Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Mosaic partial epidermal reprogramming remodels neighbors and niches to refine skin homeostasis and repair
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

Mosaic partial epidermal reprogramming remodels neighbors and niches to refine skin homeostasis and repair

  • Minjun Kwak  ORCID: orcid.org/0009-0005-1441-185X1 na1,
  • Eunjun Choi  ORCID: orcid.org/0009-0003-9965-57191 na1,
  • Yemin Jo  ORCID: orcid.org/0000-0002-0273-76771 na1,
  • Boa Kim1,
  • Chaeryeong Lim  ORCID: orcid.org/0009-0002-0253-28631,
  • Jooyoung Lim  ORCID: orcid.org/0009-0009-4508-82731,
  • Yoon Ha Choi1,
  • Jung Hyun Lee  ORCID: orcid.org/0000-0002-9219-62442,
  • Kee-Pyo Kim  ORCID: orcid.org/0000-0002-8666-84443,
  • Bon-Kyoung Koo  ORCID: orcid.org/0000-0002-4134-80331,4,
  • Jong Kyoung Kim  ORCID: orcid.org/0000-0002-0257-05471,5 &
  • …
  • Sekyu Choi  ORCID: orcid.org/0000-0003-2928-09421,5,6,7 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Regeneration
  • Reprogramming
  • Skin stem cells
  • Stem-cell niche

Abstract

Adult stem cells and their niches communicate intricately for tissue maintenance and regeneration. However, effectively coordinating these complex interactions is challenging. Here, we demonstrate that transient dedifferentiation of a fraction of epithelial stem cell progenies orchestrates beneficial changes within the entire skin’s cellular networks to favor repair. We achieved this by inducing a mosaic and reversible expression of reprogramming factors (Oct-4, Sox2, Klf4, and c-Myc) in the mouse epidermis. This in vivo partial epidermal reprogramming not only affected the partially reprogrammed cells, but also their microenvironment, including neighboring epithelial cells and T cells, conferring widespread healing characteristics even in the absence of injury. When a wound was introduced, these collective changes accelerated re-epithelialization in both wild-type and a hyperglycemic mouse disease model. Furthermore, the effects extended to dermal healing, leading to reduced scarring and altered angiogenesis. In conclusion, our work reveals that mosaic partial reprogramming of the epidermis influences various cell types within the skin during homeostasis and repair, leading to enhanced cutaneous wound healing.

Data availability

All scRNA-seq data are deposited in the SRA database and are publicly available under accession code PRJNA1139235. All other data supporting the findings of this study are provided in the Source data. Source data are provided with this paper.

Code availability

All original codes generated during scRNA-seq analysis are available at the following GitHub repository: https://github.com/CB-postech/scRNA-seq_mouse_Epi-iOSKM.

References

  1. Arwert, E. N., Hoste, E. & Watt, F. M. Epithelial stem cells, wound healing and cancer. Nat. Rev. Cancer 12, 170–180 (2012).

    Google Scholar 

  2. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Google Scholar 

  3. Kumar, A., Godwin, J. W., Gates, P. B., Garza-Garcia, A. A. & Brockes, J. P. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318, 772–777 (2007).

    Google Scholar 

  4. Martin, P. Wound healing-aiming for perfect skin regeneration. Science 276, 75–81 (1997).

    Google Scholar 

  5. Plikus, M. V. et al. Epithelial stem cells and implications for wound repair. Semin. Cell Dev. Biol. 23, 946–953 (2012).

    Google Scholar 

  6. Aragona, M. et al. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat. Commun. 8, 14684 (2017).

    Google Scholar 

  7. Saxena, S., Vekaria, H., Sullivan, P. G. & Seifert, A. W. Connective tissue fibroblasts from highly regenerative mammals are refractory to ROS-induced cellular senescence. Nat. Commun. 10, 4400 (2019).

    Google Scholar 

  8. Mesa, K. R., Rompolas, P. & Greco, V. The Dynamic Duo: Niche/Stem Cell Interdependency. Stem Cell Rep. 4, 961–966 (2015).

    Google Scholar 

  9. Xin, T., Greco, V. & Myung, P. Hardwiring stem cell communication through tissue structure. Cell 164, 1212–1225 (2016).

    Google Scholar 

  10. Park, S. et al. Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nat. Cell Biol. 19, 155–163 (2017).

    Google Scholar 

  11. Xue, M. & Jackson, C. J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care 4, 119–136 (2015).

    Google Scholar 

  12. Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).

    Google Scholar 

  13. Mack, K. L. et al. Allele-specific expression reveals genetic drivers of tissue regeneration in mice. Cell Stem Cell 30, 1368–1381.e1366 (2023).

    Google Scholar 

  14. Ring, N. A. R. et al. The p-rpS6-zone delineates wounding responses and the healing process. Dev. Cell 58, 981–992 e986 (2023).

    Google Scholar 

  15. Doeser, M. C., Scholer, H. R. & Wu, G. Reduction of fibrosis and scar formation by partial reprogramming in vivo. Stem Cells 36, 1216–1225 (2018).

    Google Scholar 

  16. Reynolds, L. E. et al. Accelerated re-epithelialization in beta3-integrin-deficient- mice is associated with enhanced TGF-beta1 signaling. Nat. Med. 11, 167–174 (2005).

    Google Scholar 

  17. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Google Scholar 

  18. Rais, Y. et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502, 65–70 (2013).

    Google Scholar 

  19. Maza, I. et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat. Biotechnol. 33, 769–774 (2015).

    Google Scholar 

  20. Abad, M. et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502, 340–345 (2013).

    Google Scholar 

  21. Ohnishi, K. et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156, 663–677 (2014).

    Google Scholar 

  22. Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e1712 (2016).

    Google Scholar 

  23. Browder, K. C. et al. In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat. Aging 2, 243–253 (2022).

    Google Scholar 

  24. Ha, J. et al. Intermediate cells of in vitro cellular reprogramming and in vivo tissue regeneration require desmoplakin. Sci. Adv. 8, eabk1239 (2022).

    Google Scholar 

  25. Yang, J. H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326.e327 (2023).

    Google Scholar 

  26. Rodriguez-Matellan, A., Alcazar, N., Hernandez, F., Serrano, M. & Avila, J. In vivo reprogramming ameliorates aging features in dentate gyrus cells and improves memory in mice. Stem Cell Rep. 15, 1056–1066 (2020).

    Google Scholar 

  27. Chondronasiou, D. et al. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 21, e13578 (2022).

    Google Scholar 

  28. Wang, C. et al. In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nat. Commun. 12, 3094 (2021).

    Google Scholar 

  29. Hishida, T. et al. In vivo partial cellular reprogramming enhances liver plasticity and regeneration. Cell Rep. 39, 110730 (2022).

    Google Scholar 

  30. Kim, J. et al. Partial in vivo reprogramming enables injury-free intestinal regeneration via autonomous Ptgs1 induction. Sci. Adv. 9, eadi8454 (2023).

    Google Scholar 

  31. Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020).

    Google Scholar 

  32. Chen, Y. et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science 373, 1537–1540 (2021).

    Google Scholar 

  33. Elbaz, J. et al. Highly efficient reprogrammable mouse lines with integrated reporters to track the route to pluripotency. Proc. Natl. Acad. Sci. USA 119, e2207824119 (2022).

    Google Scholar 

  34. Ichijo, R. et al. Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration. Nat. Commun. 8, 508 (2017).

    Google Scholar 

  35. Zhang, Y. V., White, B. S., Shalloway, D. I. & Tumbar, T. Stem cell dynamics in mouse hair follicles: a story from cell division counting and single cell lineage tracing. Cell Cycle 9, 1504–1510 (2010).

    Google Scholar 

  36. Mascre, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257–262 (2012).

    Google Scholar 

  37. Wang, S. et al. Single cell transcriptomics of human epidermis identifies basal stem cell transition states. Nat. Commun. 11, 4239 (2020).

    Google Scholar 

  38. Cao, X. et al. RIPK4 promotes epidermal differentiation through phase separation and activation of LATS1/2. Dev. Cell 60, 2761–2776.e2711 (2025).

  39. Haensel, D. et al. Defining epidermal basal cell states during skin homeostasis and wound healing using single-cell transcriptomics. Cell Rep. 30, 3932–3947 e3936 (2020).

    Google Scholar 

  40. Zhulyn, O. et al. Evolutionarily divergent mTOR remodels translatome for tissue regeneration. Nature 620, 163–171 (2023).

    Google Scholar 

  41. Greenhalgh, D. G. The role of apoptosis in wound healing. Int. J. Biochem. Cell Biol. 30, 1019–1030 (1998).

    Google Scholar 

  42. Paladini, R. D., Takahashi, K., Bravo, N. S. & Coulombe, P. A. Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. J. Cell Biol. 132, 381–397 (1996).

    Google Scholar 

  43. Lim, C., Lim, J. & Choi, S. Wound-induced hair follicle neogenesis as a promising approach for hair regeneration. Mol. Cells 46, 573–578 (2023).

    Google Scholar 

  44. Hong, W. X. et al. The role of hypoxia-inducible factor in wound healing. Adv. Wound Care 3, 390–399 (2014).

    Google Scholar 

  45. Liu, S. et al. A tissue injury sensing and repair pathway distinct from host pathogen defense. Cell 186, 2127–2143.e2122 (2023).

    Google Scholar 

  46. Koh, T. J. & DiPietro, L. A. Inflammation and wound healing: the role of the macrophage. Expert Rev. Mol. Med. 13, e23 (2011).

    Google Scholar 

  47. Keyes, B. E. et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin. Cell 167, 1323–1338.e1314 (2016).

    Google Scholar 

  48. Lin, Y. et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3beta/CTNNB1 signaling pathway. Sci. Rep. 5, 8997 (2015).

    Google Scholar 

  49. Liu, Y. et al. Pan-cancer analysis on the role of PIK3R1 and PIK3R2 in human tumors. Sci. Rep. 12, 5924 (2022).

    Google Scholar 

  50. Welsh, N., Makeeva, N. & Welsh, M. Overexpression of the Shb SH2 domain-protein in insulin-producing cells leads to altered signaling through the IRS-1 and IRS-2 proteins. Mol. Med. 8, 695–704 (2002).

    Google Scholar 

  51. Holmqvist, K. et al. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J. Biol. Chem. 279, 22267–22275 (2004).

    Google Scholar 

  52. Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun. 9, 20 (2018).

    Google Scholar 

  53. Ersahin, T., Tuncbag, N. & Cetin-Atalay, R. The PI3K/AKT/mTOR interactive pathway. Mol. Biosyst. 11, 1946–1954 (2015).

    Google Scholar 

  54. Zhang, X., Tang, N., Hadden, T. J. & Rishi, A. K. Akt, FoxO and regulation of apoptosis. Biochim Biophys. Acta 1813, 1978–1986 (2011).

    Google Scholar 

  55. Hannenhalli, S. & Kaestner, K. H. The evolution of Fox genes and their role in development and disease. Nat. Rev. Genet. 10, 233–240 (2009).

    Google Scholar 

  56. Gharbi, S. I. et al. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem. J. 404, 15–21 (2007).

    Google Scholar 

  57. Agarwal, S., Mirzoeva, S., Readhead, B., Dudley, J. T. & Budunova, I. PI3K inhibitors protect against glucocorticoid-induced skin atrophy. EBioMedicine 41, 526–537 (2019).

    Google Scholar 

  58. Squarize, C. H., Castilho, R. M., Bugge, T. H. & Gutkind, J. S. Accelerated wound healing by mTOR activation in genetically defined mouse models. PLoS ONE 5, e10643 (2010).

    Google Scholar 

  59. van Lengerich, B., Agnew, C., Puchner, E. M., Huang, B. & Jura, N. EGF and NRG induce phosphorylation of HER3/ERBB3 by EGFR using distinct oligomeric mechanisms. Proc. Natl. Acad. Sci. USA 114, E2836–E2845 (2017).

    Google Scholar 

  60. El-Rayes, B. F. & LoRusso, P. M. Targeting the epidermal growth factor receptor. Br. J. Cancer 91, 418–424 (2004).

    Google Scholar 

  61. Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H. & Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen. 16, 585–601 (2008).

    Google Scholar 

  62. Gallini, S. et al. Injury prevents Ras mutant cell expansion in mosaic skin. Nature 619, 167–175 (2023).

    Google Scholar 

  63. Gibbs, S. et al. Epidermal growth factor and keratinocyte growth factor differentially regulate epidermal migration, growth, and differentiation. Wound Repair Regen. 8, 192–203 (2000).

    Google Scholar 

  64. Zhong, H. et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60, 1541–1545 (2000).

    Google Scholar 

  65. Peng, X. H. et al. Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J. Biol. Chem. 281, 25903–25914 (2006).

    Google Scholar 

  66. Ma, S., Rao, L., Freedberg, I. M. & Blumenberg, M. Transcriptional control of K5, K6, K14, and K17 keratin genes by AP-1 and NF-kappaB family members. Gene Expr. 6, 361–370 (1997).

    Google Scholar 

  67. Chung, B. M., Murray, C. I., Van Eyk, J. E. & Coulombe, P. A. Identification of novel interaction between annexin A2 and keratin 17: evidence for reciprocal regulation. J. Biol. Chem. 287, 7573–7581 (2012).

    Google Scholar 

  68. Fuchs, E. & Raghavan, S. Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet. 3, 199–209 (2002).

    Google Scholar 

  69. Chedid, M., Rubin, J. S., Csaky, K. G. & Aaronson, S. A. Regulation of keratinocyte growth factor gene expression by interleukin 1. J. Biol. Chem. 269, 10753–10757 (1994).

    Google Scholar 

  70. MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Google Scholar 

  71. Sigal, M. et al. Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 548, 451–455 (2017).

    Google Scholar 

  72. Sunkara, R. R. et al. SFRP1 in skin tumor initiation and cancer stem cell regulation with potential implications in epithelial cancers. Stem Cell Rep. 14, 271–284 (2020).

    Google Scholar 

  73. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Google Scholar 

  74. Liu, J. et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl. Acad. Sci. USA 110, 20224–20229 (2013).

    Google Scholar 

  75. Jameson, J. et al. A role for skin gammadelta T cells in wound repair. Science 296, 747–749 (2002).

    Google Scholar 

  76. Ramirez, K., Witherden, D. A. & Havran, W. L. All hands on DE(T)C: Epithelial-resident gammadelta T cells respond to tissue injury. Cell Immunol. 296, 57–61 (2015).

    Google Scholar 

  77. Boothby, I. C., Cohen, J. N. & Rosenblum, M. D. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. Sci. Immunol. 5, eaaz9631 (2020).

  78. Sharp, L. L., Jameson, J. M., Cauvi, G. & Havran, W. L. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat. Immunol. 6, 73–79 (2005).

    Google Scholar 

  79. Konieczny, P. et al. Interleukin-17 governs hypoxic adaptation of injured epithelium. Science 377, eabg9302 (2022).

    Google Scholar 

  80. Witherden, D. A. et al. The CD100 receptor interacts with its plexin B2 ligand to regulate epidermal gammadelta T cell function. Immunity 37, 314–325 (2012).

    Google Scholar 

  81. Cai, Y., Fleming, C. & Yan, J. New insights of T cells in the pathogenesis of psoriasis. Cell Mol. Immunol. 9, 302–309 (2012).

    Google Scholar 

  82. Sutton, C. E., Mielke, L. A. & Mills, K. H. IL-17-producing gammadelta T cells and innate lymphoid cells. Eur. J. Immunol. 42, 2221–2231 (2012).

    Google Scholar 

  83. Islam, S. A. et al. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ T(H)2 cells. Nat. Immunol. 12, 167–177 (2011).

    Google Scholar 

  84. Hedrick, M. N. et al. CCR6 is required for IL-23-induced psoriasis-like inflammation in mice. J. Clin. Investig. 119, 2317–2329 (2009).

    Google Scholar 

  85. Mabuchi, T. et al. CCR6 is required for epidermal trafficking of gammadelta-T cells in an IL-23-induced model of psoriasiform dermatitis. J. Investig. Dermatol. 133, 164–171 (2013).

    Google Scholar 

  86. Richmond, J. M., Strassner, J. P., Essien, K. I. & Harris, J. E. T-cell positioning by chemokines in autoimmune skin diseases. Immunol. Rev. 289, 186–204 (2019).

    Google Scholar 

  87. Yates, C. C. et al. Delayed reepithelialization and basement membrane regeneration after wounding in mice lacking CXCR3. Wound Repair Regen. 17, 34–41 (2009).

    Google Scholar 

  88. Sutton, C. E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    Google Scholar 

  89. Alam, M. S. et al. TNF plays a crucial role in inflammation by signaling via T cell TNFR2. Proc. Natl. Acad. Sci. USA 118, e2109972118 (2021).

  90. Kennedy-Crispin, M. et al. Human keratinocytes’ response to injury upregulates CCL20 and other genes linking innate and adaptive immunity. J. Investig. Dermatol. 132, 105–113 (2012).

    Google Scholar 

  91. Martin, B., Hirota, K., Cua, D. J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    Google Scholar 

  92. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Google Scholar 

  93. Yamashiro, Y. et al. Ectopic coexpression of keratin 8 and 18 promotes invasion of transformed keratinocytes and is induced in patients with cutaneous squamous cell carcinoma. Biochem. Biophys. Res. Commun. 399, 365–372 (2010).

    Google Scholar 

  94. Lowes, M. A., Suarez-Farinas, M. & Krueger, J. G. Immunology of psoriasis. Annu. Rev. Immunol. 32, 227–255 (2014).

    Google Scholar 

  95. Depianto, D., Kerns, M. L., Dlugosz, A. A. & Coulombe, P. A. Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin. Nat. Genet. 42, 910–914 (2010).

    Google Scholar 

  96. Subudhi, I. et al. Metabolic coordination between skin epithelium and type 17 immunity sustains chronic skin inflammation. Immunity 57, 1665–1680.e7 (2024).

  97. Krueger, J. et al. Tofacitinib attenuates pathologic immune pathways in patients with psoriasis: a randomized phase 2 study. J. Allergy Clin. Immunol. 137, 1079–1090 (2016).

    Google Scholar 

  98. Zomer, H. D. & Trentin, A. G. Skin wound healing in humans and mice: Challenges in translational research. J. Dermatol. Sci. 90, 3–12 (2018).

    Google Scholar 

  99. Sidgwick, G. P. & Bayat, A. Extracellular matrix molecules implicated in hypertrophic and keloid scarring. J. Eur. Acad. Dermatol. Venereol. 26, 141–152 (2012).

    Google Scholar 

  100. Xie, Z. et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 9, 9351–9359 (2013).

    Google Scholar 

  101. Lintel, H. et al. Transdermal deferoxamine administration improves excisional wound healing in chronically irradiated murine skin. J. Transl. Med. 20, 274 (2022).

    Google Scholar 

  102. Holm Nielsen, S. et al. Exploring the role of extracellular matrix proteins to develop biomarkers of plaque vulnerability and outcome. J. Intern. Med. 287, 493–513 (2020).

    Google Scholar 

  103. Tang, V. W. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol. Biol. Cell 31, 1823–1834 (2020).

    Google Scholar 

  104. Rodrigues, M., Kosaric, N., Bonham, C. A. & Gurtner, G. C. Wound healing: a cellular perspective. Physiol. Rev. 99, 665–706 (2019).

    Google Scholar 

  105. Botusan, I. R. et al. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc. Natl. Acad. Sci. USA 105, 19426–19431 (2008).

    Google Scholar 

  106. Xu, J., Liu, X., Zhao, F., Zhang, Y. & Wang, Z. HIF1alpha overexpression enhances diabetic wound closure in high glucose and low oxygen conditions by promoting adipose-derived stem cell paracrine function and survival. Stem Cell Res. Ther. 11, 148 (2020).

    Google Scholar 

  107. Li, G. et al. A small molecule HIF-1alpha stabilizer that accelerates diabetic wound healing. Nat. Commun. 12, 3363 (2021).

    Google Scholar 

  108. DiPietro, L. A. Angiogenesis and scar formation in healing wounds. Curr. Opin. Rheumatol. 25, 87–91 (2013).

    Google Scholar 

  109. DiPietro, L. A. Angiogenesis and wound repair: when enough is enough. J. Leukoc. Biol. 100, 979–984 (2016).

    Google Scholar 

  110. Wilgus, T. A., Ferreira, A. M., Oberyszyn, T. M., Bergdall, V. K. & Dipietro, L. A. Regulation of scar formation by vascular endothelial growth factor. Lab. Investig. 88, 579–590 (2008).

    Google Scholar 

  111. Diao, J. S., Xia, W. S. & Guo, S. Z. Bevacizumab: a potential agent for prevention and treatment of hypertrophic scar. Burns 36, 1136–1137 (2010).

    Google Scholar 

  112. Ma, J. et al. Single-cell RNA-Seq analysis of diabetic wound macrophages in STZ-induced mice. J. Cell Commun. Signal 17, 103–120 (2023).

    Google Scholar 

  113. Avitabile, S. et al. Interleukin-22 promotes wound repair in diabetes by improving keratinocyte pro-healing functions. J. Investig. Dermatol. 135, 2862–2870 (2015).

    Google Scholar 

  114. Sun, Y., Song, L., Zhang, Y., Wang, H. & Dong, X. Adipose stem cells from type 2 diabetic mice exhibit therapeutic potential in wound healing. Stem Cell Res. Ther. 11, 298 (2020).

    Google Scholar 

  115. Okizaki, S. et al. Vascular endothelial growth factor receptor type 1 signaling prevents delayed wound healing in diabetes by attenuating the production of IL-1beta by recruited macrophages. Am. J. Pathol. 186, 1481–1498 (2016).

    Google Scholar 

  116. Saidak, Z. et al. Wnt/beta-catenin signaling mediates osteoblast differentiation triggered by peptide-induced alpha5beta1 integrin priming in mesenchymal skeletal cells. J. Biol. Chem. 290, 6903–6912 (2015).

    Google Scholar 

  117. Mirotsou, M. et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl. Acad. Sci. USA 104, 1643–1648 (2007).

    Google Scholar 

  118. Kasashima, H. et al. Stromal SOX2 upregulation promotes tumorigenesis through the generation of a SFRP1/2-expressing cancer-associated fibroblast population. Dev. Cell 56, 95–110.e110 (2021).

    Google Scholar 

  119. Sharma, M., Chuang, W. W. & Sun, Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J. Biol. Chem. 277, 30935–30941 (2002).

    Google Scholar 

  120. He, Y. et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target Ther. 6, 425 (2021).

    Google Scholar 

  121. Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med 9, 677–684 (2003).

    Google Scholar 

  122. Forsythe, J. A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell Biol. 16, 4604–4613 (1996).

    Google Scholar 

  123. Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl. Acad. Sci. USA 96, 8551–8556 (1999).

    Google Scholar 

  124. Lee, D., Lim, J., Woo, K. C. & Kim, K. T. Piperonylic acid stimulates keratinocyte growth and survival by activating epidermal growth factor receptor (EGFR). Sci. Rep. 8, 162 (2018).

    Google Scholar 

  125. Landini, G., Martinelli, G. & Piccinini, F. Colour deconvolution: stain unmixing in histological imaging. Bioinformatics 37, 1485–1487 (2021).

    Google Scholar 

  126. Mascharak, S. et al. Preventing engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science 372, eaba2374 (2021).

  127. Mascharak, S. et al. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell 29, 315–327.e316 (2022).

    Google Scholar 

  128. Ye, L., Wang, Z., Li, Z., Lv, C. & Man, M. Q. Validation of GPSkin Barrier((R)) for assessing epidermal permeability barrier function and stratum corneum hydration in humans. Ski. Res. Technol. 25, 25–29 (2019).

    Google Scholar 

  129. Deeds, M. C. et al. Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab. Anim. 45, 131–140 (2011).

    Google Scholar 

  130. Le May, C. et al. Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc. Natl. Acad. Sci. USA 103, 9232–9237 (2006).

    Google Scholar 

  131. Graham, M. L., Janecek, J. L., Kittredge, J. A., Hering, B. J. & Schuurman, H. J. The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp. Med. 61, 356–360 (2011).

    Google Scholar 

  132. Lee, D. et al. Diabetic sensory neuropathy and insulin resistance are induced by loss of UCHL1 in Drosophila. Nat. Commun. 15, 468 (2024).

    Google Scholar 

  133. McCarthy, D. J., Campbell, K. R., Lun, A. T. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

    Google Scholar 

  134. Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res 5, 2122 (2016).

    Google Scholar 

  135. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Google Scholar 

  136. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    Google Scholar 

  137. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    Google Scholar 

  138. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Google Scholar 

  139. Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 37, 451–460 (2019).

    Google Scholar 

  140. Kang, M. et al. Improved reconstruction of single-cell developmental potential with CytoTRACE 2. Nat. Methods 22, 2258–2263 (2025).

  141. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Google Scholar 

  142. Kolberg, L. et al. g:Profiler-interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 51, W207–W212 (2023).

    Google Scholar 

  143. Szklarczyk, D. et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646 (2023).

    Google Scholar 

  144. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank the members of Choi Laboratory for their helpful discussions and comments on this manuscript. This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (NRF-RS-2025-00560319, NRF-RS-2022-NR072134, NRF-RS-2022-NR067309, NRF-RS-2023-00223298, and NRF-RS-2024-00433755 to S.C.; NRF-RS-2024-00426031 to J.K.K.; NRF-RS-2023-00221112 to J.K.K. and S.C.). S.C. has been supported by a POSCO Science Fellowship from the POSCO TJ Park Foundation. M.K., E.C., Y.J., B.K., C.L., J.L., J.K.K. and S.C. were supported by a BK21 FOUR Research Fellowship funded by the Ministry of Education, Republic of Korea.

Author information

Author notes
  1. These authors contributed equally: Minjun Kwak, Eunjun Choi, Yemin Jo.

Authors and Affiliations

  1. Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

    Minjun Kwak, Eunjun Choi, Yemin Jo, Boa Kim, Chaeryeong Lim, Jooyoung Lim, Yoon Ha Choi, Bon-Kyoung Koo, Jong Kyoung Kim & Sekyu Choi

  2. Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, USA

    Jung Hyun Lee

  3. Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

    Kee-Pyo Kim

  4. Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, Republic of Korea

    Bon-Kyoung Koo

  5. Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon, Republic of Korea

    Jong Kyoung Kim & Sekyu Choi

  6. Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

    Sekyu Choi

  7. School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

    Sekyu Choi

Authors
  1. Minjun Kwak
    View author publications

    Search author on:PubMed Google Scholar

  2. Eunjun Choi
    View author publications

    Search author on:PubMed Google Scholar

  3. Yemin Jo
    View author publications

    Search author on:PubMed Google Scholar

  4. Boa Kim
    View author publications

    Search author on:PubMed Google Scholar

  5. Chaeryeong Lim
    View author publications

    Search author on:PubMed Google Scholar

  6. Jooyoung Lim
    View author publications

    Search author on:PubMed Google Scholar

  7. Yoon Ha Choi
    View author publications

    Search author on:PubMed Google Scholar

  8. Jung Hyun Lee
    View author publications

    Search author on:PubMed Google Scholar

  9. Kee-Pyo Kim
    View author publications

    Search author on:PubMed Google Scholar

  10. Bon-Kyoung Koo
    View author publications

    Search author on:PubMed Google Scholar

  11. Jong Kyoung Kim
    View author publications

    Search author on:PubMed Google Scholar

  12. Sekyu Choi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.C., M.K., and Y.J. conceived the project. M.K., Y.J., and B.K. performed most of the experiments and quantified and analyzed the data. E.C. and J.K.K. performed the bioinformatic analysis. Y.H.C. generated RNA-seq libraries. C.L. performed flow cytometry. J.L. performed splinted full-thickness cutaneous wounding. J.H.L, K.-P.K., and B.-K.K. provided intellectual input. J.K.K. and S.C. acquired funding. M.K., Y.J., J.K.K., and S.C. wrote the manuscript, with discussion and feedback from all co-authors.

Corresponding authors

Correspondence to Jong Kyoung Kim or Sekyu Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, M., Choi, E., Jo, Y. et al. Mosaic partial epidermal reprogramming remodels neighbors and niches to refine skin homeostasis and repair. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69047-2

Download citation

  • Received: 26 March 2025

  • Accepted: 20 January 2026

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s41467-026-69047-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing