Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
High quality-factor terahertz phonon-polaritons in layered lead iodide
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

High quality-factor terahertz phonon-polaritons in layered lead iodide

  • Cristiane N. Santos  ORCID: orcid.org/0009-0001-5044-01651,
  • Flávio H. Feres  ORCID: orcid.org/0000-0001-9812-974X2,
  • Théo Hannotte  ORCID: orcid.org/0000-0002-5516-44971,
  • Romain Peretti  ORCID: orcid.org/0000-0002-1707-73411,3,
  • Mathias Vanwolleghem  ORCID: orcid.org/0000-0003-1759-459X1,
  • Sophie Eliet1,
  • Benjamin Walter4,
  • Marc Faucher1,4,
  • Adrian Cernescu5,
  • Raul O. Freitas  ORCID: orcid.org/0000-0002-3285-54472 &
  • …
  • Jean-François Lampin  ORCID: orcid.org/0000-0001-8309-81781 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Microresonators
  • Two-dimensional materials

Abstract

While hyperbolic phonon-polaritons in van der Waals materials such as h-BN and α-MoO3 have driven major advances in mid-infrared (IR) nanophotonics, further progress at longer THz wavelengths has been hampered due to material limitations and experimental challenges. Here, we report the discovery of long-lived hyperbolic phonon-polaritons in the deep THz range in layered PbI2. Using room-temperature scattering-type scanning near-field optical microscopy, we achieved real-space imaging and broadband spectral analysis of PbI2 2D crystals transferred onto different substrates with high near-field amplitude contrast and good agreement with theoretical models. Our measurements revealed an experimental figure-of-merit related to the propagating efficiency of the polaritons above 15—on par with state-of-the-art mid-IR benchmarks—and extreme field confinement of 264 for a 144 nm-thick flake, which can exceed 300 in slightly thinner samples. These findings demonstrate that PbI2 combines strong anisotropy, low losses, and extreme mode confinement, making it a compelling candidate for deep-THz nanophotonic applications.

Data availability

Relevant data supporting the key findings of this study are available within the article and the Supplementary Information file. All raw data generated during the current study are available from the corresponding authors upon request.

References

  1. Dai, S. et al. Tunable Phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Google Scholar 

  2. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Google Scholar 

  3. Basov, D. N., Fogler, M. M. & de Abajo, F. J. G. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Google Scholar 

  4. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Google Scholar 

  5. Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    Google Scholar 

  6. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Google Scholar 

  7. de Oliveira, T. V. A. G. et al. Nanoscale-confined terahertz polaritons in a van der Waals crystal. Adv. Mater. 33, 2005777 (2021).

    Google Scholar 

  8. Pogna, E. A. A. et al. Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy. Nat. Commun. 12, 1–11 (2021).

    Google Scholar 

  9. Chen, S. et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi2Se3. Nat. Commun. 13, 1374 (2022).

    Google Scholar 

  10. Feres, F. H. et al. Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide. Nat. Commun. 12, 1995 (2021).

    Google Scholar 

  11. Mayer, R. A. et al. Paratellurite nanowires as a versatile material for THz phonon polaritons. ACS Photonics https://pubs.acs.org/doi/10.1021/acsphotonics.4c01249 (2024).

  12. Nörenberg, T. et al. Germanium monosulfide as a natural platform for highly anisotropic THz polaritons. ACS Nano 16, 20174–20185 (2022).

    Google Scholar 

  13. Kowalski, R. A. et al. Ultraconfined terahertz phonon polaritons in hafnium dichalcogenides. Nat. Mater. 24, 1735–1741 (2025).

    Google Scholar 

  14. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Google Scholar 

  15. Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).

    Google Scholar 

  16. Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Google Scholar 

  17. Duan, J. et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO(3) trilayers. Nat. Mater. 22, 867–872 (2023).

    Google Scholar 

  18. Shiravi, H. et al. Twist-engineered phonon polaritons in α-V2O5. Opt. Lett. 50, 2986–2989 (2025).

    Google Scholar 

  19. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    Google Scholar 

  20. Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).

    Google Scholar 

  21. F. Tresguerres-Mata, A. I. et al. Observation of naturally canalized phonon polaritons in LiV2O5 thin layers. Nat. Commun. 15, 2696 (2024).

    Google Scholar 

  22. Zenhausern, F., Martin, Y. & Wickramasinghe, H. K. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science 269, 1083–5 (1995).

    Google Scholar 

  23. Kawata, S. & Inouye, Y. Scanning probe optical microscopy using a metallic probe tip. Ultramicroscopy 57, 313–317 (1995).

    Google Scholar 

  24. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

    Google Scholar 

  25. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. Ser. A, Math. Phys. Eng. Sci. 362, 787–805 (2004).

    Google Scholar 

  26. Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1–24 (2019).

    Google Scholar 

  27. Hillenbrand, R., Abate, Y., Liu, M., Chen, X. & Basov, D. N. Visible-to-THz near-field nanoscopy. Nat. Rev. Mater. 10, 285–310 (2025).

    Google Scholar 

  28. Shah, K. et al. X-ray imaging with PbI2-based a-Si:H flat panel detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 458, 140–147 (2001).

    Google Scholar 

  29. Shah, K. et al. Lead iodide optical detectors for gamma ray spectroscopy. IEEE Trans. Nucl. Sci. 44, 448–450 (1997).

    Google Scholar 

  30. Zizlsperger, M. et al. In situ nanoscopy of single-grain nanomorphology and ultrafast carrier dynamics in metal halide perovskites. Nat. Photonics 18, 975–981 (2024).

    Google Scholar 

  31. Hieulle, J. et al. Understanding and decoupling the role of wavelength and defects in light-induced degradation of metal-halide perovskites. Energy Environ. Sci. 17, 284–295 (2024).

    Google Scholar 

  32. Chen, Y. et al. Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl. Mater. Interfaces 11, 44101–44108 (2019).

    Google Scholar 

  33. Rothmann, M. U. et al. Atomic-scale microstructure of metal halide perovskite. Science 370, eabb5940 (2020).

    Google Scholar 

  34. Mon, J.-P. Spectres de vibrations de quelques cristaux d’iodures métalliques à structure lamellaire. Comptes Rendus 262B, 493–495 (1966).

    Google Scholar 

  35. Carabatos, C. Etude expérimentale et théorique de la diffusion Raman de CdI2 et PbI2. Comptes Rendus 272B, 465–468 (1971).

    Google Scholar 

  36. Grisel, A. & Schmid, P. Polytypism and lattice vibrations of PbI2. Phys. Stat. Sol. b 73, 587–591 (1976).

    Google Scholar 

  37. Lucovsky, G., White, R. M., Liang, W., Zallen, R. & Schmid, P. The lattice polarizability of PbI2. Solid State Commun. 18, 811–814 (1976).

    Google Scholar 

  38. Chang, Y.-C. & James, R. B. Phonon dispersion and polar-optical scattering in 2H PbI2. Phys. Rev. B 55, 8219–8225 (1997).

    Google Scholar 

  39. Nakashima, S. Raman study of polytypism in vapor-grown PbI2. Solid State Commun. 16, 1059–1062 (1975).

    Google Scholar 

  40. Khilji, M. Y., Sherman, W. F. & Wilkinson, G. R. Raman study of three polytypes of PbI2. J. Raman Spectrosc. 13, 127–133 (1982).

    Google Scholar 

  41. Lucovsky, G. & White, R. M. Optical-phonon anisotropies in layered crystals. Il Nuovo Cimento B 38, 290–300 (1977).

    Google Scholar 

  42. Pauling, L. The Nature of Chemical Bond 1st edn (Cornell University Press, 1960).

  43. Ashcroft, N. W. & Mermin, D. Solid State Physics 1st edn (Brooks Cole, 1976).

  44. Walter, B. et al. Terahertz near-field imaging using batch-fabricated cantilevers with 70 μm long tips. In Paper presented at the 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 01–06 September 2019 (IEEE, 2019).

  45. Thomas, L. et al. Imaging of thz photonic modes by scattering scanning near-field optical microscopy. ACS Appl. Mater. Interfaces 14, 32608–32617 (2022).

    Google Scholar 

  46. Feres, F. H. et al. Dipole modelling for a robust description of subdiffractional polariton waves. Nanoscale 11, 21218–21226 (2019).

    Google Scholar 

  47. Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017).

  48. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics 9, 674–678 (2015).

    Google Scholar 

  49. Duan, J. et al. Launching phonon polaritons by natural boron nitride wrinkles with modifiable dispersion by dielectric environments. Adv. Mater. 1702494, 1–8 (2017).

    Google Scholar 

  50. Maia, F. C. B. et al. Anisotropic flow control and gate modulation of hybrid phonon-polaritons. Nano Lett. 19, 708–715 (2019).

    Google Scholar 

  51. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Google Scholar 

  52. Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Google Scholar 

  53. Zhang, J. et al. Low-temperature heteroepitaxy of 2D PbI2/graphene for large-area flexible photodetectors. Adv. Mater. 30, 1803194 (2018).

    Google Scholar 

  54. Zheng, W. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 6, 1802204 (2019).

    Google Scholar 

  55. Poudyal, S. et al. Room temperature, twist angle independent, momentum direct interlayer excitons in van der Waals heterostructures with wide spectral tunability. Nano Lett. 24, 9575–9582 (2024).

    Google Scholar 

  56. Lu, G. et al. Launching and manipulation of higher-order in-plane hyperbolic phonon polaritons in low-dimensional heterostructures. Adv. Mater. 35, 2300301 (2023).

    Google Scholar 

  57. Chen, N. et al. Boundary-induced excitation of higher-order hyperbolic phonon polaritons. Nat. Photonics 19, 1225–1232 (2025).

    Google Scholar 

  58. Slavich, A. et al. Multifunctional van der Waals PdSe2 for light detection, guiding and modulation. Nat. Commun. 16, 9201 (2025).

    Google Scholar 

Download references

Acknowledgements

The authors thank O. Lancry (HORIBA) for the acquisition of the Raman spectra, H. Hassani (attocube systems GmbH) for the assistance with the s-SNOM TDS experiments, T. Reck, J. Hesler (VDI Inc.) for their precious help concerning the Schottky diode detection, and C. Boyaval (IEMN) for performing SEM imaging. This work benefited from the financial support of the Agence Nationale de la Recherche projects QUICKTERA (ANR-22-CE09-0018, J.-F.L. and S.E.), HYPSTER (ANR-20-CE42-0016, M.F., B.W., R.P., T.H., C.N.S., J.-F.L., and S.E.), NANOFUTUR (ANR-21-ESRE-0012, M.F.), and TRAPIST (ANR-21-CE24-0011, M.W., C.N.S., and J.-F.L.). T.H. and R.P. thank the ERC-2022-COG grant TUSCany #101089040 for the support. R.O.F. and J.-F.L. acknowledge FAPESP (processes 2022/14245-4 and 2024/09159-7). F.H.F. and R.O.F. acknowledge the FAPESP post-doc project process 2023/09839-5. R.O.F. acknowledges FAPESP Young Investigator process 2019/14019-7 and CNPq grants 309946/2021-2, 300197/2025-0. The authors also thank CPER P4S and CPER Wavetech@hdf and the RENATECH network.

Author information

Authors and Affiliations

  1. Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN - Institut d’électronique de Microélectronique et de Nanotechnologie, F-59000, Lille, France

    Cristiane N. Santos, Théo Hannotte, Romain Peretti, Mathias Vanwolleghem, Sophie Eliet, Marc Faucher & Jean-François Lampin

  2. Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil

    Flávio H. Feres & Raul O. Freitas

  3. CNRS, National Institute of Applied Sciences of Lyon (INSA Lyon), Ecole Centrale de Lyon (ECL), Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR CNRS 5270, Lyon, France

    Romain Peretti

  4. Vmicro SAS, Lille, France

    Benjamin Walter & Marc Faucher

  5. attocube systems GmbH, Haar, Germany

    Adrian Cernescu

Authors
  1. Cristiane N. Santos
    View author publications

    Search author on:PubMed Google Scholar

  2. Flávio H. Feres
    View author publications

    Search author on:PubMed Google Scholar

  3. Théo Hannotte
    View author publications

    Search author on:PubMed Google Scholar

  4. Romain Peretti
    View author publications

    Search author on:PubMed Google Scholar

  5. Mathias Vanwolleghem
    View author publications

    Search author on:PubMed Google Scholar

  6. Sophie Eliet
    View author publications

    Search author on:PubMed Google Scholar

  7. Benjamin Walter
    View author publications

    Search author on:PubMed Google Scholar

  8. Marc Faucher
    View author publications

    Search author on:PubMed Google Scholar

  9. Adrian Cernescu
    View author publications

    Search author on:PubMed Google Scholar

  10. Raul O. Freitas
    View author publications

    Search author on:PubMed Google Scholar

  11. Jean-François Lampin
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.-F.L. proposed and synthesized the material. C.N.S., R.O.F., and J.-F.L. conducted the s-SNOM experiments at IEMN. R.O.F., J.-F.L., and A.C. carried out the s-SNOM TDS measurements at Attocube. C.N.S., M.V., and F.H.F. provided the dispersion curves. F.H.F. performed the real-space polariton wave simulations. C.N.S. and F.H.F. extracted key polariton parameters from the experiments. T.H., S.E., and R.P. conducted the far-field TDS measurements and analysis. B.W. and M.F. developed the long s-SNOM tips. C.N.S., R.O.F., and J.-F.L. co-wrote the manuscript. R.O.F. and J.-F.L. supervised the project. All authors contributed to the discussion of results and the review of the manuscript.

Corresponding authors

Correspondence to Cristiane N. Santos, Raul O. Freitas or Jean-François Lampin.

Ethics declarations

Competing interests

B.W. and M.F. are cofounders of Vmicro SAS, a company producing AFM and s-SNOM probes. Special probes designed and fabricated by the company were used in this study. This does not compromise the objectivity, integrity, and value of this publication. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jiahua Duan and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, C.N., Feres, F.H., Hannotte, T. et al. High quality-factor terahertz phonon-polaritons in layered lead iodide. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69027-6

Download citation

  • Received: 26 September 2025

  • Accepted: 23 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69027-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing