Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Nonporous hydrophobic organic crystals for carbon dioxide capture via chain-melting phase transition
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Nonporous hydrophobic organic crystals for carbon dioxide capture via chain-melting phase transition

  • Aleksa Petrović1,2,
  • Rodrigo José da Silva Lima1,
  • Gul Barg Hadaf1,2,
  • Arianna Lanza  ORCID: orcid.org/0000-0002-7820-907X1,
  • Kristine Aalestrup  ORCID: orcid.org/0009-0005-0657-65072,3,
  • Kathrine Linde Lyngbak Olesen  ORCID: orcid.org/0009-0006-8313-53903,4,
  • Dennis Wilkens Juhl3,4,
  • Niels Chr. Nielsen  ORCID: orcid.org/0000-0003-2978-43663,4,
  • Adedeji Adebukola Adelodun1,2,
  • Heloisa Nunes Bordallo  ORCID: orcid.org/0000-0003-0750-05535,
  • Kim Daasbjerg  ORCID: orcid.org/0000-0003-0212-81902,3 &
  • …
  • Ji-Woong Lee  ORCID: orcid.org/0000-0001-6177-45691,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Carbon capture and storage
  • Crystal engineering
  • Sustainability

Abstract

An efficient carbon capture and release system necessitates rapid CO2 transport to and from active sites, a property typically associated with permanently porous materials featuring large surface areas. Here, we present hydrophobic organic crystals of alkylated monoethanolamine that, despite their nonporous nature, undergo a rapid and reversible solid-to-solid phase transition upon CO₂ uptake and release. Exposure to CO2 triggers a thermodynamically favored structural rearrangement, enabling quantitative CO2 capture and forming a stable carbamate, aided by intermolecular interactions involving the long side chains. This process is fully reversible under practical flue-gas CO2 capture conditions (>0.6% CO2, 0−100% relative humidity) and enables low-temperature desorption using CO2 itself as a stripping gas (65 °C at 1 atm CO2). Structural analysis through in situ XRPD, solid-state NMR spectroscopy, electron diffraction, and Raman analysis confirms that these hydrophobic absorbents selectively uptake CO2 to form an anhydrous ammonium carbamate pair in the solid state. The non-hygroscopic nature of these organic crystals is exemplified by a representative C10-MEA in the presence of CO2, resulting in a desorption process with a minimal temperature swing (ΔTabs-des = 30 °C), offering an energy-efficient (>1.2 GJ/t of captured CO₂) and economically viable alternative for carbon capture applications.

Data availability

All data is available in the Supplementary Information and from the corresponding authors on request. Correspondence and requests for materials should be addressed to J.-W.L. The supplementary crystallographic data for this paper is included in the Supplementary Information. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

References

  1. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Google Scholar 

  2. Richardson, K. et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, eadh2458 (2023).

    Google Scholar 

  3. IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Lee, H. & Romero, J.) 1–34 (IPCC, Geneva, Switzerland, 2023).

  4. Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).

    Google Scholar 

  5. Bacilieri, A., Black, R. & Way, R. Assessing the Relative Costs of High-CCS and Low-CCS Pathways to 1.5 Degrees. Vol. 4, 8–23 (Oxford Smith School of Enterprise and the Environment (SSEE), 2023).

  6. IEA. Is Carbon Capture Too Expensive? https://www.iea.org/commentaries/is-carbon-capture-too-expensive (IEA, 2021).

  7. Shi, X. et al. Sorbents for the direct capture of CO2 from ambient air. Angew. Chem. Int. Ed. 59, 6984–7006 (2020).

    Google Scholar 

  8. Feng, B., Du, M., Dennis, T. J., Anthony, K. & Perumal, M. J. Reduction of energy requirement of CO2 desorption by adding acid into CO2-loaded solvent. Energy Fuels 24, 213–219 (2010).

    Google Scholar 

  9. Trivedi, T. J., Lee, J. H., Lee, H. J., Jeong, Y. K. & Choi, J. W. Deep eutectic solvents as attractive media for CO2 capture. Green Chem. 18, 2834–2842 (2016).

    Google Scholar 

  10. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    Google Scholar 

  11. Meng, F. et al. Research progress of aqueous amine solution for CO2 capture: A review. Renew. Sustain. Energy Rev. 168, 112902 (2022).

    Google Scholar 

  12. Carneiro, J. S. A. et al. Insights into the oxidative degradation mechanism of solid amine sorbents for CO2 Capture from air: roles of atmospheric water. Angew. Chem. Int. Ed. 62, e202302887 (2023).

    Google Scholar 

  13. Guta, Y. A. et al. Contributions of CO2, O2, and H2O to the oxidative stability of solid amine direct air capture sorbents at intermediate temperature. ACS Appl. Mater. Interfaces 15, 46790–46802 (2023).

    Google Scholar 

  14. Ünveren, E. E., Monkul, B. Ö, Sarıoğlan, Ş, Karademir, N. & Alper, E. Solid amine sorbents for CO2 capture by chemical adsorption: a review. Petroleum 3, 37–50 (2017).

    Google Scholar 

  15. Hack, J., Maeda, N. & Meier, D. M. Review on CO2 capture using amine-functionalized materials. ACS Omega 7, 39520–39530 (2022).

    Google Scholar 

  16. Yaghi, O. M. & Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995).

    Google Scholar 

  17. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015).

    Google Scholar 

  18. Kim, E. J. et al. Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks. Science 369, 392–396 (2020).

    Google Scholar 

  19. Jones, C. W. Metal–organic frameworks and covalent organic frameworks: emerging advances and applications. JACS Au 2, 1504–1505 (2022).

    Google Scholar 

  20. Loughran, R. P. et al. CO2 capture from wet flue gas using a water-stable and cost-effective metal-organic framework. Cell Rep. Phys. Sci. 4, 101470 (2023).

    Google Scholar 

  21. Song, B. et al. CO2-based stable porous metal–organic frameworks for CO2 utilization. J. Am. Chem. Soc. 146, 14835–14843 (2024).

    Google Scholar 

  22. Wang, X., Liu, H., Zhang, J. & Chen, S. Covalent organic frameworks (COFs): a promising CO2 capture candidate material. Polym. Chem. 14, 1293–1317 (2023).

    Google Scholar 

  23. Song, K. S., Fritz, P. W. & Coskun, A. Porous organic polymers for CO2 capture, separation and conversion. Chem. Soc. Rev. 51, 9831–9852 (2022).

    Google Scholar 

  24. Sekizkardes, A. K., Wang, P., Hoffman, J., Budhathoki, S. & Hopkinson, D. Amine-functionalized porous organic polymers for carbon dioxide capture. Mat. Adv. 3, 6668–6686 (2022).

    Google Scholar 

  25. Ansari, M., Helal, A., Khan, A., Abdulazeez, I. & Khan, M. Y. Sulfur- and nitrogen-incorporated phenothiazine-based porous organic polymer: selective and efficient CO2 capture and evaluation for vacuum swing adsorption. ACS Appl. Polym. Mater. 7, 4838–4848 (2025).

    Google Scholar 

  26. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    Google Scholar 

  27. Coudert, F.-X., Mellot-Draznieks, C., Fuchs, A. H. & Boutin, A. Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal−organic frameworks. J. Am. Chem. Soc. 131, 11329–11331 (2009).

    Google Scholar 

  28. Wieme, J., Lejaeghere, K., Kresse, G. & Van Speybroeck, V. Tuning the balance between dispersion and entropy to design temperature-responsive flexible metal-organic frameworks. Nat. Commun. 9, 4899 (2018).

    Google Scholar 

  29. Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    Google Scholar 

  30. Li, L. et al. Advanced soft porous organic crystal with multiple gas-induced single-crystal-to-single-crystal transformations for highly selective separation of propylene and propane. Adv. Sci. 11, 2303057 (2024).

    Google Scholar 

  31. Wu, W. et al. Stimuli-responsive flexible organic crystals. J. Mater. Chem. C 11, 2026–2052 (2023).

    Google Scholar 

  32. Li, L. et al. Emission-tunable soft porous organic crystal based on squaraine for single-crystal analysis of guest-induced gate-opening transformation. J. Am. Chem. Soc. 143, 3856–3864 (2021).

    Google Scholar 

  33. Atwood, J. L., Barbour, L. J., Jerga, A. & Schottel, B. L. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298, 1000–1002 (2002).

    Google Scholar 

  34. Gygi, D. et al. Hydrogen storage in the expanded pore metal–organic frameworks M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Mater. 28, 1128–1138 (2016).

    Google Scholar 

  35. Seipp, C. A., Williams, N. J., Kidder, M. K. & Custelcean, R. CO2 capture from ambient air by crystallization with a guanidine sorbent. Angew. Chem. Int. Ed. 56, 1042–1045 (2017).

    Google Scholar 

  36. Inagaki, F., Matsumoto, C., Iwata, T. & Mukai, C. CO2-selective absorbents in air: reverse lipid bilayer structure forming neutral carbamic acid in water without hydration. J. Am. Chem. Soc. 139, 4639–4642 (2017).

    Google Scholar 

  37. Huang, A. J. et al. Phase change-mediated capture of carbon dioxide from air with a molecular triamine network solid. J. Am. Chem. Soc. 147, 10519–10529 (2025).

    Google Scholar 

  38. Petrović, A., Lima, R., Westh, P. & Lee, J.-W. Entropy-driven carbon dioxide capture: the role of high salinity and hydrophobic monoethanolamine. Adv. Energ. Sustain. Res. 5, 2400204 (2024).

    Google Scholar 

  39. Ursby, T. et al. BioMAX - the first macromolecular crystallography beamline at MAX IV Laboratory. J. Synchrotron Radiat. 27, 1415–1429 (2020).

    Google Scholar 

  40. Samanta, A., Zhao, A., Shimizu, G. K. H., Sarkar, P. & Gupta, R. Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51, 1438–1463 (2012).

    Google Scholar 

  41. Watabe, T. & Yogo, K. Isotherms and isosteric heats of adsorption for CO2 in amine-functionalized mesoporous silicas. Sep. Purif. Technol. 120, 20–23 (2013).

    Google Scholar 

  42. Custelcean, R. Direct air capture of CO2 via crystal engineering. Chem. Sci. 12, 12518–12528 (2021).

    Google Scholar 

  43. Lin, J.-B. et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 374, 1464–1469 (2021).

    Google Scholar 

  44. Gebald, C., Wurzbacher, J. A., Borgschulte, A., Zimmermann, T. & Steinfeld, A. Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose. Environ. Sci. Technol. 48, 2497–2504 (2014).

    Google Scholar 

  45. Seo, J. et al. Barocaloric effects in dialkylammonium halide salts. J. Am. Chem. Soc. 146, 2736–2747 (2024).

    Google Scholar 

  46. Chen, F. E. et al. Manipulating hydrocarbon chain-melting transitions in dialkylammonium halide barocaloric materials through desymmetrization. J. Am. Chem. Soc. 147, 19788–19795 (2025).

    Google Scholar 

Download references

Acknowledgements

The generous support from the Department of Chemistry, University of Copenhagen, Villum Fonden (00019062, J.-W.L.), Independent Research Fund Denmark (DFF-Research Project1, Thematic Research, 0217-00192B, J.-W.L.), Carlsberg Fonden (CF21-0308, J.-W.L., 2013_01_0589, CF14-0230, CF20-0130, H. N. B), NNF Pioneer Innovator Grant (NNF 0095061, J.-W.L.), NNF NERD (NNF22OC0076002, N. C. N.) and the NNF CO2 Research Center (CORC, NNF21SA0072700, K.D., J.-W.L.) is gratefully acknowledged. The authors acknowledge the MAX IV Laboratory for beamtime on the BioMAX beamline under proposal 20241845 and on the DanMAX beamline under proposal 20230769. Research conducted at MAX IV, a Swedish national user facility, is supported by Vetenskapsrådet (Swedish Research Council, VR) under contract 2018-07152, Vinnova (Swedish Governmental Agency for Innovation Systems) under contract 2018-04969, and Formas under contract 2019-02496. DanMAX is funded by the NUFI grant no. 4059-00009B. In addition, the authors gratefully acknowledge A. Gonzales, E. Panepucci, L. Krause, K. Christensen, M. R. Jørgensen, and I. Kantor from the MAX IV Laboratory for assistance with the XRD experiments and data conversion. Electron diffraction experiments are supported by the Novo Nordisk Foundation Research Infrastructure grant NNF220C0074439. A.L. thanks D.N. Rainer, J.P. Tidey, and C. Wilson for the fruitful discussions about 3D ED experiments and data analysis. The authors acknowledge the use of instrumentation at the Danish Center for Ultrahigh-Field NMR Spectroscopy, funded by the Danish Ministry of Higher Education and Science (AU-2010-612-181) and Novo Nordisk Foundation Research Infrastructure − Large Equipment and Facilities program (NNF220C0075797). The authors gratefully acknowledge K. Qvortrup for performing the SEM analysis and T. M. Nielsen for assistance with the synchrotron setup. Further, the authors acknowledge T. Runčevski and I. Čorić for the insightful discussions regarding the crystal structures. The authors also thank their analytical departments, the CORC, and its NCCC theme members for helpful discussions.

Author information

Authors and Affiliations

  1. Department of Chemistry, University of Copenhagen, Copenhagen, Denmark

    Aleksa Petrović, Rodrigo José da Silva Lima, Gul Barg Hadaf, Arianna Lanza, Adedeji Adebukola Adelodun & Ji-Woong Lee

  2. The Novo Nordisk Foundation CO₂ Research Center, Aarhus, Denmark

    Aleksa Petrović, Gul Barg Hadaf, Kristine Aalestrup, Adedeji Adebukola Adelodun, Kim Daasbjerg & Ji-Woong Lee

  3. Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark

    Kristine Aalestrup, Kathrine Linde Lyngbak Olesen, Dennis Wilkens Juhl, Niels Chr. Nielsen & Kim Daasbjerg

  4. Department of Chemistry, Aarhus University, Aarhus, Denmark

    Kathrine Linde Lyngbak Olesen, Dennis Wilkens Juhl & Niels Chr. Nielsen

  5. The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

    Heloisa Nunes Bordallo

Authors
  1. Aleksa Petrović
    View author publications

    Search author on:PubMed Google Scholar

  2. Rodrigo José da Silva Lima
    View author publications

    Search author on:PubMed Google Scholar

  3. Gul Barg Hadaf
    View author publications

    Search author on:PubMed Google Scholar

  4. Arianna Lanza
    View author publications

    Search author on:PubMed Google Scholar

  5. Kristine Aalestrup
    View author publications

    Search author on:PubMed Google Scholar

  6. Kathrine Linde Lyngbak Olesen
    View author publications

    Search author on:PubMed Google Scholar

  7. Dennis Wilkens Juhl
    View author publications

    Search author on:PubMed Google Scholar

  8. Niels Chr. Nielsen
    View author publications

    Search author on:PubMed Google Scholar

  9. Adedeji Adebukola Adelodun
    View author publications

    Search author on:PubMed Google Scholar

  10. Heloisa Nunes Bordallo
    View author publications

    Search author on:PubMed Google Scholar

  11. Kim Daasbjerg
    View author publications

    Search author on:PubMed Google Scholar

  12. Ji-Woong Lee
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Author contributions: J.-W.L. R.J.S.L and A.P. designed the project. A.P., R.J.S.L., A.L., K.A., G.B.H, N.C.N., A.A.A., K.L.L.O., H.N.B., K.D., and D.W.J. performed the experiments and analyzed the data. A.P. and J.-W.L. wrote the first draft of the manuscript. All authors provided feedback, proofreading, and oversaw the experiments and data analysis.

Corresponding author

Correspondence to Ji-Woong Lee.

Ethics declarations

Competing interests

J.-W.L., R.J.S.L., and A.P., as the inventors, declare competing interests with a preliminary patent application from the University of Copenhagen to the Danish Patent Office (EP24196465.9, filed), regarding the use of Cn-MEA in CO2 capture and release. J.-W.L., R.J.S.L., and A.P. declare no other competing interests. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, A., Lima, R.J.d.S., Hadaf, G.B. et al. Nonporous hydrophobic organic crystals for carbon dioxide capture via chain-melting phase transition. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69006-x

Download citation

  • Received: 17 July 2025

  • Accepted: 22 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69006-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing