Abstract
The chemistry of phosphaalumenes [R–Al=P–R’] featuring multiple bonds between phosphorus and aluminum remains largely unexplored. Here we show the syntheses of a phosphaalumene(3) through either the reaction of DippNacNacM (DippNacNac = HC[(CMe)N(2,6-iPr2C6H3)]2, M = Al) with a bisphosphirane-fused anthracene (1) or with a phospha-Wittig reagent (2) under mild conditions. This phosphaalumene exhibits reactivities that stand in contrast to those of previously reported transient species II, especially in its ability to activate small molecules such as dihydrogen (H2), white phosphorus (P4), isocyanides, CO2, N2O, trimethylsilyl azide (TMSN3), diphenyl diselenide (PhSeSePh), PhSiH3, PhNH2, styrene and 1-ethynyl-4-methylbenzene. It has been found in this research that the ligand environment can have a subtle but profound impact on the reactivity of phosphaalumenes.
Data availability
All data generated or analyzed during this study are included in the Supplementary Information. Details about materials and methods, experimental procedures, characterization data, and theoretical calculations are available in the Supplementary Information. The structures of 2–13 and 15–19 in the solid state were determined by single-crystal X-ray diffraction studies and the crystallographic data have been deposited with the Cambridge Crystallographic Data Center under nos. CCDC 2455485 (2), 2455483 (3), 2455486 (4), 2455481 (5), 2475851 (6), 2455482 (7), 2503430 (8), 2455480 (9), 2455487 (10), 2475850 (11), 2475849 (12), 2503426 (13), 2503427(15), 2455479 (16), 2455484 (17), 2503429 (18), and 2503428 (19). These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif. All data are also available from corresponding authors upon request. Source data are provided with this paper.
References
Power, P. P. π-Bonding and the lone pair effect in multiple bonds between heavier main group elements. Chem. Rev. 99, 3463–3504 (1999).
Fischer, R. C. & Power, P. P. π-bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).
Bag, P., Weetman, C. & Inoue, S. Experimental realisation of elusive multiple-bonded aluminium compounds: a new horizon in aluminium chemistry. Angew. Chem. Int. Ed. 57, 14394–14413 (2018).
Borthakur, R. & Chandrasekhar, V. Boron-Heteroelement (B–E; E = Al, C, Si, Ge, N, P, As, Bi, O, S, Se, Te) multiply bonded compounds: recent advances. Coord. Chem. Rev. 429, 213647 (2021).
Weetman, C. Main group multiple bonds for bond activations and catalysis. Chem. Eur. J. 27, 1941–1954 (2021).
Dankert, F. & Hering-Junghans, C. Heavier group 13/15 multiple bond systems: synthesis, structure and chemical bond activation. Chem. Commun. 58, 1242–1262 (2022).
Paetzold, P. Iminoboranes. Adv. Inorg. Chem. 31, 123–170 (1987).
Nöth, H. The chemistry of amino imino boranes. Angew. Chem. Int. Ed. Engl. 27, 1603–1623 (1988).
Fan, Y., Cui, J. & Kong, L. Recent advances in the chemistry of iminoborane derivatives. Eur. J. Org. Chem. 43, e202201086 (2022).
Linti, G., Nöth, H., Polborn, K. & Paine, R. T. An allene-analogous boranylidenephosphane with B=P double bond: 1,1-diethylpropyl(2,2,6,6-tetramethylpiperidino)- boranylidenephosphane-P-pentacarbonyl-chromium. Angew. Chem. Int. Ed. Engl. 29, 682–684 (1990).
Power, P. P. Boron-phosphorus compounds and multiple bonding. Angew. Chem. Int. Ed. Engl. 29, 449–460 (1990).
Pestana, D. C. & Power, P. P. Nature of the boron-phosphorus bond in monomeric phosphinoboranes and related compounds. J. Am. Chem. Soc. 113, 8426–8437 (1991).
Paine, R. T. & Nöth, H. Recent advances in phosphinoborane chemistry. Chem. Rev. 95, 343–379 (1995).
Knabel, K., Klapötke, T. M., Nöth, H., Paine, R. T. & Schwab, I. A bicyclic P–P-bridged 1,3,2,4-diphosphadiboretane cation and an imino(phosphinidene)borane–AlBr3 adduct. Eur. J. Inorg. Chem. 2005, 1099–1108 (2005).
Bailey, J. A. & Pringle, P. G. Monomeric phosphinoboranes. Coord. Chem. Rev. 297-298, 77–90 (2015).
Price, A. N. & Cowley, M. J. Base-stabilized phosphinidene boranes by silylium-ion abstraction. Chem. Eur. J. 22, 6248–6252 (2016).
Price, A. N., Nichol, G. S. & Cowley, M. J. Phosphaborenes: accessible reagents for the synthesis of C−C/P−B isosteres. Angew. Chem. Int. Ed. 56, 9953–9957 (2017).
Yang, W. et al. Crystalline BP-doped phenanthryne via photolysis of the elusive boraphosphaketene. Angew. Chem. Int. Ed. 59, 3971–3975 (2020).
Koner, A., Morgenstern, B. & Andrada, D. M. Metathesis reactions of a NHC-stabilized phosphaborene. Angew. Chem. Int. Ed. 61, e202203345 (2022).
Li, J., Lu, Z. & Liu, L. L. A free phosphaborene stable at room temperature. J. Am. Chem. Soc. 144, 23691–23697 (2022).
Li, J., Mei, Y. & Liu, L. L. An isolable phosphaborene stabilized by an intramolecular Lewis base. Eur. J. Inorg. Chem. 2022, e202200368 (2022).
LaPierre, E. A., Patrick, B. O. & Manners, I. A Crystalline Monomeric Phosphaborene. J. Am. Chem. Soc. 145, 7107–7112 (2023).
Rivard, E., Merrill, W. A., Fettinger, J. C. & Power, P. P. A donor-stabilization strategy for the preparation of compounds featuring P=B and As=B double bonds. Chem. Commun. 2006, 3800–3802 (2006).
Rivard, E. et al. Boron−pnictogen multiple bonds: donor-stabilized P=B and As=B bonds and a hindered iminoborane with a B−N triple bond. Inorg. Chem. 46, 2971–2978 (2007).
Hardman, N. J., Cui, C., Roesky, H. W., Fink, W. H. & Power, P. P. Stable, monomeric imides of aluminum and gallium: synthesis and characterization of [{HC(MeCDippN)2}MN-2,6-Trip2C6H3] (M=Al or Ga; Dipp=2,6-iPr2C6H3; Trip=2,4,6-iPr3C6H2). Angew. Chem. Int. Ed. 40, 2172–2174 (2001).
Li, J. et al. Synthesis, structure, and reactivity of a monomeric iminoalane. Chem. Eur. J. 18, 15263–15266 (2012).
Anker, M. D., Schwamm, R. J. & Coles, M. P. Synthesis and reactivity of a terminal aluminium–imide bond. Chem. Commun. 56, 2288–2291 (2020).
Heilmann, A., Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Carbon monoxide activation by a molecular aluminium imide: C−O bond cleavage and C−C bond formation. Angew. Chem. Int. Ed. 59, 4897–4901 (2020).
Dhara, D. et al. Synthesis and reactivity of a dialane-bridged diradical. Angew. Chem, Int. Ed. 63, e202401052 (2024).
Feng, G. & Yamashita, M. Synthesis and reactivity of an alumanyl–tin species to form an Al,N-heteroallene derivative. J. Am. Chem. Soc. 146, 28653–28657 (2024).
Queen, J. D., Irvankoski, S., Fettinger, J. C., Tuononen, H. M. & Power, P. P. A monomeric aluminum imide (Iminoalane) with Al–N triple-bonding: bonding analysis and dispersion energy stabilization. J. Am. Chem. Soc. 143, 6351–6356 (2021).
Wright, R. J., Phillips, A. D., Allen, T. L., Fink, W. H. & Power, P. P. Synthesis and characterization of the monomeric imides Ar’MNAr” (M = Ga or In; Ar’ or Ar” = terphenyl ligands) with two-coordinate gallium and indium. J. Am. Chem. Soc. 125, 1694–1695 (2003).
Wright, R. J., Brynda, M., Fettinger, J. C., Betzer, A. R. & Power, P. P. Quasi-isomeric gallium amides and imides GaNR2 and RGaNR (R = Organic Group): reactions of the digallene, Ar’GaGaAr’ (Ar’ = C6H3-2,6-(C6H3-2,6-Pri2)2) with unsaturated nitrogen compounds. J. Am. Chem. Soc. 128, 12498–12509 (2006).
Anker, M. D., Lein, M. & Coles, M. P. Reduction of organic azides by indyl-anions. isolation and reactivity studies of indium–nitrogen multiple bonds. Chem. Sci. 10, 1212–1218 (2019).
von Hänisch, C. & Hampe, O. {Li(thf)3}2Ga2{As(SiiPr3)}4]—A compound with gallium-arsenic double bonds. Angew. Chem. Int. Ed. 41, 2095–2097 (2002).
Ganesamoorthy, C. et al. From stable Sb- and Bi-centered radicals to a compound with a Ga=Sb double bond. Nat. Commun. 9, 87 (2018).
Helling, C., Wölper, C. & Schulz, S. Synthesis of a gallaarsene {HC[C(Me)N-2,6-i-Pr2-C6H3]2}GaAsCp* containing a Ga=As double bond. J. Am. Chem. Soc. 140, 5053–5056 (2018).
García-Romero, Á, Hu, C., Pink, M. & Goicoechea, J. M. A crystalline unsupported phosphagallene and phosphaindene. J. Am. Chem. Soc. 147, 1231–1239 (2025).
Wilson, D. W. N., Feld, J. & Goicoechea, J. M. A phosphanyl-phosphagallene that functions as a frustrated Lewis pair. Angew. Chem. Int. Ed. 59, 20914–20918 (2020).
Li, B., Wölper, C., Haberhauer, G. & Schulz, S. Synthesis and reactivity of heteroleptic Ga−P−C allyl cation analogues. Angew. Chem. Int. Ed. 60, 1986–1991 (2021).
Sharma, M. K., Wölper, C., Haberhauer, G. & Schulz, S. Multi-talented gallaphosphene for Ga−P−Ga heteroallyl cation generation, CO2 storage, and C(sp3)−H bond activation. Angew. Chem. Int. Ed. 60, 6784–6790 (2021).
Sharma, M. K. et al. (PCO)2 (M = Ga, In): a new class of reactive group 13 metal-phosphorus compounds. Chem. Eur. J. 28, e202200444 (2022).
Feld, J., Wilson, D. W. N. & Goicoechea, J. M. Contrasting E−H bond activation pathways of a phosphanyl-phosphagallene. Angew. Chem. Int. Ed. 60, 22057–22061 (2021).
Szych, L. S., Bresien, J., Fischer, L., Ernst, M. J. & Goicoechea, J. M. Reactivity of an arsanyl-phosphagallene: decarbonylation of CO2 and COS to form phosphaketenes. Chem. Sci. 16, 7397–7410 (2025).
Wilson, D. W. N., Myers, W. K. & Goicoechea, J. M. Synthesis and decarbonylation chemistry of gallium phosphaketenes. Dalton Trans 49, 15249–15255 (2020).
Taeufer, T. et al. Photochemical formation and reversible base-induced cleavage of a phosphagallene. Chem. Sci. 14, 3018–3023 (2023).
Wang, Y. et al. Synthesis and reactivity of germyl-substituted gallapnictenes. Inorg. Chem. 64, 3485–3494 (2025).
Nees, S. et al. On the reactivity of Mes*P(PMe3) towards aluminum(I) compounds – evidence for the intermediate formation of phosphaalumenes. ChemPlusChem 88, e202300078 (2023).
Szych, L. S., Denker, L., Feld, J. & Goicoechea, J. M. Trapping an elusive phosphanyl-phosphaalumene. Chem. Eur. J. 30, e202401326 (2024).
Fischer, M. et al. Isolable phospha- and arsaalumenes. J. Am. Chem. Soc. 143, 4106–4111 (2021).
Nees, S. et al. On the reactivity of phosphaalumenes towards C−C multiple bonds. Angew. Chem. Int. Ed. 62, e202215838 (2023).
Wellnitz, T. et al. Reactivity of pnictaalumenes towards 1,3-dipole molecules. Angew. Chem. Int. Ed. 64, e202506356 (2025).
Wellnitz, T., Wu, L., Braunschweig, H. & Hering-Junghans, C. A BNAlP-heterocycle. Chem. Commun. 61, 4014–4017 (2025).
Luo, Q., Liu, T., Huang, L., Yang, C. & Lu, W. Aromative dephosphinidenation of a bisphosphirane-fused anthracene toward E−H (E=H, Si, N and P) bond activation. Angew. Chem. Int. Ed. 63, e202405122 (2024).
Luo, Q., Liu, T., Huang, L., Li, Q. & Lu, W. On the reactivity of bisphosphirane-fused anthracene towards dichalcogenide bonds, IPr carbene, 2,6-diisopropylphenyl isocyanide and trimethylsilyl azide. Eur. J. Org. Chem. 28, e202500071 (2025).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Savin, A., Nesper, R., Wengert, S. & Fässler, T. F. ELF: the electron localization function. Angew. Chem. Int. Ed. Engl. 36, 1808–1832 (1997).
Welch, G. C., Juan, R. R. S., Masuda, J. D. & Stephan, D. W. Reversible, metal-free hydrogen activation. Science 314, 1124–1126 (2006).
Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).
Geier, S. J., Gilbert, T. M. & Stephan, D. W. Activation of H2 by phosphinoboranes R2PB(C6F5)2. J. Am. Chem. Soc. 130, 12632–12633 (2008).
Fan, J. et al. Silylene-stabilized neutral dibora-aromatics with a B=B bond. J. Am. Chem. Soc. 146, 20458–20467 (2024).
Lu, W. et al. An unsymmetrical, cyclic diborene based on a chelating CAAC ligand and its small-molecule activation and rearrangement chemistry. Angew. Chem. Int. Ed. 61, e202113947 (2022).
Lu, W., Xu, K., Li, Y., Hirao, H. & Kinjo, R. Facile activation of homoatomic σ bonds in white phosphorus and diborane by a diboraallene. Angew. Chem. Int. Ed. 57, 15691–15695 (2018).
Xu, H. et al. Dialumene-mediated production of phosphines through P4 reduction. Angew. Chem. Int. Ed. 63, e202404532 (2024).
Holzner, R. et al. Imino(silyl)disilenes: application in versatile bond activation, reversible oxidation and thermal isomerization. Dalton Trans 50, 8785–8793 (2021).
Fanta, A. D. et al. The reaction of disilenes with P4 and As4. Inorg. Chim. Acta. 198-200, 733–739 (1992).
Driess, M., Fanta, A. D., Powell, D. R. & West, R. Synthesis, characterization, and complexation of an unusual P2Si2 bicyclobutane with butterfly-structure: 2,2,4,4-tetramesityl-1,3-diphospha-2,4-disilabicyclo[1.1.0]butane. Angew. Chem. Int. Ed. Engl. 28, 1038–1040 (1989).
Fox, A. R., Wright, R. J., Rivard, E. & Power, P. P. Tl2[Aryl2P4]: a thallium complexed diaryltetraphosphabutadienediide and its two-electron oxidation to a diaryltetraphosphabicyclobutane, Aryl2P4. Angew. Chem. Int. Ed. Engl. 44, 7729–7733 (2005).
Khan, S. et al. Preparation of RSn(I)–Sn(I)R with two unsymmetrically coordinated Sn(I) atoms and subsequent gentle activation of P4. J. Am. Chem. Soc. 133, 17889–17894 (2011).
Drieß, M. 1,2,3-triphospha-4-silabicyclo[1.1.0]butanes from activated, stable phosphasilenes and white phosphorus. Angew. Chem. Int. Ed. Engl. 30, 1022–1024 (1991).
Li, X., Cheng, X., Song, H. & Cui, C. Synthesis of HC[(CBut)(NAr)]2Al (Ar = 2,6-Pri2C6H3) and its reaction with isocyanides, a bulky azide, and H2O. Organometallics 26, 1039–1043 (2007).
Chen, W. et al. Reductive linear- and cyclo-trimerization of isocyanides using an Al–Al-bonded compound. Chem. Commun. 55, 9452–9455 (2019).
Evans, M. J., Anker, M. D., McMullin, C. L. & Coles, M. P. Controlled reductive C–C coupling of isocyanides promoted by an aluminyl anion. Chem. Sci. 14, 6278–6288 (2023).
Coles, M. P. & Hitchcock, P. B. Variable coordination chemistry of the phospha(iii)guanidinate anion; application as a metal-functionalised phosphine ligand. Chem. Commun. 23, 2794–2795 (2002).
Schmidpeter, A., Jochem, G., Karaghiosofl, K. & Robl, C. Phosphorus(v) selenides with phosphorus in a trigonal-planar environment. Angew. Chem. Int. Ed. Engl. 31, 1350–1352 (1992).double bond is not shown clearly in the phenyl ring
Acknowledgements
This work was supported by the National Natural Science Foundation of China (22471177), the Sichuan Science and Technology Program (2024NSFSC0285, 2022ZYD0050), the Funding for Hundred Talent Program of Sichuan University (YJ2021161), and the Fundamental Research Funds for the Central Universities. We would like to thank Dr. Yongxin Li (NTU) and Meng Yang (Sichuan University) for support in Single-crystal X-ray diffraction analysis. We acknowledge Dongyan Deng and Jing Li at Sichuan University, and Qianli Li at Liaocheng University for assistance in NMR and HRMS measurement. We thank Dr. William C. Ewing (VanDeMark) for his kind support on the preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
Y.C., X.Z. F.L. X.N., T.L., and Q.L. carried out the experiment work. Z.Y. and P.G. conducted theoretical studies. W.L. conceived and supervised the study. Y.C., Z.Y., and W.L. drafted the manuscript. All authors contributed to discussions.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Cha, Y., Yang, Z., Zhuang, X. et al. An isolable phosphaalumene(3) capable of small molecule activation via unique modes of reactivity. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69118-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69118-4