Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Diketopyrrolopyrrole-based two-dimensional poly(arylene vinylene)s with high charge carrier mobility
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Diketopyrrolopyrrole-based two-dimensional poly(arylene vinylene)s with high charge carrier mobility

  • Ruyan Zhao  ORCID: orcid.org/0000-0002-9289-96951,2 na1,
  • Hongde Yu  ORCID: orcid.org/0000-0002-2576-271X2 na1,
  • Heng Zhang3 na1,
  • Lei Gao3 na1,
  • Arafat Hossain Khan  ORCID: orcid.org/0000-0002-2462-94232,
  • Congxue Liu4,
  • Xiaodong Li  ORCID: orcid.org/0000-0002-9628-329X1,2,
  • Xingyuan Chu2,
  • Yubin Fu  ORCID: orcid.org/0000-0002-2613-394X1,2,
  • Darius Pohl  ORCID: orcid.org/0000-0002-4859-43255,
  • Angelika Wrzesińska-Lashkova6,7,
  • Eike Brunner2,
  • Yana Vaynzof6,7,
  • Hai I. Wang  ORCID: orcid.org/0000-0003-0940-39843,8,
  • Mischa Bonn  ORCID: orcid.org/0000-0001-6851-84533,
  • Thomas Heine  ORCID: orcid.org/0000-0003-2379-62512,
  • Mingchao Wang  ORCID: orcid.org/0000-0001-9979-35034 &
  • …
  • Xinliang Feng  ORCID: orcid.org/0000-0003-3885-27031,2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Conjugated polymers
  • Electronic devices

Abstract

Layered two-dimensional conjugated polymers (2D CPs), or 2D conjugated covalent organic frameworks, are promising semiconductor materials for (opto)electronics and photocatalysis, but their performance is often limited by insufficient in-plane conjugation and poor charge transport. Guided by density functional theory calculations, we report two donor-acceptor-type 2D poly(arylene vinylene)s constructed from thienyl-benzodithiophene and diketopyrrolopyrrole units. These materials are predicted to exhibit strongly dispersive energy bands with ultralow in-plane effective masses (0.036 − 0.159 m0), enabling intrinsic charge mobilities approaching 2000 cm2 V−1 s−1. Solid-state Aldol-type 2D polycondensation yields crystalline materials with optical band gaps as narrow as 1.0 eV. Terahertz spectroscopy reveals long charge carrier scattering times of 76 fs and a high room-temperature mobility of 310 cm2 V−1 s−1, surpassing previously reported linear and 2D CP powder samples. This work highlights donor-acceptor engineering as an effective strategy to enhance charge transport in 2D CPs.

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files. The data generated in this study are provided in the Supplementary Information/Source Data file. Source data are provided with this paper.

References

  1. Qian, C. et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat. Rev. Chem. 6, 881–898 (2022).

    Google Scholar 

  2. Evans, A. M. et al. Two-dimensional polymers and polymerizations. Chem. Rev. 122, 442–564 (2022).

    Google Scholar 

  3. Wang, Z. et al. Electronic and quantum properties of organic two-dimensional crystals. Nat. Rev. Mater. 10, 147–166 (2025).

    Google Scholar 

  4. Xu, S. Q., Richter, M. & Feng, X. L. Vinylene-linked two-dimensional covalent organic frameworks: synthesis and functions. Acc. Mater. Res. 2, 252–265 (2021).

    Google Scholar 

  5. Blatte, D., Ortmann, F. & Bein, T. Photons, excitons, and electrons in covalent organic frameworks. J. Am. Chem. Soc. 146, 32161–32205 (2024).

    Google Scholar 

  6. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    Google Scholar 

  7. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized pi clouds. Nat. Commun. 4, 2736 (2013).

    Google Scholar 

  8. Wang, M. et al. Unveiling electronic properties in metal–phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 141, 16810–16816 (2019).

    Google Scholar 

  9. Zhuang, X. D. et al. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 7, 4176–4181 (2016).

    Google Scholar 

  10. Jin, E. et al. Two-dimensional sp2 carbon–conjugated covalent organic frameworks. Science 357, 673–676 (2017).

    Google Scholar 

  11. Wang, M. et al. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nat. Mater. 22, 880–887 (2023).

    Google Scholar 

  12. Zhao, R. et al. Advances in synthetic strategies for two-dimensional conjugated polymers. Org. Chem. Front. 12, 2457–2480 (2025).

    Google Scholar 

  13. Acharjya, A. et al. Vinylene-linked covalent organic frameworks by base-catalyzed Aldol condensation. Angew. Chem. Int. Ed. 58, 14865–14870 (2019).

    Google Scholar 

  14. Pastoetter, D. L. et al. Synthesis of vinylene-linked two-dimensional conjugated polymers via the Horner-Wadsworth-Emmons reaction. Angew. Chem. Int. Ed. 59, 23620–23625 (2020).

    Google Scholar 

  15. Liu, Y. et al. Vinylene-linked 2D conjugated covalent organic frameworks by Wittig reactions. Angew. Chem. Int. Ed. 61, e202209762 (2022).

    Google Scholar 

  16. Zhou, E. et al. Cyanide-based covalent organic frameworks for enhanced overall photocatalytic hydrogen peroxide production. Angew. Chem. Int. Ed. 63, e202400999 (2024).

    Google Scholar 

  17. Cui, W.-R. et al. Tunable covalent organic framework electrochemiluminescence from non-electroluminescent monomers. Cell Rep. Phys. Sci. 3, 100630 (2022).

    Google Scholar 

  18. Liu, Y. et al. A thiophene backbone enables two-dimensional poly(arylene vinylene)s with high charge carrier mobility. Angew. Chem. Int. Ed. 62, e202305978 (2023).

    Google Scholar 

  19. Fu, Z. et al. A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chem. Sci. 11, 543–550 (2020).

    Google Scholar 

  20. Su, Y. et al. Multi-component synthesis of a buta-1,3-diene-linked covalent organic framework. J. Am. Chem. Soc. 144, 18218–18222 (2022).

    Google Scholar 

  21. Li, S. et al. Fully conjugated donor–acceptor covalent organic frameworks for photocatalytic oxidative amine coupling and thioamide cyclization. ACS Catal. 10, 8717–8726 (2020).

    Google Scholar 

  22. Liu, W. et al. Vinylene-linked donor–acceptor covalent organic polymers with low exciton binding energy for enhanced photocatalytic oxidation of sulfides. J. Mater. Chem. A 13, 786–794 (2025).

    Google Scholar 

  23. Fang, Y. et al. Design and synthesis of broadband absorption covalent organic framework for efficient artificial photocatalytic amine coupling. Nat. Commun. 15, 4856 (2024).

    Google Scholar 

  24. Zhang, Z. et al. Diketopyrrolopyrrole-activated dynamic condensation approach to narrow-band gap vinylene-linked covalent organic frameworks. Angew. Chem. Int. Ed. 64, e202417805 (2024).

    Google Scholar 

  25. Feng, D., Barton, G. & Scott, C. N. Synthesis of 2,5-dibutyl-3,6-dimethyl-1 H,2 H,4 H,5 H-pyrrolo[3,4- c]pyrrole-1,4-dione: a diketopyrrolopyrrole scaffold for the formation of alkenyldiketopyrrolopyrrole compounds. Org. Lett. 21, 1973–1978 (2019).

    Google Scholar 

  26. Lee, S. M. et al. Horizontal-, vertical-, and cross-conjugated small molecules: conjugated pathway-performance correlations along operation mechanisms in ternary non-fullerene organic solar cells. Small 16, e1905309 (2020).

    Google Scholar 

  27. Ye, L. et al. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Acc. Chem. Res. 47, 1595–1603 (2014).

    Google Scholar 

  28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  29. Evans, A. M. et al. Controlled n-doping of naphthalene-diimide-based 2D polymers. Adv. Mater. 34, e2101932 (2022).

    Google Scholar 

  30. Xie, L. S., Skorupskii, G. & Dinca, M. Electrically conductive metal-organic frameworks. Chem. Rev. 120, 8536–8580 (2020).

    Google Scholar 

  31. Bi, S. et al. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. Nat. Commun. 10, 2467 (2019).

    Google Scholar 

  32. Robin Bendall, M. & Gordon, R. E. Depth and refocusing pulses designed for multipulse NMR with surface coils. J. Magn. Reson. 53, 365–385 (1983).

    Google Scholar 

  33. Pelkowski, C. E. et al. Tuning crystallinity and stacking of two-dimensional covalent organic frameworks through side-chain interactions. J. Am. Chem. Soc. 145, 21798–21806 (2023).

    Google Scholar 

  34. Zhao, R. et al. A donor-acceptor-type two-dimensional poly(arylene vinylene) for efficient electron transport and sensitive chemiresistors. Angew. Chem. Int. Ed. 64, e202504302 (2025).

    Google Scholar 

  35. Lu, Y. et al. Tunable charge transport and spin dynamics in two-dimensional conjugated metal-organic frameworks. J. Am. Chem. Soc. 146, 2574–2582 (2024).

    Google Scholar 

  36. Tries, A. et al. Experimental observation of strong exciton effects in graphene nanoribbons. Nano Lett. 20, 2993–3002 (2020).

    Google Scholar 

  37. Dongmin Kang, S. & Jeffrey Snyder, G. Charge-transport model for conducting polymers. Nat. Mater. 16, 252–257 (2017).

    Google Scholar 

  38. Meier, T., Bässler, H. & Köhler, A. The impact of grain boundaries on charge transport in polycrystalline organic field-effect transistors. Adv. Optical Mater. 9, 2100115 (2021).

    Google Scholar 

  39. Xing, G. et al. Nonplanar rhombus and Kagome 2D covalent organic frameworks from distorted aromatics for electrical conduction. J. Am. Chem. Soc. 144, 5042–5050 (2022).

    Google Scholar 

  40. Jin, E. et al. A nanographene-based two-dimensional covalent organic framework as a stable and efficient photocatalyst. Angew. Chem. Int. Ed. 61, e202114059 (2022).

    Google Scholar 

  41. Ghouse, S. et al. Towards single-crystalline two-dimensional poly(arylene vinylene) covalent organic frameworks. Nat. Chem. https://doi.org/10.1038/s41557-025-02048-8 (2026).

  42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  44. Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  45. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Google Scholar 

  46. Chen, Q. et al. Porphyrin-fused graphene nanoribbons. Nat. Chem. 16, 1133–1140 (2024).

    Google Scholar 

  47. Cocker, T. L. et al. Microscopic origin of the Drude-Smith model. Phys. Rev. B 96, 205439 (2017).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (52572196), ERC Grant (T2DCP, No. 819698) and DFG projects (CRC 1415, No. 417590517; SPP 2248, RACOF-MMIS). We appreciate the Materials Processing and Analysis Center at Peking University, and the Analysis and Testing Center of School of Advanced Materials, Peking University Shenzhen Graduate School for assistance with materials characterization. We thank using facilities at the Dresden Center for Nanoanalysis (DCN). The authors acknowledge Mr. Wei Wang for help with conductivity measurement. The authors thank Mr. Tianhao Xue and Prof. Thomas Bein for the measurement of diffuse reflectance spectra. The authors also acknowledge the Centre for Information Services and High Performance Computing (ZIH) at TU Dresden for the provided computational resources.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. These authors contributed equally: Ruyan Zhao, Hongde Yu, Heng Zhang, Lei Gao.

Authors and Affiliations

  1. Max Planck Institute of Microstructure Physics, Halle, Germany

    Ruyan Zhao, Xiaodong Li, Yubin Fu & Xinliang Feng

  2. Faculty of Chemistry and Food Chemistry & Center for Advanced Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany

    Ruyan Zhao, Hongde Yu, Arafat Hossain Khan, Xiaodong Li, Xingyuan Chu, Yubin Fu, Eike Brunner, Thomas Heine & Xinliang Feng

  3. Max Planck Institute for Polymer Research, Mainz, Germany

    Heng Zhang, Lei Gao, Hai I. Wang & Mischa Bonn

  4. State Key Laboratory of Advanced Waterproof Materials & Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, China

    Congxue Liu & Mingchao Wang

  5. Dresden Center for Nanoanalysis (DCN), Technische Universität Dresden, Dresden, Germany

    Darius Pohl

  6. Chair for Emerging Electronic Technologies, Technische Universität Dresden, Dresden, Germany

    Angelika Wrzesińska-Lashkova & Yana Vaynzof

  7. Leibniz Institute for Solid State and Materials Research Dresden, Dresden, Germany

    Angelika Wrzesińska-Lashkova & Yana Vaynzof

  8. Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands

    Hai I. Wang

Authors
  1. Ruyan Zhao
    View author publications

    Search author on:PubMed Google Scholar

  2. Hongde Yu
    View author publications

    Search author on:PubMed Google Scholar

  3. Heng Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Lei Gao
    View author publications

    Search author on:PubMed Google Scholar

  5. Arafat Hossain Khan
    View author publications

    Search author on:PubMed Google Scholar

  6. Congxue Liu
    View author publications

    Search author on:PubMed Google Scholar

  7. Xiaodong Li
    View author publications

    Search author on:PubMed Google Scholar

  8. Xingyuan Chu
    View author publications

    Search author on:PubMed Google Scholar

  9. Yubin Fu
    View author publications

    Search author on:PubMed Google Scholar

  10. Darius Pohl
    View author publications

    Search author on:PubMed Google Scholar

  11. Angelika Wrzesińska-Lashkova
    View author publications

    Search author on:PubMed Google Scholar

  12. Eike Brunner
    View author publications

    Search author on:PubMed Google Scholar

  13. Yana Vaynzof
    View author publications

    Search author on:PubMed Google Scholar

  14. Hai I. Wang
    View author publications

    Search author on:PubMed Google Scholar

  15. Mischa Bonn
    View author publications

    Search author on:PubMed Google Scholar

  16. Thomas Heine
    View author publications

    Search author on:PubMed Google Scholar

  17. Mingchao Wang
    View author publications

    Search author on:PubMed Google Scholar

  18. Xinliang Feng
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.W., R.Z., and X.F. conceived and designed the project. R.Z. synthesized the monomers, prepared the 2D PAVs, and arranged the structural, compositional, and property characterizations. H.Y. and T.H. performed the theoretical calculations of the 2D PAVs. H.Z., L.G., H.-I.W., and M.B. conducted the THz experiments and data analysis. A.H.K. and E.B. conducted the solid-state NMR measurement. C.L., X.L., X.C., and D.P. contributed to the structural characterization of materials. Y.F. contributed to helpful discussions. A.W.-L. and Y.V. performed UPS. R.Z., M.W., and X.F. co-wrote the manuscript with contributions from all co-authors.

Corresponding authors

Correspondence to Ruyan Zhao, Mischa Bonn, Mingchao Wang or Xinliang Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source Data 1

Source Data 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Yu, H., Zhang, H. et al. Diketopyrrolopyrrole-based two-dimensional poly(arylene vinylene)s with high charge carrier mobility. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69061-4

Download citation

  • Received: 04 July 2025

  • Accepted: 26 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69061-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing