Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Tuning superelasticity in high entropy alloy via a hidden strain order
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Tuning superelasticity in high entropy alloy via a hidden strain order

  • Quanfeng He  ORCID: orcid.org/0000-0002-1728-85791,2 na1,
  • Shuai Ren2,3,4 na1,
  • Xinlei Gu2 na1,
  • Hao Gong2,
  • Xufeng Wang1,
  • Zhaoqi Chen2,
  • Rong Han2,
  • Qing Wang  ORCID: orcid.org/0000-0002-6941-23835,
  • Jianfeng Gu  ORCID: orcid.org/0000-0002-0762-69761,
  • Shijun Zhao  ORCID: orcid.org/0000-0003-0870-81532 &
  • …
  • Yong Yang  ORCID: orcid.org/0000-0002-0491-82952,6 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Mechanical properties
  • Metals and alloys

Abstract

Superelasticity – exhibiting either Hookean (linear) or non-Hookean (nonlinear) recoverable strain beyond 2% – has been realized in distinct material systems such as metallic glasses, shape memory alloys, strain glass alloys and Gum metals, enabling diverse technological applications. Here we demonstrate that, through compositional tuning in a high-entropy alloy, the elastic behavior can be continuously and reversibly modulated between Hookean superelasticity, non-Hookean superelasticity with an ultrahigh recoverable strain of ~8%, and back to the Hookean regime. By combining atomic-scale strain mapping and extensive first-principles calculations, we reveal that this tunability is governed by a hidden strain order, arising from frustrated crystallization of two competing phases. As a result, local lattice distortion arises, producing a heterogeneous strain landscape that modulates phase stability, phase transformation propensity, and elastic response. Our findings establish a materials design strategy for programming Hookean and non-Hookean elasticity behavior on demand, with promising applications in microelectromechanical systems, high-precision actuators, and adaptive damping devices.

Data availability

The data generated in this study are provided in the Supplementary Information/Source Data file. Source data are provided with this paper. All the raw data relevant to the study are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Xu, S. et al. Non-Hookean large elastic deformation in bulk crystalline metals. Nat. Commun. 13, https://doi.org/10.1038/s41467-022-32930-9 (2022).

  2. Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials 2nd edn (Cambridge University Press, 2008).

  3. Wang, L. et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 4, 2413 (2013).

    Google Scholar 

  4. Tanaka, Y. et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327, 1488–1490 (2010).

    Google Scholar 

  5. Hull, D. & Bacon, D. J. in Introduction to Dislocations 5th edn (eds D. Hull & D. J. Bacon) 43–62 (Butterworth-Heinemann, 2011).

  6. Christian, J. W. & Mahajan, S. Deformation twinning. Prog. Mater. Sci. 39, 1–157 (1995).

    Google Scholar 

  7. Kohl, M. Shape Memory Microactuators (Springer Science & Business Media, 2004).

  8. Ma, J., Karaman, I. & Noebe, R. D. High temperature shape memory alloys. Int. Mater. Rev. 55, 257–315 (2010).

    Google Scholar 

  9. Mohd Jani, J., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014).

    Google Scholar 

  10. Otsuka, K. & Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005).

    Google Scholar 

  11. Saito, T. et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003).

    Google Scholar 

  12. Furuta, T., Kuramoto, S., Hwang, J., Nishino, K. & Saito, T. Elastic deformation behavior of multi-functional Ti-Nb-Ta-Zr-O alloys. Mater. Trans. 46, 3001–3007 (2005).

    Google Scholar 

  13. Talling, R. J., Dashwood, R. J., Jackson, M. & Dye, D. On the mechanism of superelasticity in Gum metal. Acta Mater. 57, 1188–1198 (2009).

    Google Scholar 

  14. Otsuka, K. & Ren, X. Recent developments in the research of shape memory alloys. Intermetallics 7, 511–528 (1999).

    Google Scholar 

  15. Lobo, P. S., Almeida, J. & Guerreiro, L. Shape memory alloys behaviour: a review. Proc. Eng. 114, 776–783 (2015).

    Google Scholar 

  16. Xu, Z. et al. A polymer-like ultrahigh-strength metal alloy. Nature 633, 575–581 (2024).

    Google Scholar 

  17. Gou, J. et al. A high-entropy alloy showing gigapascal superelastic stress and nearly temperature-independent modulus. Nat. Commun. 16, 1227 (2025).

    Google Scholar 

  18. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375-377, 213–218 (2004).

    Google Scholar 

  19. Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Google Scholar 

  20. He, Q. F. et al. A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251–257 (2022).

    Google Scholar 

  21. Bu, Y. et al. Elastic strain-induced amorphization in high-entropy alloys. Nat. Commun. 15, 4599 (2024).

    Google Scholar 

  22. Ding, Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).

    Google Scholar 

  23. Wang, H. et al. Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. 36, e2305453 (2023).

    Google Scholar 

  24. He, Q. & Yang, Y. On lattice distortion in high entropy alloys. Front. Mater. 5, https://doi.org/10.3389/fmats.2018.00042 (2018).

  25. Li, J. et al. Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proc. Natl. Acad. Sci. USA 119, e2200607119 (2022).

    Google Scholar 

  26. Moniri, S. et al. Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys. Nature 624, 564–569 (2023).

    Google Scholar 

  27. Chen, Y. et al. Dislocation flow turbulence simultaneously enhances strength and ductility. Proc. Natl. Acad. Sci. USA 121, e2316912121 (2024).

    Google Scholar 

  28. Chen, H. et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat. Mater. 19, 712–718 (2020).

    Google Scholar 

  29. Lin, H. et al. Strain glass in Ti50-x-yNi50+yNby alloys exhibiting a boson peak glassy anomaly. Scr. Mater. 224, https://doi.org/10.1016/j.scriptamat.2022.115118 (2023).

  30. Wang, W. et al. Reentrant strain glass transition in Ti-Ni-Cu shape memory alloy. Acta Mater. 226, https://doi.org/10.1016/j.actamat.2022.117618 (2022).

  31. Wang, W. et al. Spinodal strain glass in Mn-Cu alloys. Acta Mater. 231, https://doi.org/10.1016/j.actamat.2022.117874 (2022).

  32. Huang, Y. et al. Frictional shear stress-induced incomplete martensitic transformation in mono-crystalline B2-CuZr spherulites. Acta Mater. 267, https://doi.org/10.1016/j.actamat.2024.119705 (2024).

  33. Dong, J. et al. Anisotropic martensitic transformation in B2-CuZr-structured crystallites. Acta Mater. 289, https://doi.org/10.1016/j.actamat.2025.120872 (2025).

  34. Zhou, G. et al. A multi-material cascade elastocaloric cooling device for large temperature lift. Nat. Energy 9, 862–870 (2024).

    Google Scholar 

  35. Wang, X. et al. Anomalous stress-strain behavior of NiTi shape memory alloy close to the border of superelastic window. Scr. Mater. 204, 114135 (2021).

    Google Scholar 

  36. Juan, S. an, No, J. & Schuh, M. L. C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 4, 415–419 (2009).

    Google Scholar 

  37. Ashby, M. F. Materials Selection in Mechanical Design (Pergamon Press, 1992).

  38. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2, 114–120 (2007).

    Google Scholar 

  39. Liang, Q. et al. Novel B19\ensuremath{‘} strain glass with large recoverable strain. Phys. Rev. Mater. 1, 033608 (2017).

    Google Scholar 

  40. Tseng, L. W. et al. Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater. 89, 374–383 (2015).

    Google Scholar 

  41. Wang, Y., Ren, X. & Otsuka, K. Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97, 225703 (2006).

    Google Scholar 

  42. Zarinejad, M. & Liu, Y. Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons. Adv. Funct. Mater. 18, 2789–2794 (2008).

    Google Scholar 

  43. Kim, W.-C., Lim, K.-R., Kim, W.-T., Park, E.-S. & Kim, D.-H. Recent advances in multicomponent NiTi-based shape memory alloy using metallic glass as a precursor. Prog. Mater Sci. 123, https://doi.org/10.1016/j.pmatsci.2021.100855 (2022).

  44. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Google Scholar 

  46. Tandoc, C., Hu, Y.-J., Qi, L. & Liaw, P. K. Mining of lattice distortion, strength, and intrinsic ductility of refractory high entropy alloys. npj Comput. Mater. 9, 53 (2023).

    Google Scholar 

  47. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  49. Lakes, R. S. Viscoelastic Solids (CRC Press, 1999).

  50. Chung, D. Structural composite materials tailored for damping. J. Alloy. Compd. 355, 216–223 (2003).

    Google Scholar 

  51. Nó, M. L. Dislocation damping at medium temperature. Mater. Sci. Forum. 366, 247–267 (2001).

  52. Nó, M. L., Esnouf, C., San Juan, J. & Fantozzi, G. Internal friction at medium temperature in high purity aluminium and its relation with the microstructure—I. Acta Met. 36, 827–836 (1988).

    Google Scholar 

  53. Nó, M. L., Oleaga, A., Esnouf, C. & Juan, J. S. Internal friction at medium temperatures in high purity magnesium. Phys. Status Solidi 120, 419–427 (1990).

    Google Scholar 

  54. Bouzid, A., Gabbay, M. & Fantozzi, G. Contribution to the comprehension of dissipation phenomena in lead zirconate titanate: aliovalent doping effect. Mater. Sci. Eng. A 370, 123–126 (2004).

    Google Scholar 

  55. Bouzid, A., Bourim, E. M., Gabbay, M. & Fantozzi, G. PZT phase diagram determination by measurement of elastic moduli. J. Eur. Ceram. Soc. 25, 3213–3221 (2005).

    Google Scholar 

  56. Fantozzi, G., Bourim, E. & Kazemi, S. High damping in ferroelectric and ferrimagnetic ceramics. Key Eng. Mater. 319, 157–166 (2006).

    Google Scholar 

  57. Schaller, R. 8.7 High Damping Materials. In Mater. Sci. Forum. 366, 621–634 (2001).

  58. Mayencourt, C. & Schaller, R. Development of a high-damping composite: Mg2Si/Mg. Phys. Status Solidi A 163, 357–368 (1997).

    Google Scholar 

  59. Mielczarek, A., Riehemann, W., Vogelgesang, S., Zak, H. & Tonn, B. Amplitude dependent internal friction of CuAlMn shape memory alloys. Key Eng. Mater. 319, 45–52 (2006).

    Google Scholar 

  60. Edwards, L. K., Lakes, R. S. & Nixon, W. A. Viscoelastic behavior of 80In15Pb5Ag and 50Sn50Pb alloys: experiment and modeling. J. Appl. Phys. 87, 1135–1140 (2000). %J Journal of Applied Physics.

    Google Scholar 

  61. Millet, P., Schaller, R. & Benoit, W. High damping in grey cast iron. Le. J. de. Phys. Colloq. 46, C10-405–C410-408 (1985).

    Google Scholar 

  62. Ashby, M. F. Materials selection in mechanical design. Metal. Ital. 86, 475–475 (1994).

    Google Scholar 

  63. Buechner, P., Stone, D. & Lakes, R. Viscoelastic behavior of superplastic 37 wt% Pb 63 wt% Sn over a wide range of frequency and time. Scr. Mater. 41, 561–567 (1999).

    Google Scholar 

  64. Lakes, R. S. & Quackenbush, J. Viscoelastic behaviour in indium-tin alloys over a wide range of frequencies and times. Philos. Mag. Lett. 74, 227–232 (1996).

    Google Scholar 

  65. Cook, L. & Lakes, R. Damping at high homologous temperature in pure Cd, In, Pb, and Sn. Scr. Metal. Mater. 32, 773–777 (1995).

  66. Seguı́, C., Cesari, E., Pons, J. & Chernenko, V. Internal friction behaviour of Ni–Mn–Ga. Mater. Sci. Eng. A 370, 481–484 (2004).

    Google Scholar 

  67. Ritchie, I., Sprungmann, K. & Sahoo, M. Internal friction in Sonoston-a high damping Mn/Cu-based alloy for marine propeller applications. Le. J. de. Phys. Colloq. 46, C10-409–C410-412 (1985).

    Google Scholar 

  68. Yin, F. X., Iwasaki, S., Sakaguchi, T. & Nagai, K. Susceptibility of damping behavior to the solidification condition in the as-cast M2052 high-damping alloy. Key Eng. Mater. 319, 67–72 (2006).

    Google Scholar 

  69. Kawahara, K. Application of high-damping alloy M2052. Key Eng. Mater. 319, 217–224 (2006).

    Google Scholar 

  70. Laddha, S. & Van Aken, D. C. A review of the physical metallurgy and damping characteristics of high damping Cu-Mn alloys. ASTM Spec. Tech. Publ. 1304, 365–382 (1997).

    Google Scholar 

  71. Wu, S. K. & Lin, H. C. Damping characteristics of TiNi binary and ternary shape memory alloys. J. Alloy. Compd. 355, 72–78 (2003).

    Google Scholar 

  72. Biscarini, A., Coluzzi, B., Mazzolai, G., Tuissi, A. & Mazzolai, F. M. Extraordinary high damping of hydrogen-doped NiTi and NiTiCu shape memory alloys. J. Alloy. Compd. 355, 52–57 (2003).

    Google Scholar 

  73. Van Humbeeck, J. Shape memory alloys: a material and a technology. Adv. Eng. Mater. 3, 837–850 (2001).

    Google Scholar 

  74. Van Humbeeck, J. Damping capacity of thermoelastic martensite in shape memory alloys. J. Alloy. Compd. 355, 58–64 (2003).

    Google Scholar 

  75. Duerig, T. W., Melton, K. & Stöckel, D. Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann, 2013).

  76. Ibarra, A., San Juan, J., Bocanegra, E. H. & Nó, M. L. Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu–Al–Ni single crystals. Acta Mater. 55, 4789–4798 (2007).

    Google Scholar 

Download references

Acknowledgements

QFH acknowledges the support of the National Natural Science Foundation of China (Grant No. 52301211). YY acknowledges the support of Research Grants Council, the Hong Kong government, through the General Research Fund with the grant numbers (CityU11201721, CityU11202924 and CityU11207325). RS acknowledges the support of the National Natural Science Foundation of China (Grant No. 52371160) and the National Key R&D Program of China (grant no. 2024YFB3817600). SJZ acknowledges the support of Research Grant Council of Hong Kong (No. 11205224).

Author information

Author notes
  1. These authors contributed equally: Quanfeng He, Shuai Ren, Xinlei Gu.

Authors and Affiliations

  1. Institute of Materials Modification and Modelling, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

    Quanfeng He, Xufeng Wang & Jianfeng Gu

  2. Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China

    Quanfeng He, Shuai Ren, Xinlei Gu, Hao Gong, Zhaoqi Chen, Rong Han, Shijun Zhao & Yong Yang

  3. Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China

    Shuai Ren

  4. Center for Advanced Smart Materials, Yongjiang Laboratory, Ningbo, China

    Shuai Ren

  5. State Key Laboratory of Materials for Advanced Nuclear Energy & School of Materials Science and Engineering, Shanghai University, Shanghai, China

    Qing Wang

  6. Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong SAR, China

    Yong Yang

Authors
  1. Quanfeng He
    View author publications

    Search author on:PubMed Google Scholar

  2. Shuai Ren
    View author publications

    Search author on:PubMed Google Scholar

  3. Xinlei Gu
    View author publications

    Search author on:PubMed Google Scholar

  4. Hao Gong
    View author publications

    Search author on:PubMed Google Scholar

  5. Xufeng Wang
    View author publications

    Search author on:PubMed Google Scholar

  6. Zhaoqi Chen
    View author publications

    Search author on:PubMed Google Scholar

  7. Rong Han
    View author publications

    Search author on:PubMed Google Scholar

  8. Qing Wang
    View author publications

    Search author on:PubMed Google Scholar

  9. Jianfeng Gu
    View author publications

    Search author on:PubMed Google Scholar

  10. Shijun Zhao
    View author publications

    Search author on:PubMed Google Scholar

  11. Yong Yang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.Y., S.J.Z., and J.F.G. supervised the project. Y.Y., Q.F.H., and S.R. conceived the idea. Q.F.H. and S.R. fabricated the samples and characterized their structures and mechanical properties. X.L.G. and S.J.Z. carried out the atomistic simulations. H.G., X.F.W., Z.Q.C., R.H., and Q.W. contributed to the data analysis. Y.Y. and Q.F.H. wrote the manuscript. All authors participated in the discussion of the results.

Corresponding authors

Correspondence to Jianfeng Gu, Shijun Zhao or Yong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Huilong Hou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Ren, S., Gu, X. et al. Tuning superelasticity in high entropy alloy via a hidden strain order. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69108-6

Download citation

  • Received: 14 September 2025

  • Accepted: 23 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69108-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing