gilam, G., Mackey, S. & Scherrer, G. Brain circuits for pain and its treatment. Sci. Transl. Med. 13, eabj7360 (2021).

    Google Scholar 

  8. Tan, L. L. & Kuner, R. Neocortical circuits in pain and pain relief. Nat. Rev. Neurosci. 22, 458–471 (2021).

    Google Scholar 

  9. Kummer, K. K., Mitric, M., Kalpachidou, T. & Kress, M. The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain. Int. J. Mol. Sci. 21, 3440 (2020).

    Google Scholar 

  10. Ong, W. Y., Stohler, C. S. & Herr, D. R. Role of the prefrontal cortex in pain processing. Mol. Neurobiol. 56, 1137–1166 (2019).

    Google Scholar 

  11. Kuner, R. & Flor, H. Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 18, 20–30 (2016).

    Google Scholar 

  12. Apkarian, A. V. et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24, 10410–10415 (2004).

    Google Scholar 

  13. Seminowicz, D. A. & Moayedi, M. The dorsolateral prefrontal cortex in acute and chronic pain. J. Pain 18, 1027–1035 (2017).

    Google Scholar 

  14. Moisset, X. & Bouhassira, D. Brain imaging of neuropathic pain. Neuroimage 37, S80–S88 (2007).

    Google Scholar 

  15. Ji, G. & Neugebauer, V. Pain-related deactivation of medial prefrontal cortical neurons involves mGluR1 and GABA(A) receptors. J. Neurophysiol. 106, 2642–2652 (2011).

    Google Scholar 

  16. Wang, G. Q. et al. Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nat. Commun. 6, 7660 (2015).

    Google Scholar 

  17. Huang, J. et al. A neuronal circuit for activating descending modulation of neuropathic pain. Nat. Neurosci. 22, 1659–1668 (2019).

    Google Scholar 

  18. Cheriyan, J. & Sheets, P. L. Altered excitability and local connectivity of mPFC-PAG neurons in a mouse model of neuropathic pain. J. Neurosci. 38, 4829–4839 (2018).

    Google Scholar 

  19. Anastasiades, P. G. & Carter, A. G. Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci. 44, 550–563 (2021).

    Google Scholar 

  20. Ma, Q. A functional subdivision within the somatosensory system and its implications for pain research. Neuron 110, 749–769 (2022).

    Google Scholar 

  21. Gustin, S. M. et al. Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J. Neurosci. 31, 5956–5964 (2011).

    Google Scholar 

  22. Gan, Z. et al. Layer-specific pain relief pathways originating from primary motor cortex. Science 378, 1336–1343 (2022).

    Google Scholar 

  23. Meda, K. S. et al. Microcircuit mechanisms through which mediodorsal thalamic input to anterior cingulate cortex exacerbates pain-related aversion. Neuron 102, 944–959.e943 (2019).

    Google Scholar 

  24. Spellman, T., Svei, M., Kaminsky, J., Manzano-Nieves, G. & Liston, C. Prefrontal deep projection neurons enable cognitive flexibility via persistent feedback monitoring. Cell 184, 2750–2766.e2717 (2021).

    Google Scholar 

  25. Lui, J. H. et al. Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks. Cell 184, 489–506.e426 (2021).

    Google Scholar 

  26. Ballinger, E. C., Ananth, M., Talmage, D. A. & Role, L. W. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91, 1199–1218 (2016).

    Google Scholar 

  27. Bannon, A. W. et al. Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 279, 77–81 (1998).

    Google Scholar 

  28. Pan, Q. et al. Representation and control of pain and itch by distinct prefrontal neural ensembles. Neuron 111, 2414–2431.e2417 (2023).

    Google Scholar 

  29. Li, M., Zhou, H., Teng, S. & Yang, G. Activation of VIP interneurons in the prefrontal cortex ameliorates neuropathic pain aversiveness. Cell Rep. 40, 111333 (2022).

    Google Scholar 

  30. Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    Google Scholar 

  31. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Google Scholar 

  32. Harris, J. A. et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195–202 (2019).

    Google Scholar 

  33. Sundberg, S. C., Lindstrom, S. H., Sanchez, G. M. & Granseth, B. Cre-expressing neurons in visual cortex of Ntsr1-Cre GN220 mice are corticothalamic and are depolarized by acetylcholine. J. Comp. Neurol. 526, 120–132 (2018).

    Google Scholar 

  34. Olsen, S. R., Bortone, D. S., Adesnik, H. & Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature 483, 47–52 (2012).

    Google Scholar 

  35. Bhattacherjee, A. et al. Cell type-specific transcriptional programs in mouse prefrontal cortex during adolescence and addiction. Nat. Commun. 10, 4169 (2019).

    Google Scholar 

  36. Bhattacherjee, A. et al. Spatial transcriptomics reveals the distinct organization of mouse prefrontal cortex and neuronal subtypes regulating chronic pain. Nat. Neurosci. 26, 1880–1893 (2023).

    Google Scholar 

  37. Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

    Google Scholar 

  38. Hisaoka, T., Nakamura, Y., Senba, E. & Morikawa, Y. The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience 166, 551–563 (2010).

    Google Scholar 

  39. Babiczky, A. & Matyas, F. Molecular characteristics and laminar distribution of prefrontal neurons projecting to the mesolimbic system. eLife 11, e78813 (2022).

    Google Scholar 

  40. Kast, R. J., Lanjewar, A. L., Smith, C. D. & Levitt, P. FOXP2 exhibits projection neuron class specific expression, but is not required for multiple aspects of cortical histogenesis. eLife 8, e42012 (2019).

    Google Scholar 

  41. Yao, Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature 598, 103–110 (2021).

    Google Scholar 

  42. Hunskaar, S. & Hole, K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30, 103–114 (1987).

    Google Scholar 

  43. Liu, J. et al. Activation of parvalbumin neurons in the rostro-dorsal sector of the thalamic reticular nucleus promotes sensitivity to pain in mice. Neuroscience 366, 113–123 (2017).

    Google Scholar 

  44. Poorthuis, R. B. et al. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. Cereb. Cortex 23, 148–161 (2013).

    Google Scholar 

  45. Guillem, K. et al. Nicotinic acetylcholine receptor β2 subunits in the medial prefrontal cortex control attention. Science 333, 888–891 (2011).

    Google Scholar 

  46. Bloem, B., Poorthuis, R. B. & Mansvelder, H. D. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Front. Neural Circuits 8, 17 (2014).

    Google Scholar 

  47. Oswald, M. J. et al. Cholinergic basal forebrain nucleus of Meynert regulates chronic pain-like behavior via modulation of the prelimbic cortex. Nat. Commun. 13, 5014 (2022).

    Google Scholar 

  48. Radzicki, D., Pollema-Mays, S. L., Sanz-Clemente, A. & Martina, M. Loss of M1 receptor dependent cholinergic excitation contributes to mPFC deactivation in neuropathic pain. J. Neurosci. 37, 2292–2304 (2017).

    Google Scholar 

  49. Peron, S. et al. Recurrent interactions in local cortical circuits. Nature 579, 256–259 (2020).

    Google Scholar 

  50. Le Merre, P., Ahrlund-Richter, S. & Carlen, M. The mouse prefrontal cortex: Unity in diversity. Neuron 109, 1925–1944 (2021).

    Google Scholar 

  51. Smith, A. C. W. et al. A master regulator of opioid reward in the ventral prefrontal cortex. Science 384, eadn0886 (2024).

    Google Scholar 

  52. Hadinger, N. et al. Region-selective control of the thalamic reticular nucleus via cortical layer 5 pyramidal cells. Nat. Neurosci. 26, 116–130 (2023).

    Google Scholar 

  53. Sherman, S. M. Thalamus plays a central role in ongoing cortical functioning. Nat. Neurosci. 19, 533–541 (2016).

    Google Scholar 

  54. Collins, D. P., Anastasiades, P. G., Marlin, J. J. & Carter, A. G. Reciprocal circuits linking the prefrontal cortex with dorsal and ventral thalamic nuclei. Neuron 98, 366–379 e364 (2018).

    Google Scholar 

  55. Gao, F. et al. Elevated prelimbic cortex-to-basolateral amygdala circuit activity mediates comorbid anxiety-like behaviors associated with chronic pai. J. Clin. Invest. 133, e166356 (2023).

    Google Scholar 

  56. Zhou, H. et al. Inhibition of the prefrontal projection to the nucleus accumbens enhances pain sensitivity and affect. Front. Cell Neurosci. 12, 240 (2018).

    Google Scholar 

  57. De Ridder, D., Adhia, D. & Vanneste, S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci. Biobehav. Rev. 130, 125–146 (2021).

    Google Scholar 

  58. Naser, P. V. & Kuner, R. Molecular, cellular and circuit basis of cholinergic modulation of pain. Neuroscience 387, 135–148 (2018).

    Google Scholar 

  59. Sullere, S., Kunczt, A. & McGehee, D. S. A cholinergic circuit that relieves pain despite opioid tolerance. Neuron 111, 3414–3434.e3415 (2023).

    Google Scholar 

  60. Umana, I. C., Daniele, C. A. & McGehee, D. S. Neuronal nicotinic receptors as analgesic targets: it’s a winding road. Biochem. Pharma 86, 1208–1214 (2013).

    Google Scholar 

  61. Nirogi, R., Goura, V., Abraham, R. & Jayarajan, P. alpha4beta2* neuronal nicotinic receptor ligands (agonist, partial agonist and positive allosteric modulators) as therapeutic prospects for pain. Eur. J. Pharmacol. 712, 22–29 (2013).

    Google Scholar 

  62. Mansvelder, H. D., Keath, J. R. & McGehee, D. S. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33, 905–919 (2002).

    Google Scholar 

  63. Bailey, C. D., Alves, N. C., Nashmi, R., De Biasi, M. & Lambe, E. K. Nicotinic α5 subunits drive developmental changes in the activation and morphology of prefrontal cortex layer VI neurons. Biol. Psychiatry 71, 120–128 (2012).

    Google Scholar 

  64. Ramirez-Latorre, J. et al. Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380, 347–351 (1996).

    Google Scholar 

  65. Labrakakis, C. The role of the insular cortex in pain. Int. J. Mol. Sci. 24, 5736 (2023).

    Google Scholar 

  66. Liu, Y. et al. A subset of dopamine receptor-expressing neurons in the nucleus accumbens controls feeding and energy homeostasis. Nat. Metab. 6, 1616–1631 (2024).

    Google Scholar 

  67. Zhao, Z. D. et al. A molecularly defined D1 medium spiny neuron subtype negatively regulates cocaine addiction. Sci. Adv. 8, eabn3552 (2022).

    Google Scholar 

  68. Corder, G. et al. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 363, 276–281 (2019).

    Google Scholar 

  69. Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994).

    Google Scholar 

Download references

Acknowledgements

We thank the support of the Mouse Behavior Core of Harvard Medical School and its director, Dr. Barbara Caldarone. We thank Dr. Zhengdong Zhao for the help in using in vivo miniscopic calcium recording. This project was supported by the Open Philanthropy Foundation, the National Institutes of Health (1R01DA050589), and the HHMI. Y.Z. is an investigator of the Howard Hughes Medical Institute. This article is subject to HHMI’s Open Access to Publications policy. HHMI lab heads have previously granted a nonexclusive CC BY 4.0 license to the public and a sublicensable license to HHMI in their research articles. Pursuant to those licenses, the author-accepted manuscript of this article can be made freely available under a CC BY 4.0 license immediately upon publication.

Author information

Authors and Affiliations

  1. Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA

    Guoguang Xie, Yiqiong Liu, Xuetao Qi, Aritra Bhattacherjee, Chao Zhang & Yi Zhang

  2. Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA

    Guoguang Xie, Yiqiong Liu, Xuetao Qi, Aritra Bhattacherjee, Chao Zhang & Yi Zhang

  3. Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA

    Guoguang Xie, Yiqiong Liu, Xuetao Qi, Aritra Bhattacherjee, Chao Zhang & Yi Zhang

  4. Department of Genetics, Harvard Medical School, Boston, MA, USA

    Yi Zhang

  5. Harvard Stem Cell Institute, Boston, MA, USA

    Yi Zhang

Authors
  1. Guoguang Xie
    View author publications

    Search author on:PubMed Google Scholar

  2. Yiqiong Liu
    View author publications

    Search author on:PubMed Google Scholar

  3. Xuetao Qi
    View author publications

    Search author on:PubMed Google Scholar

  4. Aritra Bhattacherjee
    View author publications

    Search author on:PubMed Google Scholar

  5. Chao Zhang
    View author publications

    Search author on:PubMed Google Scholar

  6. Yi Zhang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.Z. conceived the project; G.X. designed the experiments; G.X. and Y.L. performed the experiments; X.Q. and G.X. analyzed the calcium imaging results; A.B. acquired the Foxp2-Cre mouse line and conducted preliminary staining and projection mapping; C.Z. analyzed the transcriptomic dataset. All authors are involved in data interpretation. G.X. and Y.Z. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Junting Huang, who co-reviewed with Ruizhen Huang, and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, G., Liu, Y., Qi, X. et al. A molecularly defined basalo-prefrontal-thalamic circuit regulates sensory and affective dimensions of pain in male mice. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69001-2

Download citation

  • Received: 05 June 2025

  • Accepted: 22 January 2026

  • Published: 29 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-69001-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing