Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Regulating interfacial water for oxygen transfer to benzylic C(sp3)–H bonds via Ni-activated tungsten-oxygen covalency
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Regulating interfacial water for oxygen transfer to benzylic C(sp3)–H bonds via Ni-activated tungsten-oxygen covalency

  • Bing-Liang Leng  ORCID: orcid.org/0000-0002-9738-81811,
  • Xiu Lin  ORCID: orcid.org/0000-0002-3049-13441,
  • Hou-Yan Dong1,
  • Qi-Yuan Li1,
  • Shi-Nan Zhang  ORCID: orcid.org/0000-0001-8138-36101,
  • Jie-Sheng Chen  ORCID: orcid.org/0000-0003-1233-77461 &
  • …
  • Xin-Hao Li  ORCID: orcid.org/0000-0003-1643-46311 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electrocatalysis
  • Heterogeneous catalysis

Abstract

Recent studies on the electrocatalytic oxygen transfer from water to organic compounds have gained significant attention due to their sustainability and selectivity. However, the direct coactivation of inert hydrocarbons and water typically requires high oxidation potentials, leading to oxygen evolution reactions and low Faradaic efficiencies. Herein, a Ni-activated tungsten-oxygen covalency anode is designed for the efficient oxygen transfer from water to benzylic C(sp3)–H bonds via a Ni-regulated interfacial water structure between the anode and electrolyte. Both experimental and theoretical results reveal the critical role of W–O covalency sites with Ni-heteroatoms for boosting efficient oxygen transfer via breaking the dense interfacial hydrogen bond network and inhibiting the undesired oxygen evolution reactions, facilitating the coactivation of oxygen species and C(sp3)–H bonds. Thus, a Faradaic efficiency of > 56% in a water-involved system has been achieved. This work provides important insight into designing electrocatalytic systems for inert C–H oxidation.

Data availability

All the relevant data are included in this paper and its Supplementary Information. The data that support the findings of this study are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Haber, J. in Handbook of Heterogeneous Catalysis. 3359–3384 (John Wiley & Sons, Ltd, 2008).

  2. Zheng, R., Liu, Z., Wang, Y., Xie, Z. & He, M. The future of green energy and chemicals: Rational design of catalysis routes. Joule 6, 1148–1159 (2022).

    Google Scholar 

  3. Leow, W. R. et al. Electrified hydrocarbon-to-oxygenates coupled to hydrogen evolution for efficient greenhouse gas mitigation. Nat. Commun. 14, 1954 (2023).

    Google Scholar 

  4. Cullen, L., Meng, F., Lupton, R. & Cullen, J. M. Reducing uncertainties in greenhouse gas emissions from chemical production. Nat. Chem. Eng. 1, 311–322 (2024).

    Google Scholar 

  5. Qin, Y. et al. Adjacent-ligand tuning of atomically precise Cu−Pd sites enables efficient methanol electrooxidation with a CO-free pathway. Angew. Chem. Int. Ed. 64, e202420817 (2025).

    Google Scholar 

  6. Shi, R. et al. Electrochemical oxidation of concentrated benzyl alcohol to high-purity benzaldehyde via superwetting organic-solid-water interfaces. Sci. Adv. 10, eadn0947 (2024).

    Google Scholar 

  7. Tian, B. et al. Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation. Nat. Commun. 15, 10145 (2024).

    Google Scholar 

  8. Li, Y. et al. Accelerated selective electrooxidation of ethylene glycol and inhibition of C–C dissociation facilitated by surficial oxidation on hollowed PtAg nanostructures via in situ dynamic evolution. JACS Au 5, 714–726 (2025).

    Google Scholar 

  9. Shi, K., Si, D., Teng, X., Chen, L. & Shi, J. Pd/NiMoO4/NF electrocatalysts for the efficient and ultra-stable synthesis and electrolyte-assisted extraction of glycolate. Nat. Commun. 15, 2899 (2024).

    Google Scholar 

  10. Zhang, N. et al. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem. Int. Ed. 58, 15895–15903 (2019).

    Google Scholar 

  11. Gu, K. et al. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem. Int. Ed. 60, 20253–20258 (2021).

    Google Scholar 

  12. Pei, A. et al. Enhanced electrocatalytic biomass oxidation at low voltage by Ni2+-O-Pd interfaces. Nat. Commun. 15, 5899 (2024).

    Google Scholar 

  13. Zhang, P. et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew. Chem. Int. Ed. 58, 9155–9159 (2019).

    Google Scholar 

  14. Chi, H. et al. Electrosynthesis of ethylene glycol from biomass glycerol. Nat. Commun. 16, 979 (2025).

    Google Scholar 

  15. Sun, Y. et al. Highly selective electrocatalytic oxidation of benzyl C–H using water as safe and sustainable oxygen source. Green Chem 22, 7543–7551 (2020).

    Google Scholar 

  16. Li, Z. et al. Electrocatalytic ethylbenzene valorization using a polyoxometalate@covalent triazine framework with water as the oxygen source. Chem. Commun. 57, 7430–7433 (2021).

    Google Scholar 

  17. Seo, B. et al. Electrochemical oxidation of toluene with controlled selectivity: The effect of carbon anode. Appl. Surf. Sci. 534, 147517 (2020).

    Google Scholar 

  18. Liu, C., Chen, F., Zhao, B.-H., Wu, Y. & Zhang, B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat. Rev. Chem. 8, 277–293 (2024).

    Google Scholar 

  19. Leng, B.-L., Lin, X., Chen, J.-S. & Li, X.-H. Electrocatalytic water-to-oxygenates conversion: redox-mediated versus direct oxygen transfer. Chem. Commun. 60, 7523–7534 (2024).

    Google Scholar 

  20. Kawamata, Y. et al. Scalable, electrochemical oxidation of unactivated C–H bonds. J. Am. Chem. Soc. 139, 7448–7451 (2017).

    Google Scholar 

  21. Lin, X. et al. Direct oxygen transfer from H2O to cyclooctene over electron-rich RuO2 nanocrystals for epoxidation and hydrogen evolution. Angew. Chem. Int. Ed. 61, e202207108 (2022).

    Google Scholar 

  22. Dorchies, F. et al. Controlling the hydrophilicity of the electrochemical interface to modulate the oxygen-atom transfer in electrocatalytic epoxidation reactions. J. Am. Chem. Soc. 144, 22734–22746 (2022).

    Google Scholar 

  23. Chung, M., Jin, K., Zeng, J. S., Ton, T. N. & Manthiram, K. Tuning single-atom dopants on manganese oxide for selective electrocatalytic cyclooctene epoxidation. J. Am. Chem. Soc. 144, 17416–17422 (2022).

    Google Scholar 

  24. Chung, M. et al. Direct propylene epoxidation via water activation over Pd-Pt electrocatalysts. Science 383, 49–55 (2024).

    Google Scholar 

  25. Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).

    Google Scholar 

  26. Gao, Y. et al. Membrane-free electrosynthesis of epichlorohydrins mediated by bromine radicals over nanotips. J. Am. Chem. Soc. 146, 714–722 (2024).

    Google Scholar 

  27. Yao, J. et al. Interfacial hydrogen-bond network regulation tuned water dissociation enables selective chlorination of alkenes. J. Am. Chem. Soc. 147, 8024–8031 (2025).

    Google Scholar 

  28. Yan, M., Yang, R., Liu, C., Gao, Y. & Zhang, B. In situ probing the anion-widened anodic electric double layer for enhanced faradaic efficiency of chlorine-involved reactions. J. Am. Chem. Soc. 147, 6698–6706 (2025).

    Google Scholar 

  29. Lin, X. et al. Electrochemical activation of C–H by electron-deficient W2C nanocrystals for simultaneous alkoxylation and hydrogen evolution. Nat. Commun. 12, 3882 (2021).

    Google Scholar 

  30. Pol, S. V., Pol, V. G. & Gedanken, A. Synthesis of WC nanotubes. Adv. Mater. 18, 2023–2027 (2006).

    Google Scholar 

  31. Yang, B. et al. Optimization of hydrogen adsorption on W2C by late transition metal doping for efficient hydrogen evolution catalysis. Mater. Today Nano 23, 100350 (2023).

    Google Scholar 

  32. Yan, J. et al. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 10, 2149 (2019).

    Google Scholar 

  33. Goto, Y. et al. Formation of Ni3C nanocrystals by thermolysis of nickel acetylacetonate in oleylamine: characterization using hard X-ray photoelectron spectroscopy. Chem. Mater. 20, 4156–4160 (2008).

    Google Scholar 

  34. Bayer, B. C. et al. In situ observations of phase transitions in metastable nickel (carbide)/carbon nanocomposites. J. Phys. Chem. C 120, 22571–22584 (2016).

    Google Scholar 

  35. Cui, Y. et al. Tungsten oxide/carbide surface heterojunction catalyst with high hydrogen evolution activity. ACS Energy Lett 5, 3560–3568 (2020).

    Google Scholar 

  36. Li, H. et al. Operando unveiling of hydrogen spillover mechanisms on tungsten oxide surfaces. J. Am. Chem. Soc. 147, 6472–6479 (2025).

    Google Scholar 

  37. Xu, K. et al. Catalytically efficient Ni-NiOx-Y2O3 interface for medium temperature water-gas shift reaction. Nat. Commun. 13, 2443 (2022).

    Google Scholar 

  38. Mansour, A. N. Characterization of NiO by XPS. Surf. Sci. Spectra 3, 231–238 (1994).

    Google Scholar 

  39. Duan, M. et al. Synergizing inter and intraband transitions in defective tungsten oxide for efficient photocatalytic alcohol dehydration to alkenes. JACS Au 2, 1160–1168 (2022).

    Google Scholar 

  40. Ahmadi, M. et al. WO3 nano-ribbons: their phase transformation from tungstite (WO3·H2O) to tungsten oxide (WO3). J. Mater. Sci. 49, 5899–5909 (2014).

    Google Scholar 

  41. Liu, F., Chen, X., Xia, Q., Tian, L. & Chen, X. Ultrathin tungsten oxide nanowires: oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties. RSC Adv. 5, 77423–77428 (2015).

    Google Scholar 

  42. Dupin, J.-C., Gonbeau, D., Vinatier, P. & Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000).

    Google Scholar 

  43. Chen, Z. et al. Eutectoid-structured WC/W2C heterostructures: a new platform for long-term alkaline hydrogen evolution reaction at low overpotentials. Nano Energy 68, 104335 (2020).

    Google Scholar 

  44. Gabrusenoks, J., Veispals, A., Von Czarnowski, A. & Meiwes-Broer, K.-H. Infrared and Raman spectroscopy of WO3 and CdWO4. Electrochimica Acta 46, 2229–2231 (2001).

    Google Scholar 

  45. Daniel, M. F., Desbat, B. & Lassegues, C. Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J. Solid State Chem. 67, 235–247 (1987).

    Google Scholar 

  46. Gomez, A., Piskulich, Z. A., Thompson, W. H. & Laage, D. Water diffusion proceeds via a hydrogen-bond jump exchange mechanism. J. Phys. Chem. Lett. 13, 4660–4666 (2022).

    Google Scholar 

  47. Sun, Q. et al. Understanding hydrogen electrocatalysis by probing the hydrogen-bond network of water at the electrified Pt–solution interface. Nat. Energy 8, 859–869 (2023).

    Google Scholar 

  48. Yang, C., Fontaine, O., Tarascon, J.-M. & Grimaud, A. Chemical recognition of active oxygen species on the surface of oxygen evolution reaction electrocatalysts. Angew. Chem. Int. Ed. 56, 8652–8656 (2017).

    Google Scholar 

  49. Wang, H. et al. Breaking hydrogen bond network enhances oxygenic photosynthesis of photosystem II. Fundam. Res. S2667325825001190 https://doi.org/10.1016/j.fmre.2025.03.011 (2025).

  50. Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).

    Google Scholar 

  51. Chen, X. et al. Tuning the hydrogen bond network inside the Helmholtz plane for industrial hydrogen evolution. Adv. Funct. Mater. 35, 2503701 (2025).

    Google Scholar 

  52. Klassen, B., Aroca, R. & Nazri, G. A. Lithium perchlorate:  Ab initio study of the structural and spectral changes associated with ion pairing. J. Phys. Chem. 100, 9334–9338 (1996).

    Google Scholar 

  53. Xuan, X., Wang, J., Tang, J., Qu, G. & Lu, J. A vibrational spectroscopic study of ion solvation in lithium perchlorate/propylene carbonate electrolyte. Phys. Chem. Liq. 39, 327–342 (2001).

    Google Scholar 

  54. Li, Y. et al. Application of distribution of relaxation times method in polymer electrolyte membrane water electrolyzer. Chem. Eng. J. 451, 138327 (2023).

    Google Scholar 

  55. Giesbrecht, P. K. & Freund, M. S. Investigation of water oxidation at IrO2 electrodes in Nafion-based membrane electrode assemblies using impedance spectroscopy and distribution of relaxation times analysis. J. Phys. Chem. C 126, 17844–17861 (2022).

    Google Scholar 

  56. Ran, P. et al. Disordered Ru–O6 octahedrons for efficient and selective electro-oxidation of sulfide to sulfoxide via boosted surface oxygen kinetics. J. Am. Chem. Soc. 147, 26254–26266 (2025).

    Google Scholar 

  57. Zaki, M. I., Mekhemer, G. A. H., Fouad, N. E. & Rabee, A. I. M. Structure–acidity correlation of supported tungsten(VI)-oxo-species: FT-IR and TPD studies of adsorbed pyridine and catalytic decomposition of 2-propanol. Appl. Surf. Sci. 308, 380–387 (2014).

    Google Scholar 

  58. Fishman, A. I., Klimovitskii, A. E., Skvortsov, A. I. & Remizov, A. B. The vibrational spectra and conformations of ethylbenzene. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 60, 843–853 (2004).

    Google Scholar 

  59. Wang, J., Qiu, X., Wang, Y., Zhang, S. & Zhang, B. Vibrational spectra and quantum calculations of ethylbenzene. Chin. J. Chem. Phys. 25, 526–532 (2012).

    Google Scholar 

  60. Tope, B. B. et al. Catalytic mechanism of the dehydrogenation of ethylbenzene over Fe–Co/Mg(Al)O derived from hydrotalcites. Appl. Catal. Gen. 407, 118–126 (2011).

    Google Scholar 

  61. Kato, S., Iwase, K., Harada, T., Nakanishi, S. & Kamiya, K. Aqueous electrochemical partial oxidation of gaseous ethylbenzene by a ru-modified covalent triazine framework. ACS Appl. Mater. Interfaces 12, 29376–29382 (2020).

    Google Scholar 

  62. Wilsey, M. K. et al. Selective toluene electrooxidation to benzyl alcohol. J. Am. Chem. Soc. 147, 36117–36135 (2025).

    Google Scholar 

  63. Xiong, P. et al. Site-selective electrooxidation of methylarenes to aromatic acetals. Nat. Commun. 11, 2706 (2020).

    Google Scholar 

  64. Ciucci, F. & Chen, C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical Bayesian approach. Electrochimica Acta 167, 439–454 (2015).

    Google Scholar 

  65. Wan, T. H., Saccoccio, M., Chen, C. & Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochimica Acta 184, 483–499 (2015).

    Google Scholar 

  66. Chen, J., Quattrocchi, E., Ciucci, F. & Chen, Y. Charging processes in lithium-oxygen batteries unraveled through the lens of the distribution of relaxation times. Chem 9, 2267–2281 (2023).

    Google Scholar 

  67. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Google Scholar 

  68. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Google Scholar 

  69. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  70. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Google Scholar 

  71. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  72. McGrath, M. J. et al. Toward a Monte Carlo program for simulating vapor–liquid phase equilibria from first principles. Comput. Phys. Commun. 169, 289–294 (2005).

    Google Scholar 

  73. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Google Scholar 

  74. Hartwigsen, C., Goedecker, S. & Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998).

    Google Scholar 

  75. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Google Scholar 

  76. Evans, D. J. & Holian, B. L. The Nose–Hoover thermostat. J. Chem. Phys. 83, 4069–4074 (1985).

    Google Scholar 

  77. Verlet, L. Computer ‘Experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Science and Technology Committee (23XD1421800 for X.-H. L.), Shanghai Shuguang Program (21SG12 for X.-H. L.), State Key Laboratory of Synergistic Chem-Bio Synthesis (sklscbs202551 for X.-H. L.), and Shanghai Municipal Science and Technology Major Project (J.-S. C.).

Author information

Authors and Affiliations

  1. State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China

    Bing-Liang Leng, Xiu Lin, Hou-Yan Dong, Qi-Yuan Li, Shi-Nan Zhang, Jie-Sheng Chen & Xin-Hao Li

Authors
  1. Bing-Liang Leng
    View author publications

    Search author on:PubMed Google Scholar

  2. Xiu Lin
    View author publications

    Search author on:PubMed Google Scholar

  3. Hou-Yan Dong
    View author publications

    Search author on:PubMed Google Scholar

  4. Qi-Yuan Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Shi-Nan Zhang
    View author publications

    Search author on:PubMed Google Scholar

  6. Jie-Sheng Chen
    View author publications

    Search author on:PubMed Google Scholar

  7. Xin-Hao Li
    View author publications

    Search author on:PubMed Google Scholar

Contributions

X.-H. L., B.-L. L., and X. L. designed the experiments. B.-L. L. planned and performed catalyst synthesis, conducted performance tests and analyzed data. B.-L. L. finished the theoretical calculation. D.-H. Y. contributed to the substrate scope section. Q.-Y. L. and S.-N. Z. helped to analyze the theoretical calculation. X.-H. L. and B.-L. L. cowrote the original manuscript. X.-H. L. and J.-S. C. oversaw all the research phases. All of the authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Xin-Hao Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Tiancheng Mu and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Supplementary Data 6

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, BL., Lin, X., Dong, HY. et al. Regulating interfacial water for oxygen transfer to benzylic C(sp3)–H bonds via Ni-activated tungsten-oxygen covalency. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69054-3

Download citation

  • Received: 08 October 2025

  • Accepted: 25 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69054-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing