Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Constructing scalable hydrophobe–water micro-interfaces for catalyst-free generation of H2O2 via macroporous resins
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 February 2026

Constructing scalable hydrophobe–water micro-interfaces for catalyst-free generation of H2O2 via macroporous resins

  • Jia Gao1,
  • Kai Zhou1,
  • Xiangliang Guo2,
  • Kairong Yang1,
  • Shuying Yang1,
  • Hua Su  ORCID: orcid.org/0000-0002-2524-69853,
  • Zhibing Zhang2 &
  • …
  • Wei Wang  ORCID: orcid.org/0000-0002-4628-17551 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Catalytic mechanisms
  • Chemical physics
  • Sustainability

Abstract

Catalyst-free production of H2O2 at hydrophobe–water micro-interfaces provides a sustainable synthesis route, yet its scalability remains challenging. We demonstrate that hydrophobic macroporous resins (MPRs) can serve as robust, metal-free platforms to construct scalable hydrophobic solid–water interfaces for continuous H2O2 generation, achieving a mass-normalized production rate of H2O2 as ~0.51 μmol gMPR-1 h-1 and eventually ~1 mM-level accumulation of H2O2 after one week’s stirring of the resin suspension under ambient atmosphere. Both macroporosity and hydrophobicity of MPRs are essential for the activity, and scale-up 1000 mL confirms practical feasibility. Mechanistic studies indicate that H2O2 forms predominantly via the oxygen reduction reaction (ORR), optimally at pH 9. This process requires no external light or electrical energy input, exhibits high salt tolerance, and is potentially compatible with renewable power sources. This work exemplifies how porous materials can enable sustainable, scalable chemical synthesis and updates the fundamental understanding of the micro-interface reactivity.

Data availability

All data that support the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Du, Q., Superfine, R., Freysz, E. & Shen, Y. R. Vibrational spectroscopy of water at the vapor/water interface. Phys. Rev. Lett. 70, 2313–2316 (1993).

    Google Scholar 

  2. Björneholm, O. et al. Water at interfaces. Chem. Rev. 116, 7698–7726 (2016).

    Google Scholar 

  3. Ruiz-Lopez, M. F., Francisco, J. S., Martins-Costa, M. T. C. & Anglada, J. M. Molecular reactions at aqueous interfaces. Nat. Rev. Chem. 4, 459–475 (2020).

    Google Scholar 

  4. Shi, L. et al. Water structure and electric fields at the interface of oil droplets. Nature 640, 87–93 (2025).

    Google Scholar 

  5. Pullanchery, S., Kulik, S., Rehl, B., Hassanali, A. & Roke, S. Charge transfer across C–H⋅⋅⋅O hydrogen bonds stabilizes oil droplets in water. Science 374, 1366–1370 (2021).

    Google Scholar 

  6. Xiong, H., Lee, J. K., Zare, R. N. & Min, W. Strong electric field observed at the interface of aqueous microdroplets. J. Phys. Chem. Lett. 11, 7423–7428 (2020).

    Google Scholar 

  7. Xing, D. et al. Capture of hydroxyl radicals by hydronium cations in water microdroplets. Angew. Chem. Int. Ed. 61, e202207587 (2022).

    Google Scholar 

  8. Lee, J. K. et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. Proc. Natl. Acad. Sci. USA 116, 19294–19298 (2019).

    Google Scholar 

  9. Lee, J. K. et al. Condensing water vapor to droplets generates hydrogen peroxide. Proc. Natl. Acad. Sci. USA 117, 30934–30941 (2020).

    Google Scholar 

  10. Mehrgardi, M. A., Mofidfar, M. & Zare, R. N. Sprayed water microdroplets are able to generate hydrogen peroxide spontaneously. J. Am. Chem. Soc. 144, 7606–7609 (2022).

    Google Scholar 

  11. Chen, C. J. & Williams, E. R. Are hydroxyl radicals spontaneously generated in unactivated water droplets? Angew. Chem. Int. Ed. 63, e202407433 (2024).

    Google Scholar 

  12. Eatoo, M. A. & Mishra, H. Disentangling the roles of dissolved oxygen, common salts, and pH on spontaneous hydrogen peroxide production in water: no O₂, no H₂O₂. J. Am. Chem. Soc. 147, 35392–35400 (2025).

    Google Scholar 

  13. Shirley, J. C. et al. Reevaluating anomalous electric fields at the air-water interface: a surface-specific spectroscopic survey. J. Am. Chem. Soc. 147, 46163–46173 (2025).

    Google Scholar 

  14. LaCour, R. A., Heindel, J. P., Zhao, R. & Head-Gordon, T. The role of interfaces and charge for chemical reactivity in microdroplets. J. Am. Chem. Soc. 147, 6299–6317 (2025).

    Google Scholar 

  15. Li, K. et al. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets. Proc. Natl. Acad. Sci. USA 120, e2220228120 (2023).

    Google Scholar 

  16. Angelaki, M., Carreira Mendes Da Silva, Y., Perrier, S. & George, C. Quantification and mechanistic investigation of the spontaneous H₂O₂ generation at the interfaces of salt-containing aqueous droplets. J. Am. Chem. Soc. 146, 8327–8334 (2024).

    Google Scholar 

  17. Heindel, J. P., Hao, H., LaCour, R. A. & Head-Gordon, T. Spontaneous formation of hydrogen peroxide in water microdroplets. J. Phys. Chem. Lett. 13, 10035–10041 (2022).

    Google Scholar 

  18. Hao, H., Leven, I. & Head-Gordon, T. Can electric fields drive chemistry for an aqueous microdroplet? Nat. Commun. 13, 280 (2022).

    Google Scholar 

  19. Chen, X. et al. Hydrocarbon degradation by contact with anoxic water microdroplets. J. Am. Chem. Soc. 145, 21538–21545 (2023).

    Google Scholar 

  20. Xue, L. et al. Catalyst-free oxidation of styrene to styrene oxide using circulating microdroplets in an oxygen atmosphere. J. Am. Chem. Soc. 146, 26909–26915 (2024).

    Google Scholar 

  21. Wei, Z., Li, Y., Cooks, R. G. & Yan, X. Accelerated reaction kinetics in microdroplets: overview and recent developments. Annu. Rev. Phys. Chem. 71, 31–51 (2020).

    Google Scholar 

  22. Vannoy, K. J., Edwards, M. Q., Renault, C. & Dick, J. E. An electrochemical perspective on reaction acceleration in microdroplets. Annu. Rev. Anal. Chem. 17, 149–171 (2024).

    Google Scholar 

  23. Lee, J. K., Samanta, D., Nam, H. G. & Zare, R. N. Spontaneous formation of gold nanostructures in aqueous microdroplets. Nat. Commun. 9, 1562 (2018).

    Google Scholar 

  24. Yuan, X., Zhang, D., Liang, C. & Zhang, X. Spontaneous reduction of transition metal ions by one electron in water microdroplets and the atmospheric implications. J. Am. Chem. Soc. 145, 2800–2805 (2023).

    Google Scholar 

  25. Xia, D. et al. Spontaneous degradation of the “forever chemicals” perfluoroalkyl and polyfluoroalkyl substances (pfass) on water droplet surfaces. J. Am. Chem. Soc. 146, 11266–11271 (2024).

    Google Scholar 

  26. Jiang, Q. et al. Rapid N₂O formation from N₂ on water droplet surfaces. Angew. Chem. Int. Ed. 64, e202421002 (2025).

    Google Scholar 

  27. Li, J., Xia, Y., Song, X., Chen, B. & Zare, R. N. Continuous ammonia synthesis from water and nitrogen via contact electrification. Proc. Natl. Acad. Sci. USA 121, e2318408121 (2024).

    Google Scholar 

  28. Nguyen, D., Lyu, P. & Nguyen, S. C. Experimental and thermodynamic viewpoints on claims of a spontaneous H₂O₂ formation at the air–water interface. J. Phys. Chem. B 127, 2323–2330 (2023).

    Google Scholar 

  29. Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006).

    Google Scholar 

  30. Zhou, K. et al. Deciphering the kinetics of spontaneous generation of H₂O₂ in individual water microdroplets. J. Am. Chem. Soc. 146, 2445–2451 (2024).

    Google Scholar 

  31. Sun, M., Lu, Q., Wang, Z. L. & Huang, B. Understanding contact electrification at liquid-solid interfaces from surface electronic structure. Nat. Commun. 12, 1752 (2021).

    Google Scholar 

  32. Kim, Y., Ding, H. & Zheng, Y. Investigating water/oil interfaces with opto-thermophoresis. Nat. Commun. 13, 3742 (2022).

    Google Scholar 

  33. Lee, K. et al. Microdroplet-mediated radical polymerization. ACS Cent. Sci. 8, 1265–1271 (2022).

    Google Scholar 

  34. Musskopf, N. H., Gallo, A. Jr., Zhang, P., Petry, J. & Mishra, H. The air–water interface of water microdroplets formed by ultrasonication or condensation does not produce H₂O₂. J. Phys. Chem. Lett. 12, 11422–11429 (2021).

    Google Scholar 

  35. Nguyen, D. & Nguyen, S. C. Revisiting the effect of the air–water interface of ultrasonically atomized water microdroplets on H₂O₂ formation. J. Phys. Chem. B 126, 3180–3185 (2022).

    Google Scholar 

  36. Gallo, A. Jr et al. On the formation of hydrogen peroxide in water microdroplets. Chem. Sci. 13, 2574–2583 (2022).

    Google Scholar 

  37. Zhao, J. et al. Contact-electro-catalysis for direct synthesis of H₂O₂ under ambient conditions. Angew. Chem. Int. Ed. 62, e202300604 (2023).

    Google Scholar 

  38. Berbille, A. et al. Mechanism for generating H₂O₂ at water-solid interface by contact-electrification. Adv. Mater. 35, 2304387 (2023).

    Google Scholar 

  39. Lee, K., Bose, S., Song, X., Choi, S. Q. & Zare, R. N. Continuous flow contact electrocatalysis for hydrogen peroxide production. J. Phys. Chem. C 129, 6254–6261 (2025).

    Google Scholar 

  40. Wang, Z., Dong, X., Tang, W. & Wang, Z. L. Contact-electro-catalysis (CEC). Chem. Soc. Rev. 53, 4349–4373 (2024).

    Google Scholar 

  41. Wang, Z. et al. A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials. Nat. Commun. 15, 757 (2024).

    Google Scholar 

  42. Wang, Z. et al. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat. Commun. 13, 130 (2022).

    Google Scholar 

  43. Aiken, G. R., Thurman, E. M., Malcolm, R. L. & Walton, H. F. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution. Anal. Chem. 51, 1799–1803 (1979).

    Google Scholar 

  44. Kim, J., Kim, D., Gwon, Y. J., Lee, K.-W. & Lee, T. S. Removal of sodium dodecylbenzenesulfonate by macroporous adsorbent resins. Materials 11, 1324 (2018).

    Google Scholar 

  45. Shi, C. et al. Preparation of macroporous high adsorbent resin and its application for heavy metal ion removal. ChemistrySelect 6, 9038–9045 (2021).

    Google Scholar 

  46. Zhou, M., Diwu, Z., Panchuk-Voloshina, N. & Haugland, R. P. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal. Biochem. 253, 162–168 (1997).

    Google Scholar 

  47. Kakeshpour, T. & Bax, A. NMR characterization of H₂O₂ hydrogen exchange. J. Magn. Reson. 333, 107092 (2021).

    Google Scholar 

  48. Cassie, A. B. D. & Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–550 (1944).

    Google Scholar 

  49. Whyman, G., Bormashenko, E. & Stein, T. The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008).

    Google Scholar 

  50. Marmur, A., Della Volpe, C., Siboni, S., Amirfazli, A. & Drelich, J. W. Contact angles and wettability: towards common and accurate terminology. Surf. Innov. 5, 3–8 (2017).

    Google Scholar 

  51. Shi, Y. et al. Confined water–encapsulated activated carbon for capturing short-chain perfluoroalkyl and polyfluoroalkyl substances from drinking water. Proc. Natl. Acad. Sci. USA 120, e2219179120 (2023).

    Google Scholar 

  52. Eatoo, M. A. & Mishra, H. Busting the myth of spontaneous formation of H₂O₂ at the air–water interface: contributions of the liquid–solid interface and dissolved oxygen exposed. Chem. Sci. 15, 3093–3103 (2024).

    Google Scholar 

  53. Chen, B. et al. Water–solid contact electrification causes hydrogen peroxide production from hydroxyl radical recombination in sprayed microdroplets. Proc. Natl. Acad. Sci. USA 119, e2209056119 (2022).

    Google Scholar 

  54. Zhou, X., Du, S., Zhang, W. & Zheng, B. Deciphering the mechanism of hydrogen peroxide formation in ultrasound-mediated water-in-oil microdroplets. Chem. Sci. 16, 6450–6457 (2025).

    Google Scholar 

  55. Angelaki, M., d’Erceville, J., Donaldson, D. J. & George, C. pH affects the spontaneous formation of H₂O₂ at the air–water interfaces. J. Am. Chem. Soc. 146, 25889–25893 (2024).

    Google Scholar 

  56. Martins-Costa, M. T. & Ruiz-López, M. F. Probing solvation electrostatics at the air–water interface. Theor. Chem. Acc. 142, 29 (2023).

    Google Scholar 

  57. Gong, K. et al. Revisiting the enhanced chemical reactivity in water microdroplets: the case of a Diels-Alder reaction. J. Am. Chem. Soc. 146, 31585–31596 (2024).

    Google Scholar 

  58. Chen, C. J. & Williams, E. R. A source of the mysterious m/z 36 ions identified: implications for the stability of water and unusual chemistry in microdroplets. ACS Cent. Sci. 11, 622–628 (2025).

    Google Scholar 

  59. Chen, C. J. & Williams, E. R. An alternative explanation for ions put forth as evidence for abundant hydroxyl radicals formed due to the intrinsic electric field at the surface of water droplets. Anal. Chem. 97, 17687–17695 (2025).

    Google Scholar 

  60. Asserghine, A. et al. Dissolved oxygen redox as the source of hydrogen peroxide and hydroxyl radical in sonicated emulsive water microdroplets. J. Am. Chem. Soc. 147, 11851–11858 (2025).

    Google Scholar 

  61. Zhang, N., Wang, J., Ye, J., Zhao, P. & Xiao, M. Oxyalkylation modification as a promising method for preparing low-melting-point agarose. Int. J. Biol. Macromol. 117, 696–703 (2018).

    Google Scholar 

  62. Bowes, B. D. & Lenhoff, A. M. Protein adsorption and transport in dextran-modified ion-exchange media. III. Effects of resin charge density and dextran content on adsorption and intraparticle uptake. J. Chromatogr. A 1218, 7180–7188 (2011).

    Google Scholar 

  63. Li, Y., Pham, J. Q., Johnston, K. P. & Green, P. F. Contact angle of water on polystyrene thin films: effects of CO2 environment and film thickness. Langmuir 23, 9785–9793 (2007).

    Google Scholar 

  64. Brown, P. S. & Bhushan, B. Mechanically durable liquid-impregnated honeycomb surfaces. Sci. Rep. 7, 6083 (2017).

    Google Scholar 

  65. Bardestani, R., Patience, G. S. & Kaliaguine, S. Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 97, 2781–2791 (2019).

    Google Scholar 

  66. Allanas, E., Rahman, A., Arlin, E. & Prasetyanto, E. A. Study surface area and pore size distribution on synthetic zeolite X using BET, BJH and DFT methods. J. Phys. Conf. Ser. 2019, 012094 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program (No. 2024FYA1509600, W.W.) and the National Natural Science Foundation of China (Nos. 22474060, H.S.; 22327803, W.W.).

Author information

Authors and Affiliations

  1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University, Nanjing, China

    Jia Gao, Kai Zhou, Kairong Yang, Shuying Yang & Wei Wang

  2. Key Laboratory of Mesoscopic Chemistry of the Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China

    Xiangliang Guo & Zhibing Zhang

  3. School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China

    Hua Su

Authors
  1. Jia Gao
    View author publications

    Search author on:PubMed Google Scholar

  2. Kai Zhou
    View author publications

    Search author on:PubMed Google Scholar

  3. Xiangliang Guo
    View author publications

    Search author on:PubMed Google Scholar

  4. Kairong Yang
    View author publications

    Search author on:PubMed Google Scholar

  5. Shuying Yang
    View author publications

    Search author on:PubMed Google Scholar

  6. Hua Su
    View author publications

    Search author on:PubMed Google Scholar

  7. Zhibing Zhang
    View author publications

    Search author on:PubMed Google Scholar

  8. Wei Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

All authors have approved the final version of the manuscript. H.S., Z.B.Z., and W.W. designed the project. H.S., J.G., and W.W. wrote the paper. J.G., K.Z., and H.S. carried out most of the experiments and analyzed the data. X.L.G., K.R.Y., and S.Y.Y. participated in discussing the manuscript. W.W. conceived and supervised the project.

Corresponding authors

Correspondence to Hua Su, Zhibing Zhang or Wei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Himanshu Mishra, who co-reviewed with Muzzamil Eatoo, Ryan Sullivan, and Richard Zare for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Zhou, K., Guo, X. et al. Constructing scalable hydrophobe–water micro-interfaces for catalyst-free generation of H2O2 via macroporous resins. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69085-w

Download citation

  • Received: 22 April 2025

  • Accepted: 26 January 2026

  • Published: 12 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69085-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing