Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
An all-in-one Ag2Se-based flexible solar-thermoelectric generator with photothermal integration
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

An all-in-one Ag2Se-based flexible solar-thermoelectric generator with photothermal integration

  • Shuaihang Hou1 na1,
  • Jian Wang2 na1,
  • Guixia Zhang1,
  • Xinqi Liu1,
  • Zuoxu Wu3,
  • Bingshang Liu1,
  • Mengyang Lu1,
  • Muhao Zhang1,
  • Shihao Qiu1,
  • Zhiliang Li  ORCID: orcid.org/0000-0002-8560-92071,
  • Feng Cao  ORCID: orcid.org/0000-0003-3140-45022,
  • Qian Zhang  ORCID: orcid.org/0000-0001-5975-97814,5 &
  • …
  • Shufang Wang  ORCID: orcid.org/0000-0001-5126-94461 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Thermoelectric devices and materials
  • Thermoelectrics

Abstract

Flexible solar-thermoelectric generators hold great promise for efficient solar energy harvesting and power supply in wearable electronics. However, the achievement of strong photothermal and thermoelectric performance simultaneously within a single material remains a significant challenge. Here, we propose a fully integrated solar-thermoelectric generator that directly employs Ag2Se thermoelectric thin films as the light-absorbing terminal, combined with a bottom infrared-reflective layer and surface visible anti-reflective coating. This multilayer architecture enables solar-selective absorption and enhances the photothermal conversion efficiency of Ag2Se up to 87.6%, while demonstrating good generalizability to other narrow-bandgap thermoelectric films. The resulting ring-shaped flexible generator delivers a maximum temperature difference and power density of 19.6 K and 0.17 μW cm-2 under 1-sun irradiation and exhibits a stable peak output power of ~1 μW under prolonged outdoor sunlight. These results highlight an effective strategy for high-efficiency solar-thermoelectric generators design and broaden the application potential of narrow-bandgap thermoelectric thin films in photothermal energy conversion.

Data availability

The Source data generated in this study are provided in the Supplementary Information/Source Data file. Source data are provided with this paper.

References

  1. Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011).

    Google Scholar 

  2. Kraemer, D. et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy 1, 1–8 (2016).

    Google Scholar 

  3. Kashyap, R. K. & Pillai, P. P. Plasmonic nanoparticles boost solar-to-electricity generation at ambient conditions. Nano Lett. 24, 5585–5592 (2024).

    Google Scholar 

  4. Mishra, B. R., Vossier, A., Revol I., Almuneau, G. & Vaillon, R. Insight into cooling requirements for thermophotovoltaic devices. Sol. Energy Mater. Sol Cells 296, 114023 (2026).

  5. Piness-Sommer, M., Braun, A., Katz, E. A. & Gordon, J. M. Ultra-compact combustion-driven high-efficiency thermophotovoltaic generators. Sol. Energy Mater. Sol. Cells 157, 953–959 (2016).

    Google Scholar 

  6. Marques-Hueso, J. et al. Photonic Crystal-driven spectral concentration for upconversion photovoltaics. Adv. Opt. Mater. 3, 568–574 (2014).

    Google Scholar 

  7. Esmaielpour, H., Lombez, L., Giteau, M., Guillemoles, J. F. & Suchet, D. Impact of excitation energy on hot carrier properties in InGaAs multi-quantum well structure. Prog. Photovoltaics: Res. Appl. 30, 1354–1362 (2022).

    Google Scholar 

  8. Arnaoutakis, G. E. et al. Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics. Sol. Energy Mater. Sol. Cells 140, 217–223 (2015).

    Google Scholar 

  9. Yang, Z. -y et al. Ag2Se/nylon self-supporting composite films for wearable photo-thermoelectric generators with high output characteristics. J. Mater. Chem. A 10, 21080–21092 (2022).

    Google Scholar 

  10. Wu, Z. et al. High-performance floating thermoelectric generator for all-day power supply. Nano Energy 133, 110443 (2025).

    Google Scholar 

  11. Dai, X. et al. All-automated fabrication of freestanding and scalable photo-thermoelectric devices with high performance. Adv. Mater. 36, e2312570 (2024).

    Google Scholar 

  12. Li, K. et al. All-in-one single-piece flexible solar thermoelectric generator with scissored heat rectifying p-n modules. Nano Energy 93, 106789 (2022).

    Google Scholar 

  13. Jin, X. Z. et al. Ultraflexible PEDOT:PSS/helical carbon nanotubes film for all-in-one photothermoelectric conversion. ACS Appl Mater. Interfaces 14, 27083–27095 (2022).

    Google Scholar 

  14. Jurado, J. P. et al. Solar harvesting: a unique opportunity for organic thermoelectrics?. Adv. Energy Mater. 9, 1902385 (2019).

    Google Scholar 

  15. Kim, H. J., Kim, B., Auh, Y. & Kim, E. Conjugated organic photothermal films for spatiotemporal thermal engineering. Adv. Mater. 33, e2005940 (2021).

    Google Scholar 

  16. Vossier, A., Blandre, E. & Vaillon, R. Hybridising photovoltaics and thermoelectrics: A detailed-balance analysis. Sol. Energy Mater Sol Cells 289, 113636 (2025).

  17. Beeri, O. et al. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling. J. Appl. Phys. 118, 115104 (2015).

  18. Mao, J. et al. High Thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).

    Google Scholar 

  19. Zhao, P. et al. Plasticity in single-crystalline Mg3Bi2 thermoelectric material. Nature 631, 777–782 (2024).

  20. Jiang, F. et al. Prefer-oriented Ag2Se crystal for high-performance thermoelectric cooling. Adv. Funct. Mater. 35, 2415000 (2024).

    Google Scholar 

  21. Xu, S. et al. Interfacial bonding enhances thermoelectric cooling in 3D-printed materials. Science 387, 845–850 (2025).

    Google Scholar 

  22. Lin, S. et al. Revealing the promising near-room-temperature thermoelectric performance in Ag2Se single crystals. J. Materiom. 9, 754–761 (2023).

    Google Scholar 

  23. Hou, S. et al. Encapsulated Ag2Se-based flexible thermoelectric generator with remarkable performance. Mater. Today Phys. 38, 101276 (2023).

    Google Scholar 

  24. Ding, Y. et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat. Commun. 10, 841 (2019).

    Google Scholar 

  25. Lei, Y. et al. Microstructurally tailored thin beta-Ag2Se films toward commercial flexible thermoelectrics. Adv. Mater. 34, 2104786 (2022).

    Google Scholar 

  26. Chen, W. et al. Flexible Ag2Se-based thin-film thermoelectrics for sustainable energy harvesting and cooling. Nat. Commun. 16, 7579 (2025).

    Google Scholar 

  27. Qin, J. et al. Versatile polymer-coated Ag2Se thermoelectric materials and devices for multi-scenario applications developed by direct-ink printing. Nat. Commun. 16, 8497 (2025).

  28. Cao, T. et al. Advancing Ag2Se thin-film thermoelectrics via selenization-driven anisotropy control. Nat. Commun. 16, 1555 (2025).

    Google Scholar 

  29. Yang, D. et al. Flexible power generators by Ag2Se thin films with record-high thermoelectric performance. Nat. Commun. 15, 923 (2024).

    Google Scholar 

  30. Liu, Y. et al. Fully inkjet-printed Ag2Se flexible thermoelectric devices for sustainable power generation. Nat. Commun. 15, 2141 (2024).

    Google Scholar 

  31. Qin, J. et al. Modulating carrier transport by cross-dimensional compositing of Ag2Se/MXene for high-performance flexible thermoelectrics. J. Mater. Chem. A 12, 17586–17595 (2024).

    Google Scholar 

  32. Yang, Z. Y., Jin, X. Z., Huang, C. H., Lei, Y. Z. & Wang, Y. Constructing A/B-side heterogeneous asynchronous structure with Ag2Se layers and bushy-like PPy toward high-performance flexible photo-thermoelectric generators. ACS Appl Mater. Interfaces 14, 33370–33382 (2022).

    Google Scholar 

  33. Dalven, R. & Gill, R. Energy gap in β-Ag2Se. Phys. Rev. 159, 645–649 (1967).

    Google Scholar 

  34. Zhou, J. et al. Decipher the Wavelength and intensity using photothermoelectric detectors. ACS Appl Mater. Interfaces 16, 47923–47930 (2024).

    Google Scholar 

  35. Shi, W.-P. et al. A broadband self-powered and stable photothermoelectric detector based on Ag2Se/MWCNTs composite fabricated via screen printing. Microstructures 5, 2025081 (2025).

  36. Guo, R. et al. Spray-coated Ag2Se thin films for high-performance photothermoelectric detectors. J. Alloys Compd 1036, 181736 (2025).

  37. Zhao, Y. D. et al. Stretchable photothermal membrane of NIR-II charge-transfer cocrystal for wearable solar thermoelectric power generation. Sci. Adv. 9, eadh8917 (2023).

    Google Scholar 

  38. Liu, J. Z. et al. Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation. Sci. Adv. 11, eadr2158 (2025).

    Google Scholar 

  39. Han, W. B. et al. Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci. Adv. 9, eadf5883 (2023).

    Google Scholar 

  40. Li, Y. T. et al. Exceptionally high power factor Ag2Se/Se/polypyrrole composite films for flexible thermoelectric generators. Adv. Funct. Mater. 32, 2106902 (2022).

    Google Scholar 

  41. Knickerbocker, S. A. & Kulkarni, A. K. Calculation of the figure of merit for indium tin oxide films based on basic theory. J. Vac. Sci. Technol. A: Vac., Surf., Films 13, 1048–1052 (1995).

    Google Scholar 

  42. Hou, S. et al. High performance wearable thermoelectric generators using Ag2Se films with large carrier mobility. Nano Energy 87, 106223 (2021).

    Google Scholar 

  43. Kulkarni, A. K., Schulz, K. H., Lim, T. S. & Khan, M. Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques. Thin Solid Films 345, 273–277 (1999).

    Google Scholar 

  44. Lu, Y. et al. Ultrahigh performance PEDOT/Ag2Se/CuAgSe composite film for wearable thermoelectric power generators. Mater. Today Phys. 14, 100223 (2020).

    Google Scholar 

  45. Hou, S. et al. High-performance, thin-film thermoelectric generator with self-healing ability for body-heat harvesting. Cell Rep. Phys. Sci. 3, 101146 (2022).

    Google Scholar 

  46. Jiang, C. et al. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting. Nano Energy 80, 105488 (2021).

    Google Scholar 

  47. Saeidi Javash, M. et al. Machine learning-assisted ultrafast flash sintering of high-performance and flexible silver-selenide thermoelectric devices. Energy Environ. Sci. 15, 5093–5104 (2022).

    Google Scholar 

  48. Wang, J. et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2017).

    Google Scholar 

  49. Xiong, Z. C. et al. Flexible fire-resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy-driven water purification. Small 14, 1803387 (2018).

  50. Li, Y. et al. General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nat. Commun. 13, 776 (2022).

    Google Scholar 

  51. Cao, F. et al. Enhanced thermal stability of W-Ni-Al2O3 cermet-based spectrally selective solar absorbers with tungsten infrared reflectors. Adv. Energy Mater. 5, 1401042 (2014).

  52. V. Besteiro, L., Kong, X.-T., Wang, Z., Rosei, F. & Govorov, A. O. Plasmonic glasses and films based on alternative inexpensive materials for blocking infrared radiation. Nano Lett. 18, 3147–3156 (2018).

    Google Scholar 

  53. Minot, M. J. Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 μ. J. Opt. Soc. Am. 66, 515–519 (1976).

  54. Kim, B., Shin, H., Park, T., Lim, H. & Kim, E. NIR-sensitive poly(3,4-ethylenedioxyselenophene) derivatives for transparent photo-thermo-electric converters. Adv. Mater. 25, 5483–5489 (2013).

    Google Scholar 

  55. Tang, X.-H. et al. Achieving free-standing PEDOT:PSS solar generators with efficient all-in-one photothermoelectric conversion. ACS Appl. Mater. Interfaces 15, 23286–23298 (2023).

    Google Scholar 

  56. Liu, Y. et al. Strong interaction between plasmon and topological surface state in Bi2Se3/Cu2-xS nanowires for solar-driven photothermal applications. Sci. Adv. 11, eadt2884 (2025).

    Google Scholar 

  57. Zhang, Q. et al. Transparent power-generating windows based on solar-thermal-electric conversion. Adv. Energy Mater. 11, 2101213 (2021).

    Google Scholar 

  58. Zhou, Z., Song, Q., Huang, B., Feng, S. & Lu, C. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-photothermal performance. ACS Nano 15, 12405–12417 (2021).

    Google Scholar 

  59. Qian, Y. et al. A PEDOT:PSS/MXene-based actuator with self-powered sensing function by incorporating a photo-thermoelectric generator. RSC Adv. 13, 32722–32733 (2023).

    Google Scholar 

  60. Sun Q. et al Radiation-modulated origami-based thermoelectric generator for continuous solar energy harvesting. Adv. Funct. Mater. e18493 https://doi.org/10.1002/adfm.202518493.(2025).

  61. Wang, K. et al. Melanin–perovskite composites for photothermal conversion. Adv. Energy Mater. 9, 1901753 (2019).

    Google Scholar 

  62. Cai, Y. et al. Photothermal conversion of Ti2O3 film for tuning terahertz waves. iScience 25, 103661 (2022).

  63. Fan, X., Ding, Y., Liu, Y., Liang, J. & Chen, Y. Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13, 8124–8134 (2019).

    Google Scholar 

  64. He, M. et al. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy 49, 588–595 (2018).

    Google Scholar 

  65. Yin, L. et al. Low-temperature sintering of Ag nanoparticles for high-performance thermoelectric module design. Nat. Energy 8, 665–674 (2023).

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (52572216 S.W, 5247219 F.C), the National Natural Science Foundation of China for Distinguished Young Scholars (52425108 Q.Z), the Science Research Project of Hebei Education Department (JZX2024008 S.W), the Hebei Province Yanzhao Golden Platform Talent Aggregation Plan Key Talent Project (B2025003002 S.H), the Guangdong Basic and Applied Basic Research Foundation (2024B1515040022 F.C). the Natural Science Foundation of Hubei Province (2025AFB208 Z.W), and the Research Project of Hubei Provincial Department of Education (B2024122 Z.W).

Author information

Author notes
  1. These authors contributed equally: Shuaihang Hou, Jian Wang.

Authors and Affiliations

  1. Hebei Key Lab of Optic-Electronic Information and Materials, School of Physics Science and Technology, Hebei University, Baoding, China

    Shuaihang Hou, Guixia Zhang, Xinqi Liu, Bingshang Liu, Mengyang Lu, Muhao Zhang, Shihao Qiu, Zhiliang Li & Shufang Wang

  2. School of Science, and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, China

    Jian Wang & Feng Cao

  3. Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, Huangshi, China

    Zuoxu Wu

  4. School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, China

    Qian Zhang

  5. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, China

    Qian Zhang

Authors
  1. Shuaihang Hou
    View author publications

    Search author on:PubMed Google Scholar

  2. Jian Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Guixia Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Xinqi Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Zuoxu Wu
    View author publications

    Search author on:PubMed Google Scholar

  6. Bingshang Liu
    View author publications

    Search author on:PubMed Google Scholar

  7. Mengyang Lu
    View author publications

    Search author on:PubMed Google Scholar

  8. Muhao Zhang
    View author publications

    Search author on:PubMed Google Scholar

  9. Shihao Qiu
    View author publications

    Search author on:PubMed Google Scholar

  10. Zhiliang Li
    View author publications

    Search author on:PubMed Google Scholar

  11. Feng Cao
    View author publications

    Search author on:PubMed Google Scholar

  12. Qian Zhang
    View author publications

    Search author on:PubMed Google Scholar

  13. Shufang Wang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.H.: Writing-review & editing, Writing-original draft, Visualization, Investigation, Data curation, Conceptualization, Funding acquisition. J.W. and X.L.: Investigation, Data curation. Z.W.: Funding acquisition, Data curation. G.Z., B.L., M.L., M.Z., S.Q.: Data curation. Z.L.: Resources. F.C., Q.Z., S.W.: Writing-review & editing, Writing-original draft, Supervision, Resources, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Feng Cao, Qian Zhang or Shufang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Daniele Trucchi and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, S., Wang, J., Zhang, G. et al. An all-in-one Ag2Se-based flexible solar-thermoelectric generator with photothermal integration. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69120-w

Download citation

  • Received: 20 October 2025

  • Accepted: 21 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69120-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing