Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Hierarchical design and scalable production of radiative cooling film featuring multispectral camouflage
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

Hierarchical design and scalable production of radiative cooling film featuring multispectral camouflage

  • Yi Jiang1,2,3,4,5 na1,
  • Banghai Wang1,2,3,4,5 na1,
  • Yang An6,7,8 na1,
  • Tianji Liu6,7,8,
  • Rui Qin9,10,
  • Dong Zhu1,2,3,4,5,
  • Min Zhang  ORCID: orcid.org/0009-0009-8131-19706,7,8,
  • Zipeng Chen1,2,3,4,5,
  • Zhengwei Yang1,2,3,4,5,
  • Wei Li  ORCID: orcid.org/0000-0002-2227-94316,7,8,
  • Qiang Li  ORCID: orcid.org/0000-0001-9344-66829,10,
  • Peng Chen  ORCID: orcid.org/0000-0003-3559-83591,2,3,4,5,
  • Yanqing Lu  ORCID: orcid.org/0000-0001-6151-85571,2,3,4,5,
  • Jia Zhu  ORCID: orcid.org/0000-0002-2871-43691,2,3,4,5 &
  • …
  • Bin Zhu  ORCID: orcid.org/0000-0002-0466-76921,2,3,4,5 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electronic devices
  • Organic molecules in materials science
  • Polymers

Abstract

Various outdoor scenarios demand both temperature control and self-protection from environment, which are often contradictory from the optical perspective, thus inspiring many material designs on multispectral camouflage and radiative cooling performance. However, these methods on the basis of one-dimensional photonic crystals or meta-surfaces always rely on stringent fabrication and may result in strong angular dependence. Here, we demonstrate an aluminum-polyamide 66 metal-based polymer bilayer thin film through hierarchical design at both the molecular and microscale levels and scalable production, enabling camouflage in infrared (3-5 μm and 8-14 μm) and laser (10.6 μm) bands with efficient radiative cooling in the non-atmospheric window (5-8 μm and 14-20 μm) while possessing weak angular dependence between −60° to 60°. Furthermore, our films can be tailored with specific emissivity and color to balance camouflage and cooling across diverse environments. This work provides a scalable, low-cost radiative cooling polymer film, advancing practical solutions for multispectral camouflage.

Data availability

All data are available in the main text or the Supplementary Information and can be available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    Google Scholar 

  2. Fan, S. & Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photonics 16, 182–190 (2022).

    Google Scholar 

  3. Stevens, M. & Merilaita, S. Animal camouflage: current issues and new perspectives. Philos. Trans. R. Soc. B 364, 423–427 (2009).

    Google Scholar 

  4. Stevens, M. & Ruxton, G. D. The key role of behaviour in animal camouflage. Biol. Rev. 94, 116–134 (2019).

    Google Scholar 

  5. Teyssier, J., Saenko, S. V., van der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015).

  6. Xu, C., Stiubianu, G. T. & Gorodetsky, A. A. Adaptive infrared-reflecting systems inspired by cephalopods. Science 359, 1495–1500 (2018).

    Google Scholar 

  7. Cuthill, I. Camouflage. J. Zool. 308, 75–92 (2019).

  8. Wu, R. et al. Spectrally engineered textile for radiative cooling against urban heat islands. Science 384, 1203–1212 (2024).

    Google Scholar 

  9. Lin, K. et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382, 691–697 (2023).

    Google Scholar 

  10. Zhao, X. et al. A solution-processed radiative cooling glass. Science 382, 684–691 (2023).

    Google Scholar 

  11. Cao, N. N. et al. Challenges to materials for local glacier conservation. Nat. Water 3, 251–255 (2025).

    Google Scholar 

  12. Zhang, J. H. et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 13, 5839 (2022).

    Google Scholar 

  13. Li, D. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158 (2021).

    Google Scholar 

  14. Ding, Z. et al. Iridescent daytime radiative cooling with no absorption peaks in the visible range. Small 18, 2202400 (2022).

    Google Scholar 

  15. Zeng, S. et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021).

    Google Scholar 

  16. Wu, X. et al. A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15, 815 (2024).

    Google Scholar 

  17. Hu, R. et al. Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10, 1903921 (2020).

    Google Scholar 

  18. Du, X., Li, J., Zhu, B. & Zhu, J. Designing hierarchical structures for innovative cooling textile. Nano Res. 17, 9202–9224 (2024).

    Google Scholar 

  19. Shi, Y. et al. A novel multi-dimensional structure of graphene-decorated composite foam for excellent stealth performance in microwave and infrared frequency bands. J. Mater. Chem. A 10, 7705–7717 (2022).

    Google Scholar 

  20. Tu, R., Liu, X.-H., Li, Z. & Jiang, Y. Energy performance analysis on telecommunication base station. Energy Build. 43, 315–325 (2011).

    Google Scholar 

  21. Zhang, L., Meng, X., Liu, F., Xu, L. & Long, E. Effect of retro-reflective materials on temperature environment in tents. Case Stud. Therm. Eng. 9, 122–127 (2017).

    Google Scholar 

  22. Zhang, Y. et al. A waste textiles-based multilayer composite fabric with superior electromagnetic shielding, infrared stealth and flame retardance for military applications. Chem. Eng. J. 471, 144679 (2023).

    Google Scholar 

  23. Ma, H. et al. Double-sided functional infrared camouflage flexible composite fabric for thermal management. Ceram. Int. 49, 16422–16432 (2023).

    Google Scholar 

  24. Cui, G. et al. Freestanding graphene fabric film for flexible infrared camouflage. Adv. Sci. 9, 2105004 (2022).

    Google Scholar 

  25. Gade, R. & Moeslund, T. B. Thermal cameras and applications: a survey. Mach. Vis. Appl. 25, 245–262 (2014).

    Google Scholar 

  26. Kaushal, H. & Kaddoum, G. Applications of lasers for tactical military operations. IEEE Access 5, 20736–20753 (2017).

    Google Scholar 

  27. Chandra, S., Franklin, D., Cozart, J., Safaei, A. & Chanda, D. Adaptive multispectral infrared camouflage. ACS Photonics 5, 4513–4519 (2018).

    Google Scholar 

  28. Fang, S. et al. Self-assembled skin-like metamaterials for dual-band camouflage. Sci. Adv. 10, eadl1896 (2024).

    Google Scholar 

  29. Lin, Z. et al. Flexible meta-tape with wide gamut, low lightness and low infrared emissivity for visible-infrared camouflage. Adv. Mater. 11, 2410336 (2024).

    Google Scholar 

  30. Woo, H. K. et al. Visibly transparent and infrared reflective coatings for personal thermal management and thermal camouflage. Adv. Funct. Mater. 32, 2201432 (2022).

    Google Scholar 

  31. Kang, Q., Li, D., Wang, W., Guo, K. & Guo, Z. Multiband tunable thermal camouflage compatible with laser camouflage based on GST plasmonic metamaterial. J. Phys. D Appl. Phys. 55, 065103 (2021).

    Google Scholar 

  32. Huang, J. et al. Large-area and flexible plasmonic metasurface for laser-infrared compatible camouflage. Laser Photon. Rev. 17, 2200616 (2023).

    Google Scholar 

  33. Kim, J., Park, C. & Hahn, J. W. Metal-semiconductor-metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range. Adv. Opt. Mater. 10, 2101930 (2022).

    Google Scholar 

  34. Pikul, J. H. et al. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 358, 210–214 (2017).

    Google Scholar 

  35. Zhu, H. et al. High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 9, 60 (2020).

    Google Scholar 

  36. Pan, M. et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy 69, 104449 (2020).

    Google Scholar 

  37. Lim, J. S. et al. Multiresonant selective emitter with enhanced thermal management for infrared camouflage. ACS Appl. Mater. Interfaces 16, 15416–15425 (2024).

    Google Scholar 

  38. Huang, L. et al. Multiband camouflage design with thermal management. Photonics Res. 11, 839–851 (2023).

    Google Scholar 

  39. Kang, Q., Guo, K. & Guo, Z. A tunable infrared emitter based on phase-changing material GST for visible-infrared compatible camouflage with thermal management. Phys. Chem. Chem. Phys. 25, 27668–27676 (2023).

    Google Scholar 

  40. Zhou, P. et al. Visible-infrared camouflage with efficient thermal management based on surface morphology regulation. Opt. Laser Technol. 176, 110985 (2024).

    Google Scholar 

  41. Xi, W. et al. Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nat. Commun. 14, 4694 (2023).

    Google Scholar 

  42. Qin, B., Zhu, Y., Zhou, Y., Qiu, M. & Li, Q. Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci. Appl. 12, 246 (2023).

    Google Scholar 

  43. Zhu, H. et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12, 1805 (2021).

    Google Scholar 

  44. Jiang, X. et al. Implementing of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics 12, 1891–1902 (2023).

    Google Scholar 

  45. Li, X. et al. Multispectral camouflage nanostructure design based on a particle swarm optimization algorithm for color camouflage, infrared camouflage, laser stealth, and heat dissipation. Opt. Express 31, 44811–44822 (2023).

    Google Scholar 

  46. Luo, M. et al. Tunable infrared detection, radiative cooling and infrared-laser compatible camouflage based on a multifunctional nanostructure with phase-change material. Nanomaterials 12, 2261 (2022).

    Google Scholar 

  47. Feng, X. et al. Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave. Adv. Funct. Mater. 32, 2205547 (2022).

    Google Scholar 

  48. Zhu, B. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16, 1342–1348 (2021).

    Google Scholar 

  49. Aili, A. et al. Selection of polymers with functional groups for daytime radiative cooling. Mater. Today Phys. 10, 100127 (2019).

    Google Scholar 

  50. Griffiths, P. R. Fourier transform infrared spectrometry. Science 222, 297–302 (1983).

    Google Scholar 

  51. Shimanouchi, T. Tables of Molecular Vibrational Frequencies, Vol. 1 (National Bureau of Standards, 1972).

  52. Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts (John Wiley & Sons, 2004).

  53. Bruice, P. Y. Organic Chemistry (Pearson, 2017).

  54. Khan, S. A. et al. Fourier transform infrared spectroscopy: fundamentals and application in functional groups and nanomaterials characterization. In Handbook of Materials Characterization, (ed Sharma, S.) 317–344 (Cham: Springer International Publishing, 2018).

  55. Tong, J. K. et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2, 769–778 (2015).

    Google Scholar 

  56. Chen, Z. et al. An infrared-transparent textile with high drawing processed Nylon 6 nanofibers. Nat. Commun. 16, 2009 (2025).

    Google Scholar 

  57. Holmes, D., Bunn, C. & Smith, D. The crystal structure of polycaproamide: nylon 6. J. Polym. Sci. 17, 159–177 (1955).

    Google Scholar 

  58. Seguela, R. Overview and critical survey of polyamide6 structural habits: misconceptions and controversies. J. Polym. Sci. 58, 2971–3003 (2020).

    Google Scholar 

  59. Ma, Y., Zhou, T., Su, G., Li, Y. & Zhang, A. Understanding the crystallization behavior of polyamide 6/polyamide 66 alloys from the perspective of hydrogen bonds: projection moving-window 2D correlation FTIR spectroscopy and the enthalpy. RSC Adv. 6, 87405–87415 (2016).

    Google Scholar 

  60. Zhang, G., Li, Y. & Yan, D. Polymorphism in nylon-11/montmorillonite nanocomposite. J. Polym. Sci. Pt. B Polym. Phys. 42, 253–259 (2004).

    Google Scholar 

  61. Ma, N. et al. Crystal transition and thermal behavior of Nylon 12. e-Polymers 20, 346–352 (2020).

    Google Scholar 

  62. Vasanthan, N. & Salem, D. Infrared spectroscopic characterization of oriented polyamide 66: band assignment and crystallinity measurement. J. Polym. Sci. Pt. B Polym. Phys. 38, 516–524 (2000).

    Google Scholar 

  63. Huang, Y. et al. Infrared camouflage utilizing ultrathin flexible large-scale high-temperature-tolerant Lambertian surfaces. Laser Photonics Rev. 15, 2000391 (2021).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the micro-fabrication center of the National Laboratory of Solid State Microstructures (NLSSM) for technical support. J.Z. acknowledges the support from the XPLORER PRIZE. W.L. acknowledges the support from the New Cornerstone Science Foundation through the XPLORER PRIZE. This work was jointly supported by the National Key Research and Development Programme of China (2022YFA1404704 and 2020YFA0406104), National Natural Science Foundation of China (52372197, 51925204, 52002168, T2525033, 62134009, 62121005), Natural Science Foundation of Jiangsu Province (BK20231540 and BK20243009), Excellent Research Programme of Nanjing University (ZYJH005), research foundation of Frontiers Science Center for Critical Earth Material Cycling (14380214), the Fundamental Research Funds for the Central Universities (021314380184, 021314380208, 021314380190, 021314380140 and 021314380150), and State Key Laboratory of New Textile Materials and Advanced Processing Technologies (Wuhan Textile University, No. FZ2022011).

Author information

Author notes
  1. These authors contributed equally: Yi Jiang, Banghai Wang, Yang An.

Authors and Affiliations

  1. National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, China

    Yi Jiang, Banghai Wang, Dong Zhu, Zipeng Chen, Zhengwei Yang, Peng Chen, Yanqing Lu, Jia Zhu & Bin Zhu

  2. College of Engineering and Applied Sciences, Nanjing University, Nanjing, China

    Yi Jiang, Banghai Wang, Dong Zhu, Zipeng Chen, Zhengwei Yang, Peng Chen, Yanqing Lu, Jia Zhu & Bin Zhu

  3. Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China

    Yi Jiang, Banghai Wang, Dong Zhu, Zipeng Chen, Zhengwei Yang, Peng Chen, Yanqing Lu, Jia Zhu & Bin Zhu

  4. Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China

    Yi Jiang, Banghai Wang, Dong Zhu, Zipeng Chen, Zhengwei Yang, Peng Chen, Yanqing Lu, Jia Zhu & Bin Zhu

  5. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China

    Yi Jiang, Banghai Wang, Dong Zhu, Zipeng Chen, Zhengwei Yang, Peng Chen, Yanqing Lu, Jia Zhu & Bin Zhu

  6. GPL Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China

    Yang An, Tianji Liu, Min Zhang & Wei Li

  7. Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China

    Yang An, Tianji Liu, Min Zhang & Wei Li

  8. Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China

    Yang An, Tianji Liu, Min Zhang & Wei Li

  9. State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, China

    Rui Qin & Qiang Li

  10. College of Optical Science and Engineering, Zhejiang University, Hangzhou, China

    Rui Qin & Qiang Li

Authors
  1. Yi Jiang
    View author publications

    Search author on:PubMed Google Scholar

  2. Banghai Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Yang An
    View author publications

    Search author on:PubMed Google Scholar

  4. Tianji Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Rui Qin
    View author publications

    Search author on:PubMed Google Scholar

  6. Dong Zhu
    View author publications

    Search author on:PubMed Google Scholar

  7. Min Zhang
    View author publications

    Search author on:PubMed Google Scholar

  8. Zipeng Chen
    View author publications

    Search author on:PubMed Google Scholar

  9. Zhengwei Yang
    View author publications

    Search author on:PubMed Google Scholar

  10. Wei Li
    View author publications

    Search author on:PubMed Google Scholar

  11. Qiang Li
    View author publications

    Search author on:PubMed Google Scholar

  12. Peng Chen
    View author publications

    Search author on:PubMed Google Scholar

  13. Yanqing Lu
    View author publications

    Search author on:PubMed Google Scholar

  14. Jia Zhu
    View author publications

    Search author on:PubMed Google Scholar

  15. Bin Zhu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.J., B.Z., and J.Z. conceived the idea. B.Z., W.L., Q.L., P.C., Y.L., and J.Z. supervised the project. Y.J., B.W., Y.A., T.L., R.Q., D.Z., M.Z., Z.C., and Z.Y. designed and carried out all the experiments. Y.J. and T.L. performed the optical modeling. All authors discussed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Wei Li, Yanqing Lu, Jia Zhu or Bin Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Qilong Cheng, Chi Yan TSO, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Wang, B., An, Y. et al. Hierarchical design and scalable production of radiative cooling film featuring multispectral camouflage. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69045-4

Download citation

  • Received: 01 August 2025

  • Accepted: 23 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69045-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing