Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
An isolable phosphaalumene(3) capable of small molecule activation via unique modes of reactivity
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

An isolable phosphaalumene(3) capable of small molecule activation via unique modes of reactivity

  • Yan Cha1 na1,
  • Zhaoziyuan Yang1 na1,
  • Xiao Zhuang1,
  • Pengyu Gao1,
  • Tingting Liu1,
  • Fei Luo1,
  • Xianjia Ni1,
  • Qing Luo1 &
  • …
  • Wei Lu  ORCID: orcid.org/0000-0003-2529-52901 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemical bonding
  • Ligands

Abstract

The chemistry of phosphaalumenes [R–Al=P–R’] featuring multiple bonds between phosphorus and aluminum remains largely unexplored. Here we show the syntheses of a phosphaalumene(3) through either the reaction of DippNacNacM (DippNacNac = HC[(CMe)N(2,6-iPr2C6H3)]2, M = Al) with a bisphosphirane-fused anthracene (1) or with a phospha-Wittig reagent (2) under mild conditions. This phosphaalumene exhibits reactivities that stand in contrast to those of previously reported transient species II, especially in its ability to activate small molecules such as dihydrogen (H2), white phosphorus (P4), isocyanides, CO2, N2O, trimethylsilyl azide (TMSN3), diphenyl diselenide (PhSeSePh), PhSiH3, PhNH2, styrene and 1-ethynyl-4-methylbenzene. It has been found in this research that the ligand environment can have a subtle but profound impact on the reactivity of phosphaalumenes.

Data availability

All data generated or analyzed during this study are included in the Supplementary Information. Details about materials and methods, experimental procedures, characterization data, and theoretical calculations are available in the Supplementary Information. The structures of 2–13 and 15–19 in the solid state were determined by single-crystal X-ray diffraction studies and the crystallographic data have been deposited with the Cambridge Crystallographic Data Center under nos. CCDC 2455485 (2), 2455483 (3), 2455486 (4), 2455481 (5), 2475851 (6), 2455482 (7), 2503430 (8), 2455480 (9), 2455487 (10), 2475850 (11), 2475849 (12), 2503426 (13), 2503427(15), 2455479 (16), 2455484 (17), 2503429 (18), and 2503428 (19). These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif. All data are also available from corresponding authors upon request. Source data are provided with this paper.

References

  1. Power, P. P. π-Bonding and the lone pair effect in multiple bonds between heavier main group elements. Chem. Rev. 99, 3463–3504 (1999).

    Google Scholar 

  2. Fischer, R. C. & Power, P. P. π-bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).

    Google Scholar 

  3. Bag, P., Weetman, C. & Inoue, S. Experimental realisation of elusive multiple-bonded aluminium compounds: a new horizon in aluminium chemistry. Angew. Chem. Int. Ed. 57, 14394–14413 (2018).

    Google Scholar 

  4. Borthakur, R. & Chandrasekhar, V. Boron-Heteroelement (B–E; E = Al, C, Si, Ge, N, P, As, Bi, O, S, Se, Te) multiply bonded compounds: recent advances. Coord. Chem. Rev. 429, 213647 (2021).

    Google Scholar 

  5. Weetman, C. Main group multiple bonds for bond activations and catalysis. Chem. Eur. J. 27, 1941–1954 (2021).

    Google Scholar 

  6. Dankert, F. & Hering-Junghans, C. Heavier group 13/15 multiple bond systems: synthesis, structure and chemical bond activation. Chem. Commun. 58, 1242–1262 (2022).

    Google Scholar 

  7. Paetzold, P. Iminoboranes. Adv. Inorg. Chem. 31, 123–170 (1987).

    Google Scholar 

  8. Nöth, H. The chemistry of amino imino boranes. Angew. Chem. Int. Ed. Engl. 27, 1603–1623 (1988).

    Google Scholar 

  9. Fan, Y., Cui, J. & Kong, L. Recent advances in the chemistry of iminoborane derivatives. Eur. J. Org. Chem. 43, e202201086 (2022).

    Google Scholar 

  10. Linti, G., Nöth, H., Polborn, K. & Paine, R. T. An allene-analogous boranylidenephosphane with B=P double bond: 1,1-diethylpropyl(2,2,6,6-tetramethylpiperidino)- boranylidenephosphane-P-pentacarbonyl-chromium. Angew. Chem. Int. Ed. Engl. 29, 682–684 (1990).

    Google Scholar 

  11. Power, P. P. Boron-phosphorus compounds and multiple bonding. Angew. Chem. Int. Ed. Engl. 29, 449–460 (1990).

    Google Scholar 

  12. Pestana, D. C. & Power, P. P. Nature of the boron-phosphorus bond in monomeric phosphinoboranes and related compounds. J. Am. Chem. Soc. 113, 8426–8437 (1991).

    Google Scholar 

  13. Paine, R. T. & Nöth, H. Recent advances in phosphinoborane chemistry. Chem. Rev. 95, 343–379 (1995).

    Google Scholar 

  14. Knabel, K., Klapötke, T. M., Nöth, H., Paine, R. T. & Schwab, I. A bicyclic P–P-bridged 1,3,2,4-diphosphadiboretane cation and an imino(phosphinidene)borane–AlBr3 adduct. Eur. J. Inorg. Chem. 2005, 1099–1108 (2005).

    Google Scholar 

  15. Bailey, J. A. & Pringle, P. G. Monomeric phosphinoboranes. Coord. Chem. Rev. 297-298, 77–90 (2015).

    Google Scholar 

  16. Price, A. N. & Cowley, M. J. Base-stabilized phosphinidene boranes by silylium-ion abstraction. Chem. Eur. J. 22, 6248–6252 (2016).

    Google Scholar 

  17. Price, A. N., Nichol, G. S. & Cowley, M. J. Phosphaborenes: accessible reagents for the synthesis of C−C/P−B isosteres. Angew. Chem. Int. Ed. 56, 9953–9957 (2017).

    Google Scholar 

  18. Yang, W. et al. Crystalline BP-doped phenanthryne via photolysis of the elusive boraphosphaketene. Angew. Chem. Int. Ed. 59, 3971–3975 (2020).

    Google Scholar 

  19. Koner, A., Morgenstern, B. & Andrada, D. M. Metathesis reactions of a NHC-stabilized phosphaborene. Angew. Chem. Int. Ed. 61, e202203345 (2022).

    Google Scholar 

  20. Li, J., Lu, Z. & Liu, L. L. A free phosphaborene stable at room temperature. J. Am. Chem. Soc. 144, 23691–23697 (2022).

    Google Scholar 

  21. Li, J., Mei, Y. & Liu, L. L. An isolable phosphaborene stabilized by an intramolecular Lewis base. Eur. J. Inorg. Chem. 2022, e202200368 (2022).

    Google Scholar 

  22. LaPierre, E. A., Patrick, B. O. & Manners, I. A Crystalline Monomeric Phosphaborene. J. Am. Chem. Soc. 145, 7107–7112 (2023).

    Google Scholar 

  23. Rivard, E., Merrill, W. A., Fettinger, J. C. & Power, P. P. A donor-stabilization strategy for the preparation of compounds featuring P=B and As=B double bonds. Chem. Commun. 2006, 3800–3802 (2006).

  24. Rivard, E. et al. Boron−pnictogen multiple bonds: donor-stabilized P=B and As=B bonds and a hindered iminoborane with a B−N triple bond. Inorg. Chem. 46, 2971–2978 (2007).

    Google Scholar 

  25. Hardman, N. J., Cui, C., Roesky, H. W., Fink, W. H. & Power, P. P. Stable, monomeric imides of aluminum and gallium: synthesis and characterization of [{HC(MeCDippN)2}MN-2,6-Trip2C6H3] (M=Al or Ga; Dipp=2,6-iPr2C6H3; Trip=2,4,6-iPr3C6H2). Angew. Chem. Int. Ed. 40, 2172–2174 (2001).

    Google Scholar 

  26. Li, J. et al. Synthesis, structure, and reactivity of a monomeric iminoalane. Chem. Eur. J. 18, 15263–15266 (2012).

    Google Scholar 

  27. Anker, M. D., Schwamm, R. J. & Coles, M. P. Synthesis and reactivity of a terminal aluminium–imide bond. Chem. Commun. 56, 2288–2291 (2020).

    Google Scholar 

  28. Heilmann, A., Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Carbon monoxide activation by a molecular aluminium imide: C−O bond cleavage and C−C bond formation. Angew. Chem. Int. Ed. 59, 4897–4901 (2020).

    Google Scholar 

  29. Dhara, D. et al. Synthesis and reactivity of a dialane-bridged diradical. Angew. Chem, Int. Ed. 63, e202401052 (2024).

    Google Scholar 

  30. Feng, G. & Yamashita, M. Synthesis and reactivity of an alumanyl–tin species to form an Al,N-heteroallene derivative. J. Am. Chem. Soc. 146, 28653–28657 (2024).

    Google Scholar 

  31. Queen, J. D., Irvankoski, S., Fettinger, J. C., Tuononen, H. M. & Power, P. P. A monomeric aluminum imide (Iminoalane) with Al–N triple-bonding: bonding analysis and dispersion energy stabilization. J. Am. Chem. Soc. 143, 6351–6356 (2021).

    Google Scholar 

  32. Wright, R. J., Phillips, A. D., Allen, T. L., Fink, W. H. & Power, P. P. Synthesis and characterization of the monomeric imides Ar’MNAr” (M = Ga or In; Ar’ or Ar” = terphenyl ligands) with two-coordinate gallium and indium. J. Am. Chem. Soc. 125, 1694–1695 (2003).

    Google Scholar 

  33. Wright, R. J., Brynda, M., Fettinger, J. C., Betzer, A. R. & Power, P. P. Quasi-isomeric gallium amides and imides GaNR2 and RGaNR (R = Organic Group): reactions of the digallene, Ar’GaGaAr’ (Ar’ = C6H3-2,6-(C6H3-2,6-Pri2)2) with unsaturated nitrogen compounds. J. Am. Chem. Soc. 128, 12498–12509 (2006).

    Google Scholar 

  34. Anker, M. D., Lein, M. & Coles, M. P. Reduction of organic azides by indyl-anions. isolation and reactivity studies of indium–nitrogen multiple bonds. Chem. Sci. 10, 1212–1218 (2019).

    Google Scholar 

  35. von Hänisch, C. & Hampe, O. {Li(thf)3}2Ga2{As(SiiPr3)}4]—A compound with gallium-arsenic double bonds. Angew. Chem. Int. Ed. 41, 2095–2097 (2002).

    Google Scholar 

  36. Ganesamoorthy, C. et al. From stable Sb- and Bi-centered radicals to a compound with a Ga=Sb double bond. Nat. Commun. 9, 87 (2018).

    Google Scholar 

  37. Helling, C., Wölper, C. & Schulz, S. Synthesis of a gallaarsene {HC[C(Me)N-2,6-i-Pr2-C6H3]2}GaAsCp* containing a Ga=As double bond. J. Am. Chem. Soc. 140, 5053–5056 (2018).

    Google Scholar 

  38. García-Romero, Á, Hu, C., Pink, M. & Goicoechea, J. M. A crystalline unsupported phosphagallene and phosphaindene. J. Am. Chem. Soc. 147, 1231–1239 (2025).

    Google Scholar 

  39. Wilson, D. W. N., Feld, J. & Goicoechea, J. M. A phosphanyl-phosphagallene that functions as a frustrated Lewis pair. Angew. Chem. Int. Ed. 59, 20914–20918 (2020).

    Google Scholar 

  40. Li, B., Wölper, C., Haberhauer, G. & Schulz, S. Synthesis and reactivity of heteroleptic Ga−P−C allyl cation analogues. Angew. Chem. Int. Ed. 60, 1986–1991 (2021).

    Google Scholar 

  41. Sharma, M. K., Wölper, C., Haberhauer, G. & Schulz, S. Multi-talented gallaphosphene for Ga−P−Ga heteroallyl cation generation, CO2 storage, and C(sp3)−H bond activation. Angew. Chem. Int. Ed. 60, 6784–6790 (2021).

    Google Scholar 

  42. Sharma, M. K. et al. (PCO)2 (M = Ga, In): a new class of reactive group 13 metal-phosphorus compounds. Chem. Eur. J. 28, e202200444 (2022).

    Google Scholar 

  43. Feld, J., Wilson, D. W. N. & Goicoechea, J. M. Contrasting E−H bond activation pathways of a phosphanyl-phosphagallene. Angew. Chem. Int. Ed. 60, 22057–22061 (2021).

    Google Scholar 

  44. Szych, L. S., Bresien, J., Fischer, L., Ernst, M. J. & Goicoechea, J. M. Reactivity of an arsanyl-phosphagallene: decarbonylation of CO2 and COS to form phosphaketenes. Chem. Sci. 16, 7397–7410 (2025).

    Google Scholar 

  45. Wilson, D. W. N., Myers, W. K. & Goicoechea, J. M. Synthesis and decarbonylation chemistry of gallium phosphaketenes. Dalton Trans 49, 15249–15255 (2020).

    Google Scholar 

  46. Taeufer, T. et al. Photochemical formation and reversible base-induced cleavage of a phosphagallene. Chem. Sci. 14, 3018–3023 (2023).

    Google Scholar 

  47. Wang, Y. et al. Synthesis and reactivity of germyl-substituted gallapnictenes. Inorg. Chem. 64, 3485–3494 (2025).

    Google Scholar 

  48. Nees, S. et al. On the reactivity of Mes*P(PMe3) towards aluminum(I) compounds – evidence for the intermediate formation of phosphaalumenes. ChemPlusChem 88, e202300078 (2023).

    Google Scholar 

  49. Szych, L. S., Denker, L., Feld, J. & Goicoechea, J. M. Trapping an elusive phosphanyl-phosphaalumene. Chem. Eur. J. 30, e202401326 (2024).

    Google Scholar 

  50. Fischer, M. et al. Isolable phospha- and arsaalumenes. J. Am. Chem. Soc. 143, 4106–4111 (2021).

    Google Scholar 

  51. Nees, S. et al. On the reactivity of phosphaalumenes towards C−C multiple bonds. Angew. Chem. Int. Ed. 62, e202215838 (2023).

    Google Scholar 

  52. Wellnitz, T. et al. Reactivity of pnictaalumenes towards 1,3-dipole molecules. Angew. Chem. Int. Ed. 64, e202506356 (2025).

    Google Scholar 

  53. Wellnitz, T., Wu, L., Braunschweig, H. & Hering-Junghans, C. A BNAlP-heterocycle. Chem. Commun. 61, 4014–4017 (2025).

    Google Scholar 

  54. Luo, Q., Liu, T., Huang, L., Yang, C. & Lu, W. Aromative dephosphinidenation of a bisphosphirane-fused anthracene toward E−H (E=H, Si, N and P) bond activation. Angew. Chem. Int. Ed. 63, e202405122 (2024).

    Google Scholar 

  55. Luo, Q., Liu, T., Huang, L., Li, Q. & Lu, W. On the reactivity of bisphosphirane-fused anthracene towards dichalcogenide bonds, IPr carbene, 2,6-diisopropylphenyl isocyanide and trimethylsilyl azide. Eur. J. Org. Chem. 28, e202500071 (2025).

    Google Scholar 

  56. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Google Scholar 

  57. Savin, A., Nesper, R., Wengert, S. & Fässler, T. F. ELF: the electron localization function. Angew. Chem. Int. Ed. Engl. 36, 1808–1832 (1997).

    Google Scholar 

  58. Welch, G. C., Juan, R. R. S., Masuda, J. D. & Stephan, D. W. Reversible, metal-free hydrogen activation. Science 314, 1124–1126 (2006).

    Google Scholar 

  59. Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).

    Google Scholar 

  60. Geier, S. J., Gilbert, T. M. & Stephan, D. W. Activation of H2 by phosphinoboranes R2PB(C6F5)2. J. Am. Chem. Soc. 130, 12632–12633 (2008).

    Google Scholar 

  61. Fan, J. et al. Silylene-stabilized neutral dibora-aromatics with a B=B bond. J. Am. Chem. Soc. 146, 20458–20467 (2024).

    Google Scholar 

  62. Lu, W. et al. An unsymmetrical, cyclic diborene based on a chelating CAAC ligand and its small-molecule activation and rearrangement chemistry. Angew. Chem. Int. Ed. 61, e202113947 (2022).

    Google Scholar 

  63. Lu, W., Xu, K., Li, Y., Hirao, H. & Kinjo, R. Facile activation of homoatomic σ bonds in white phosphorus and diborane by a diboraallene. Angew. Chem. Int. Ed. 57, 15691–15695 (2018).

    Google Scholar 

  64. Xu, H. et al. Dialumene-mediated production of phosphines through P4 reduction. Angew. Chem. Int. Ed. 63, e202404532 (2024).

    Google Scholar 

  65. Holzner, R. et al. Imino(silyl)disilenes: application in versatile bond activation, reversible oxidation and thermal isomerization. Dalton Trans 50, 8785–8793 (2021).

    Google Scholar 

  66. Fanta, A. D. et al. The reaction of disilenes with P4 and As4. Inorg. Chim. Acta. 198-200, 733–739 (1992).

    Google Scholar 

  67. Driess, M., Fanta, A. D., Powell, D. R. & West, R. Synthesis, characterization, and complexation of an unusual P2Si2 bicyclobutane with butterfly-structure: 2,2,4,4-tetramesityl-1,3-diphospha-2,4-disilabicyclo[1.1.0]butane. Angew. Chem. Int. Ed. Engl. 28, 1038–1040 (1989).

    Google Scholar 

  68. Fox, A. R., Wright, R. J., Rivard, E. & Power, P. P. Tl2[Aryl2P4]: a thallium complexed diaryltetraphosphabutadienediide and its two-electron oxidation to a diaryltetraphosphabicyclobutane, Aryl2P4. Angew. Chem. Int. Ed. Engl. 44, 7729–7733 (2005).

    Google Scholar 

  69. Khan, S. et al. Preparation of RSn(I)–Sn(I)R with two unsymmetrically coordinated Sn(I) atoms and subsequent gentle activation of P4. J. Am. Chem. Soc. 133, 17889–17894 (2011).

    Google Scholar 

  70. Drieß, M. 1,2,3-triphospha-4-silabicyclo[1.1.0]butanes from activated, stable phosphasilenes and white phosphorus. Angew. Chem. Int. Ed. Engl. 30, 1022–1024 (1991).

    Google Scholar 

  71. Li, X., Cheng, X., Song, H. & Cui, C. Synthesis of HC[(CBut)(NAr)]2Al (Ar = 2,6-Pri2C6H3) and its reaction with isocyanides, a bulky azide, and H2O. Organometallics 26, 1039–1043 (2007).

    Google Scholar 

  72. Chen, W. et al. Reductive linear- and cyclo-trimerization of isocyanides using an Al–Al-bonded compound. Chem. Commun. 55, 9452–9455 (2019).

    Google Scholar 

  73. Evans, M. J., Anker, M. D., McMullin, C. L. & Coles, M. P. Controlled reductive C–C coupling of isocyanides promoted by an aluminyl anion. Chem. Sci. 14, 6278–6288 (2023).

    Google Scholar 

  74. Coles, M. P. & Hitchcock, P. B. Variable coordination chemistry of the phospha(iii)guanidinate anion; application as a metal-functionalised phosphine ligand. Chem. Commun. 23, 2794–2795 (2002).

    Google Scholar 

  75. Schmidpeter, A., Jochem, G., Karaghiosofl, K. & Robl, C. Phosphorus(v) selenides with phosphorus in a trigonal-planar environment. Angew. Chem. Int. Ed. Engl. 31, 1350–1352 (1992).double bond is not shown clearly in the phenyl ring

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22471177), the Sichuan Science and Technology Program (2024NSFSC0285, 2022ZYD0050), the Funding for Hundred Talent Program of Sichuan University (YJ2021161), and the Fundamental Research Funds for the Central Universities. We would like to thank Dr. Yongxin Li (NTU) and Meng Yang (Sichuan University) for support in Single-crystal X-ray diffraction analysis. We acknowledge Dongyan Deng and Jing Li at Sichuan University, and Qianli Li at Liaocheng University for assistance in NMR and HRMS measurement. We thank Dr. William C. Ewing (VanDeMark) for his kind support on the preparation of the manuscript.

Author information

Author notes
  1. These authors contributed equally: Yan Cha, Zhaoziyuan Yang.

Authors and Affiliations

  1. Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Sichuan University, Chengdu, P. R. China

    Yan Cha, Zhaoziyuan Yang, Xiao Zhuang, Pengyu Gao, Tingting Liu, Fei Luo, Xianjia Ni, Qing Luo & Wei Lu

Authors
  1. Yan Cha
    View author publications

    Search author on:PubMed Google Scholar

  2. Zhaoziyuan Yang
    View author publications

    Search author on:PubMed Google Scholar

  3. Xiao Zhuang
    View author publications

    Search author on:PubMed Google Scholar

  4. Pengyu Gao
    View author publications

    Search author on:PubMed Google Scholar

  5. Tingting Liu
    View author publications

    Search author on:PubMed Google Scholar

  6. Fei Luo
    View author publications

    Search author on:PubMed Google Scholar

  7. Xianjia Ni
    View author publications

    Search author on:PubMed Google Scholar

  8. Qing Luo
    View author publications

    Search author on:PubMed Google Scholar

  9. Wei Lu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.C., X.Z. F.L. X.N., T.L., and Q.L. carried out the experiment work. Z.Y. and P.G. conducted theoretical studies. W.L. conceived and supervised the study. Y.C., Z.Y., and W.L. drafted the manuscript. All authors contributed to discussions.

Corresponding author

Correspondence to Wei Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Peer review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, Y., Yang, Z., Zhuang, X. et al. An isolable phosphaalumene(3) capable of small molecule activation via unique modes of reactivity. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69118-4

Download citation

  • Received: 27 July 2025

  • Accepted: 22 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69118-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing