Abstract
Mass spectrometry (MS) is indispensable for high-throughput quantitation of protein expression. But protein function is regulated by factors beyond abundance alone. Here, we evaluate two supercharging reagents, dimethyl sulfoxide (DMSO) and m-nitrobenzyl alcohol (mNBA), in narrow-window data-independent acquisition (nDIA)-MS. DMSO markedly enhances MS signal and protein identification, whereas mNBA primarily increases peptide identifications. Optimizating nDIA-MS with 3% DMSO boosts signal intensity by up to 56%, enabling identification of ~9,600 proteins from 1 µg HeLa digest in 15 min. Using this methodology, we quantify solubility and abundance changes in 8,694 proteins across three cell lines following short-term treatment with the proteasome inhibitor MG132 and the SUMO-activating enzyme inhibitor ML-792. MG132 affects the solubility of 1,723 proteins and the abundance of 374, and ML-792 affects 1,294 and 288, respectively. The drugs elicit distinct and sometimes opposing solubility shifts; for instance, MG132 insolubilizes HSF1, ML-792 solubilizes SP100 and insolubilizes PLOR3G, and SMAD2 shows opposite responses to those two treatments. These results reveal widespread, drug-induced remodeling of the protein solubility landscape and establish solubility profiling by nDIA-MS as a broadly applicable platform for uncovering protein state transitions and cellular responses to perturbation.
Data availability
All data generated in this study are available in the main text or the supplementary materials. Source Data are provided with this paper. The mass spectrometry proteomics data for supercharging reagents evaluation and solubility proteomics have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD064180 (supercharging reagents evaluation) and PXD064185 (solubility proteomics). The mass spectrometry data for preliminary instrument parameter optimization, evaluation, and Thermal Proteome Profiling (TPP) have been deposited to the MassIVE repository (https://massive.ucsd.edu) with the dataset identifier MSV000099787 (PXD070462) [https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID = PXD070462] (Thermal Proteome Profiling), MSV000099789 (PXD070463) [https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID = PXD070463] (instrument parameter optimizatiom), MSV000099791 (PXD070464) [https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID = PXD070464] (instrument parameter evaluation). Source data are provided with this paper.
References
Angel, T. E. et al. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem. Soc. Rev. 41, 3912–3928 (2012).
Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).
Ortega, J. A. et al. Nucleocytoplasmic Proteomic Analysis Uncovers eRF1 and Nonsense-Mediated Decay as Modifiers of ALS/FTD Toxicity. Neuron 106, 90 (2020).
Molzahn, C. et al. Shift of the insoluble content of the proteome in the aging mouse brain. Proc. Natl. Acad. Sci. USA 120, e2310057120 (2023).
Thibaudeau, T. A. & Smith, D. M. A Practical Review of Proteasome Pharmacology. Pharm. Rev. 71, 170–197 (2019).
Han, Y. H., Moon, H. J., You, B. R. & Park, W. H. The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol. Rep. 22, 215–221 (2009).
He, X. Y. et al. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor. Nat. Chem. Biol. 13, 1164 (2017).
Gu, Y. R. et al. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp. Hematol. Oncol. 12, 58 (2023).
Wilkinson, K. A., Nakamura, Y. & Henley, J. M. Targets and consequences of protein SUMOylation in neurons. Brain Res Rev. 64, 195–212 (2010).
Gutierrez-Morton, E. & Wang, Y. The role of SUMOylation in biomolecular condensate dynamics and protein localization. Cell Insight 3, 100199 (2024).
Cwilichowska, N., Swiderska, K. W., Dobrzyn, A., Drag, M. & Poreba, M. Diagnostic and therapeutic potential of protease inhibition. Mol. Asp. Med 88, 101144 (2022).
Osei-Amponsa, V. & Walters, K. J. Proteasome substrate receptors and their therapeutic potential. Trends Biochem Sci. 47, 950–964 (2022).
Liu, C., Choe, V. & Rao, H. Genome-wide approaches to systematically identify substrates of the ubiquitin-proteasome pathway. Trends Biotechnol. 28, 461–467 (2010).
Claessens, L. A. & Vertegaal, A. C. O. SUMO proteases: from cellular functions to disease. Trends Cell Biol. 34, 901–912 (2024).
Da Silva-Ferrada, E., Lopitz-Otsoa, F., Lang, V., Rodriguez, M. S. & Matthiesen, R. Strategies to Identify Recognition Signals and Targets of SUMOylation. Biochem Res Int 2012, 875148 (2012).
Svozil, J., Hirsch-Hoffmann, M., Dudler, R., Gruissem, W. & Baerenfaller, K. Protein abundance changes and ubiquitylation targets identified after inhibition of the proteasome with syringolin A. Mol. Cell Proteom. 13, 1523–1536 (2014).
Lohraseb, I. et al. Global ubiquitinome profiling identifies NEDD4 as a regulator of Profilin 1 and actin remodelling in neural crest cells. Nat. Commun. 13, 2018 (2022).
Tatham, M. H., Matic, I., Mann, M. & Hay, R. T. Comparative Proteomic Analysis Identifies a Role for SUMO in Protein Quality Control. Sci. Signal 4, rs4 (2011).
Zhang, H. M. et al. RAD54L2-mediated DNA damage avoidance pathway specifically preserves genome integrity in response to topoisomerase 2 poisons. Sci. Adv. 9, eadi6681 (2023).
van der Zanden, S. Y., Jongsma, M. L. M., Neefjes, A. C. M., Berlin, I. & Neefjes, J. Maintaining soluble protein homeostasis between nuclear and cytoplasmic compartments across mitosis. Trends Cell Biol. 33, 18–29 (2023).
van Tartwijk, F. W. & Kaminski, C. F. Protein Condensation, Cellular Organization, and Spatiotemporal Regulation of Cytoplasmic Properties. Adv. Biol. (Weinh.) 6, e2101328 (2022).
Rawlings, A. E. Membrane proteins: always an insoluble problem?. Biochem Soc. T 44, 790–795 (2016).
Sui, X. et al. Widespread remodeling of proteome solubility in response to different protein homeostasis stresses. Proc. Natl. Acad. Sci. USA 117, 2422–2431 (2020).
Grossmann, L. & McClements, D. J. Current insights into protein solubility: A review of its importance for alternative proteins. Food Hydrocolloid 137, 108416 (2023).
Franzmann, T. M. & Alberti, S. Protein Phase Separation as a Stress Survival Strategy. Cold Spring Harb. Perspect. Med. 9, a034058 (2019).
Sui, X. J., Cox, D., Nie, S., Reid, G. E. & Hatters, D. M. A Census of Hsp70-Mediated Proteome Solubility Changes upon Recovery from Heat Stress. J. Proteome Res 21, 1251–1261 (2022).
Hahne, H. et al. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat. Methods 10, 989–991 (2013).
Strzelecka, D., Holman, S. W. & Eyers, C. E. Evaluation of dimethyl sulfoxide (DMSO) as a mobile phase additive during top 3 label-free quantitative proteomics. Int J. Mass Spectrom. 391, 157–160 (2015).
Iavarone, A. T. & Williams, E. R. Supercharging in electrospray ionization: effects on signal and charge. Int J. Mass Spectrom. 219, 63–72 (2002).
Abaye, D. A., Agbo, I. A. & Nielsen, B. V. Current perspectives on supercharging reagents in electrospray ionization mass spectrometry. Rsc Adv. 11, 20355–20369 (2021).
Guzman, U. H. et al. Ultra-fast label-free quantification and comprehensive proteome coverage with narrow-window data-independent acquisition. Nat. Biotechnol. 42, 1855–1866 (2024).
Lou, R. H. & Shui, W. Q. Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023. Mol. Cell Proteomics 23, 100712 (2024).
Meyer, J. G. & Komives, E. A. Charge State Coalescence During Electrospray Ionization Improves Peptide Identification by Tandem Mass Spectrometry. J. Am. Soc. Mass Spectr. 23, 1390–1399 (2012).
Van Wanseele, Y. et al. Assessing mixtures of supercharging agents to increase the abundance of a specific charge state of Neuromedin U. Talanta 198, 206–214 (2019).
Gallo, F. T., Katche, C., Morici, J. F., Medina, J. H. & Weisstaub, N. V. Immediate Early Genes, Memory and Psychiatric Disorders: Focus on c-Fos, Egr1 and Arc. Front Behav. Neurosci. 12, 79 (2018).
Bahrami, S. & Drablos, F. Gene regulation in the immediate-early response process. Adv. Biol. Regul. 62, 37–49 (2016).
Jia, Q. A., Xu, B. H., Zhang, Y. Y., Ali, A. & Liao, X. CCN Family Proteins in Cancer: Insight Into Their Structures and Coordination Role in Tumor Microenvironment. Front. Genet. 12, 649387 (2021).
Yeger, H. & Perbal, B. CCN family of proteins: critical modulators of the tumor cell microenvironment. J. Cell Commun. Signal 10, 229–240 (2016).
Kular, L., Pakradouni, J., Kitabgi, P., Laurent, M. & Martinerie, C. The CCN family: a new class of inflammation modulators?. Biochimie 93, 377–388 (2011).
Alao, J. P., Stavropoulou, A. V., Lam, E. W., Coombes, R. C. & Vigushin, D. M. Histone deacetylase inhibitor, trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells. Mol. Cancer 5, 8 (2006).
Krenciute, G. et al. Nuclear BAG6-UBL4A-GET4 Complex Mediates DNA Damage Signaling and Cell Death. J. Biol. Chem. 288, 20547–20557 (2013).
O’Leary, C. E. et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat. Commun. 7, 11226 (2016).
Glimcher, L. H., Lee, A. H. & Iwakoshi, N. N. XBP-1 and the unfolded protein response (UPR). Nat. Immunol. 21, 963–965 (2020).
Locke, M., Tinsley, C. L., Benson, M. A. & Blake, D. J. TRIM32 is an E3 ubiquitin ligase for dysbindin. Hum. Mol. Genet. 18, 2344–2358 (2009).
Yan, Q. S., Ding, J. Y., Khan, S. J., Lawton, L. N. & Shipp, M. A. DTX3L E3 ligase targets p53 for degradation at poly ADP-ribose polymerase-associated DNA damage sites. iScience 26, 106444 (2024).
Gao, J. et al. The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis. Elife 4, e07539 (2015).
Raffeiner, M., Zhu, S. S., González-Fuente, M. & Üstün, S. Interplay between autophagy and proteasome during protein turnover. Trends Plant Sci. 28, 698–714 (2023).
Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Bio 21, 439–458 (2020).
Melia, T. J., Lystad, A. H. & Simonsen, A. Autophagosome biogenesis: From membrane growth to closure. J. Cell Biol. 219, e202002085 (2020).
Fielden, J., Popovic, M. & Ramadan, K. TEX264 at the intersection of autophagy and DNA repair. Autophagy 18, 40–49 (2022).
Lascaux, P. et al. TEX264 drives selective autophagy of DNA lesions to promote DNA repair and cell survival. Cell 187 (2024).
Delorme-Axford, E., Popelka, H. & Klionsky, D. J. TEX264 is a major receptor for mammalian reticulophagy. Autophagy 15, 1677–1681 (2019).
Boada-Romero, E. et al. TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. Embo J. 32, 566–582 (2013).
Gaglia, G. et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat. Cell Biol. 22, 151 (2020).
Hammond-Martel, I., Yu, H. & Affar, E. B. Roles of ubiquitin signaling in transcription regulation. Cell Signal 24, 410–421 (2012).
Tian, K., Wang, R., Huang, J., Wang, H. & Ji, X. Subcellular localization shapes the fate of RNA polymerase III. Cell Rep. 42, 112941 (2023).
Kessler, A. C. & Maraia, R. J. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res. 49, 12017–12034 (2021).
Wang, Z., Wu, C., Aslanian, A., Yates, J. R. & Hunter, T. Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7, e35447 (2018).
Li, H. et al. Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol. Cell Biol. 20, 1784–1796 (2000).
Sternsdorf, T., Jensen, K., Reich, B. & Will, H. The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J. Biol. Chem. 274, 12555–12566 (1999).
Shih, H. M., Chang, C. C., Kuo, H. Y. & Lin, D. Y. Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization. Biochem Soc. Trans. 35, 1397–1400 (2007).
Heinrich, S. et al. Glucose stress causes mRNA retention in nuclear Nab2 condensates. Cell Rep. 43, 113593 (2024).
Nakao, A. et al. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16, 5353–5362 (1997).
Fink, S. P., Mikkola, D., Willson, J. K. & Markowitz, S. TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines. Oncogene 22, 1317–1323 (2003).
Kanoh, H., Williger, B. T. & Exton, J. H. Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes. J. Biol. Chem. 272, 5421–5429 (1997).
Sanidas, I., Lawrence, M. S. & Dyson, N. J. Patterns in the tapestry of chromatin-bound RB. Trends Cell Biol. 34, 288–298 (2024).
Lin, C. W. et al. m-nitrobenzyl alcohol supercharging reagent enhances the chromatographic separation and the charging of disulfide bond linked and His-tag peptides. J. Chromatogr. A 1722, 464828 (2024).
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).
Sterling, H. J., Prell, J. S., Cassou, C. A. & Williams, E. R. Protein conformation and supercharging with DMSO from aqueous solution. J. Am. Soc. Mass Spectrom. 22, 1178–1186 (2011).
Sterling, H. J. & Williams, E. R. Origin of supercharging in electrospray ionization of noncovalent complexes from aqueous solution. J. Am. Soc. Mass Spectrom. 20, 1933–1943 (2009).
Iavarone, A. T. & Williams, E. R. Mechanism of charging and supercharging molecules in electrospray ionization. J. Am. Chem. Soc. 125, 2319–2327 (2003).
Going, C. C. & Williams, E. R. Supercharging with m-nitrobenzyl alcohol and propylene carbonate: forming highly charged ions with extended, near-linear conformations. Anal. Chem. 87, 3973–3980 (2015).
Zhang, Y. et al. Thermal proteome profiling reveals fructose-1,6-bisphosphate as a phosphate donor to activate phosphoglycerate mutase 1. Nat. Commun. 15, 8936 (2024).
Acknowledgements
We thank all members of MD Anderson Proteomics Core Facility and Metabolomics Core Facility for their help and constructive discussions. This work was supported by NIH grant number 1S10OD012304-01, NIH/NCI grant number P30CA016672, and the University of Texas MD Anderson Cancer Center.
Author information
Authors and Affiliations
Contributions
Conceptualization: Y.X., H.Z., P.L.L. Methodology: Y.X., and H.Z. Investigation: Y.X., H.Z., L.T. and B.W. Visualization: Y.X., and H.Z. Supervision: P.L.L. and J.N.W. Writing—original draft: Y.X., and H.Z. Writing—review and editing: Y.X., H.Z., P.L.L. and J.N.W.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Xiong, Y., Zhang, H., Tan, L. et al. Supercharging-enhanced nDIA-MS enables global profiling of drug-induced proteome solubility shifts. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69025-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69025-8