Abstract
Superelasticity – exhibiting either Hookean (linear) or non-Hookean (nonlinear) recoverable strain beyond 2% – has been realized in distinct material systems such as metallic glasses, shape memory alloys, strain glass alloys and Gum metals, enabling diverse technological applications. Here we demonstrate that, through compositional tuning in a high-entropy alloy, the elastic behavior can be continuously and reversibly modulated between Hookean superelasticity, non-Hookean superelasticity with an ultrahigh recoverable strain of ~8%, and back to the Hookean regime. By combining atomic-scale strain mapping and extensive first-principles calculations, we reveal that this tunability is governed by a hidden strain order, arising from frustrated crystallization of two competing phases. As a result, local lattice distortion arises, producing a heterogeneous strain landscape that modulates phase stability, phase transformation propensity, and elastic response. Our findings establish a materials design strategy for programming Hookean and non-Hookean elasticity behavior on demand, with promising applications in microelectromechanical systems, high-precision actuators, and adaptive damping devices.
Data availability
The data generated in this study are provided in the Supplementary Information/Source Data file. Source data are provided with this paper. All the raw data relevant to the study are available from the corresponding author upon request. Source data are provided with this paper.
References
Xu, S. et al. Non-Hookean large elastic deformation in bulk crystalline metals. Nat. Commun. 13, https://doi.org/10.1038/s41467-022-32930-9 (2022).
Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials 2nd edn (Cambridge University Press, 2008).
Wang, L. et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 4, 2413 (2013).
Tanaka, Y. et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327, 1488–1490 (2010).
Hull, D. & Bacon, D. J. in Introduction to Dislocations 5th edn (eds D. Hull & D. J. Bacon) 43–62 (Butterworth-Heinemann, 2011).
Christian, J. W. & Mahajan, S. Deformation twinning. Prog. Mater. Sci. 39, 1–157 (1995).
Kohl, M. Shape Memory Microactuators (Springer Science & Business Media, 2004).
Ma, J., Karaman, I. & Noebe, R. D. High temperature shape memory alloys. Int. Mater. Rev. 55, 257–315 (2010).
Mohd Jani, J., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014).
Otsuka, K. & Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005).
Saito, T. et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003).
Furuta, T., Kuramoto, S., Hwang, J., Nishino, K. & Saito, T. Elastic deformation behavior of multi-functional Ti-Nb-Ta-Zr-O alloys. Mater. Trans. 46, 3001–3007 (2005).
Talling, R. J., Dashwood, R. J., Jackson, M. & Dye, D. On the mechanism of superelasticity in Gum metal. Acta Mater. 57, 1188–1198 (2009).
Otsuka, K. & Ren, X. Recent developments in the research of shape memory alloys. Intermetallics 7, 511–528 (1999).
Lobo, P. S., Almeida, J. & Guerreiro, L. Shape memory alloys behaviour: a review. Proc. Eng. 114, 776–783 (2015).
Xu, Z. et al. A polymer-like ultrahigh-strength metal alloy. Nature 633, 575–581 (2024).
Gou, J. et al. A high-entropy alloy showing gigapascal superelastic stress and nearly temperature-independent modulus. Nat. Commun. 16, 1227 (2025).
Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375-377, 213–218 (2004).
Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).
He, Q. F. et al. A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251–257 (2022).
Bu, Y. et al. Elastic strain-induced amorphization in high-entropy alloys. Nat. Commun. 15, 4599 (2024).
Ding, Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).
Wang, H. et al. Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. 36, e2305453 (2023).
He, Q. & Yang, Y. On lattice distortion in high entropy alloys. Front. Mater. 5, https://doi.org/10.3389/fmats.2018.00042 (2018).
Li, J. et al. Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proc. Natl. Acad. Sci. USA 119, e2200607119 (2022).
Moniri, S. et al. Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys. Nature 624, 564–569 (2023).
Chen, Y. et al. Dislocation flow turbulence simultaneously enhances strength and ductility. Proc. Natl. Acad. Sci. USA 121, e2316912121 (2024).
Chen, H. et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat. Mater. 19, 712–718 (2020).
Lin, H. et al. Strain glass in Ti50-x-yNi50+yNby alloys exhibiting a boson peak glassy anomaly. Scr. Mater. 224, https://doi.org/10.1016/j.scriptamat.2022.115118 (2023).
Wang, W. et al. Reentrant strain glass transition in Ti-Ni-Cu shape memory alloy. Acta Mater. 226, https://doi.org/10.1016/j.actamat.2022.117618 (2022).
Wang, W. et al. Spinodal strain glass in Mn-Cu alloys. Acta Mater. 231, https://doi.org/10.1016/j.actamat.2022.117874 (2022).
Huang, Y. et al. Frictional shear stress-induced incomplete martensitic transformation in mono-crystalline B2-CuZr spherulites. Acta Mater. 267, https://doi.org/10.1016/j.actamat.2024.119705 (2024).
Dong, J. et al. Anisotropic martensitic transformation in B2-CuZr-structured crystallites. Acta Mater. 289, https://doi.org/10.1016/j.actamat.2025.120872 (2025).
Zhou, G. et al. A multi-material cascade elastocaloric cooling device for large temperature lift. Nat. Energy 9, 862–870 (2024).
Wang, X. et al. Anomalous stress-strain behavior of NiTi shape memory alloy close to the border of superelastic window. Scr. Mater. 204, 114135 (2021).
Juan, S. an, No, J. & Schuh, M. L. C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 4, 415–419 (2009).
Ashby, M. F. Materials Selection in Mechanical Design (Pergamon Press, 1992).
Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2, 114–120 (2007).
Liang, Q. et al. Novel B19\ensuremath{‘} strain glass with large recoverable strain. Phys. Rev. Mater. 1, 033608 (2017).
Tseng, L. W. et al. Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater. 89, 374–383 (2015).
Wang, Y., Ren, X. & Otsuka, K. Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97, 225703 (2006).
Zarinejad, M. & Liu, Y. Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons. Adv. Funct. Mater. 18, 2789–2794 (2008).
Kim, W.-C., Lim, K.-R., Kim, W.-T., Park, E.-S. & Kim, D.-H. Recent advances in multicomponent NiTi-based shape memory alloy using metallic glass as a precursor. Prog. Mater Sci. 123, https://doi.org/10.1016/j.pmatsci.2021.100855 (2022).
Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
Tandoc, C., Hu, Y.-J., Qi, L. & Liaw, P. K. Mining of lattice distortion, strength, and intrinsic ductility of refractory high entropy alloys. npj Comput. Mater. 9, 53 (2023).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Lakes, R. S. Viscoelastic Solids (CRC Press, 1999).
Chung, D. Structural composite materials tailored for damping. J. Alloy. Compd. 355, 216–223 (2003).
Nó, M. L. Dislocation damping at medium temperature. Mater. Sci. Forum. 366, 247–267 (2001).
Nó, M. L., Esnouf, C., San Juan, J. & Fantozzi, G. Internal friction at medium temperature in high purity aluminium and its relation with the microstructure—I. Acta Met. 36, 827–836 (1988).
Nó, M. L., Oleaga, A., Esnouf, C. & Juan, J. S. Internal friction at medium temperatures in high purity magnesium. Phys. Status Solidi 120, 419–427 (1990).
Bouzid, A., Gabbay, M. & Fantozzi, G. Contribution to the comprehension of dissipation phenomena in lead zirconate titanate: aliovalent doping effect. Mater. Sci. Eng. A 370, 123–126 (2004).
Bouzid, A., Bourim, E. M., Gabbay, M. & Fantozzi, G. PZT phase diagram determination by measurement of elastic moduli. J. Eur. Ceram. Soc. 25, 3213–3221 (2005).
Fantozzi, G., Bourim, E. & Kazemi, S. High damping in ferroelectric and ferrimagnetic ceramics. Key Eng. Mater. 319, 157–166 (2006).
Schaller, R. 8.7 High Damping Materials. In Mater. Sci. Forum. 366, 621–634 (2001).
Mayencourt, C. & Schaller, R. Development of a high-damping composite: Mg2Si/Mg. Phys. Status Solidi A 163, 357–368 (1997).
Mielczarek, A., Riehemann, W., Vogelgesang, S., Zak, H. & Tonn, B. Amplitude dependent internal friction of CuAlMn shape memory alloys. Key Eng. Mater. 319, 45–52 (2006).
Edwards, L. K., Lakes, R. S. & Nixon, W. A. Viscoelastic behavior of 80In15Pb5Ag and 50Sn50Pb alloys: experiment and modeling. J. Appl. Phys. 87, 1135–1140 (2000). %J Journal of Applied Physics.
Millet, P., Schaller, R. & Benoit, W. High damping in grey cast iron. Le. J. de. Phys. Colloq. 46, C10-405–C410-408 (1985).
Ashby, M. F. Materials selection in mechanical design. Metal. Ital. 86, 475–475 (1994).
Buechner, P., Stone, D. & Lakes, R. Viscoelastic behavior of superplastic 37 wt% Pb 63 wt% Sn over a wide range of frequency and time. Scr. Mater. 41, 561–567 (1999).
Lakes, R. S. & Quackenbush, J. Viscoelastic behaviour in indium-tin alloys over a wide range of frequencies and times. Philos. Mag. Lett. 74, 227–232 (1996).
Cook, L. & Lakes, R. Damping at high homologous temperature in pure Cd, In, Pb, and Sn. Scr. Metal. Mater. 32, 773–777 (1995).
Seguı́, C., Cesari, E., Pons, J. & Chernenko, V. Internal friction behaviour of Ni–Mn–Ga. Mater. Sci. Eng. A 370, 481–484 (2004).
Ritchie, I., Sprungmann, K. & Sahoo, M. Internal friction in Sonoston-a high damping Mn/Cu-based alloy for marine propeller applications. Le. J. de. Phys. Colloq. 46, C10-409–C410-412 (1985).
Yin, F. X., Iwasaki, S., Sakaguchi, T. & Nagai, K. Susceptibility of damping behavior to the solidification condition in the as-cast M2052 high-damping alloy. Key Eng. Mater. 319, 67–72 (2006).
Kawahara, K. Application of high-damping alloy M2052. Key Eng. Mater. 319, 217–224 (2006).
Laddha, S. & Van Aken, D. C. A review of the physical metallurgy and damping characteristics of high damping Cu-Mn alloys. ASTM Spec. Tech. Publ. 1304, 365–382 (1997).
Wu, S. K. & Lin, H. C. Damping characteristics of TiNi binary and ternary shape memory alloys. J. Alloy. Compd. 355, 72–78 (2003).
Biscarini, A., Coluzzi, B., Mazzolai, G., Tuissi, A. & Mazzolai, F. M. Extraordinary high damping of hydrogen-doped NiTi and NiTiCu shape memory alloys. J. Alloy. Compd. 355, 52–57 (2003).
Van Humbeeck, J. Shape memory alloys: a material and a technology. Adv. Eng. Mater. 3, 837–850 (2001).
Van Humbeeck, J. Damping capacity of thermoelastic martensite in shape memory alloys. J. Alloy. Compd. 355, 58–64 (2003).
Duerig, T. W., Melton, K. & Stöckel, D. Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann, 2013).
Ibarra, A., San Juan, J., Bocanegra, E. H. & Nó, M. L. Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu–Al–Ni single crystals. Acta Mater. 55, 4789–4798 (2007).
Acknowledgements
QFH acknowledges the support of the National Natural Science Foundation of China (Grant No. 52301211). YY acknowledges the support of Research Grants Council, the Hong Kong government, through the General Research Fund with the grant numbers (CityU11201721, CityU11202924 and CityU11207325). RS acknowledges the support of the National Natural Science Foundation of China (Grant No. 52371160) and the National Key R&D Program of China (grant no. 2024YFB3817600). SJZ acknowledges the support of Research Grant Council of Hong Kong (No. 11205224).
Author information
Authors and Affiliations
Contributions
Y.Y., S.J.Z., and J.F.G. supervised the project. Y.Y., Q.F.H., and S.R. conceived the idea. Q.F.H. and S.R. fabricated the samples and characterized their structures and mechanical properties. X.L.G. and S.J.Z. carried out the atomistic simulations. H.G., X.F.W., Z.Q.C., R.H., and Q.W. contributed to the data analysis. Y.Y. and Q.F.H. wrote the manuscript. All authors participated in the discussion of the results.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Huilong Hou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
He, Q., Ren, S., Gu, X. et al. Tuning superelasticity in high entropy alloy via a hidden strain order. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69108-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69108-6