Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Engineered bacterial therapy suppresses Enterohemorrhagic Escherichia coli through metabolic competition and virulence silencing
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Engineered bacterial therapy suppresses Enterohemorrhagic Escherichia coli through metabolic competition and virulence silencing

  • Guozhen Ma1,2,3,4 na1,
  • Ruiying Liu4 na1,
  • Xueping Li5 na1,
  • Jialin Wu6 na1,
  • Yuanyuan Niu4,
  • Sheng Wang5,
  • Ziwei Chen5,
  • Xudong Qin5,
  • Qian Wang4,
  • Junyue Wang7,
  • Jiamin Qian4,
  • Mingqing Zhang  ORCID: orcid.org/0000-0001-5486-20268,
  • Yu Pang  ORCID: orcid.org/0009-0003-0547-88554,
  • Yamin Sun  ORCID: orcid.org/0000-0002-8576-67471,2,3,
  • Guosheng Tang  ORCID: orcid.org/0009-0009-2791-84486,
  • Tao Wang  ORCID: orcid.org/0000-0003-1490-74075 &
  • …
  • Yutao Liu  ORCID: orcid.org/0000-0002-0639-93371,2,3 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bacterial infection
  • Bacterial synthetic biology
  • Infection
  • Pathogens

Abstract

Enterohemorrhagic Escherichia coli (EHEC) is a severe foodborne pathogen that can lead to hemolytic uremic syndrome. However, antibiotics are contraindicated for EHEC treatment due to toxin release and gut microbiota disruption. Here we report a dual‑mechanism therapeutic strategy combining an engineered Escherichia coli Nissle 1917 strain (EcN3) with 2′‑fucosyllactose (2‑FL) delivered via multicompartment microspheres (MCMs). EcN3 expresses α‑L‑fucosidase to hydrolyze 2‑FL into lactose and fucose. Lactose enhances glucuronic acid utilization, limiting a preferred nutrient of EHEC, whereas fucose activates FusKR signaling to suppress virulence gene expression. MCMs confer gastric protection and enable targeted colonic release, ensuring coordinated activity. In female mouse models and infant rabbit models of Citrobacter rodentium and EHEC infection, this system reduces intestinal colonization, virulence gene expression and epithelial damage without inducing Shiga toxin production. Moreover, MCMs-based strategy preserves the relative abundance of Lactobacillus, and promotes intestinal integrity. This targeted strategy presents a viable alternative to antibiotics, addressing EHEC pathogenesis and antibiotic resistance.

Data availability

The raw sequencing data of 16S rRNA gene sequencing in this study have been deposited in the Genome Sequence Archive (GSA) at the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, under accession code CRA024889. The metabolomic data have been uploaded into the Open Archive for Miscellaneous Data under accession Number: OMIX013933. The relevant experimental data and metadata generated in this study are provided in the manuscript, Supplementary Information, and Source Data file. Source data are provided with this paper.

References

  1. Mancuso, G., Midiri, A., Gerace, E. & Biondo, C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 10, 1310 (2021).

    Google Scholar 

  2. Liu, Y. et al. LysR-type transcriptional regulator OvrB encoded in O island 9 drives enterohemorrhagic Escherichia coli O157:H7 virulence. Virulence 10, 783–792 (2019).

    Google Scholar 

  3. Feitz, W. J. C. et al. Primary human derived blood outgrowth endothelial cells: an appropriate in vitro model to study Shiga toxin mediated damage of endothelial cells. Toxins 12, 483 (2020).

  4. Mühlen, S. et al. Identification of antibiotics that diminish disease in a murine model of enterohemorrhagic Escherichia coli infection. Antimicrob. Agents Chemother. 64, e02159-19 (2020).

    Google Scholar 

  5. Shi, Y. et al. Structural and functional alterations in the microbial community and immunological consequences in a mouse model of antibiotic-induced dysbiosis. Front. Microbiol. 9, 1948 (2018).

    Google Scholar 

  6. Sun, H. et al. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol. Rev. 48, fuae028 (2024).

    Google Scholar 

  7. Gelalcha, B. D., Brown, S. M., Crocker, H. E., Agga, G. E. & Kerro Dego, O. Regulation mechanisms of virulence genes in enterohemorrhagic Escherichia coli. Foodborne Pathog. Dis. 19, 598–612 (2022).

    Google Scholar 

  8. Vlisidou, I. et al. Role of intimin-tir interactions and the tir-cytoskeleton coupling protein in the colonization of calves and lambs by Escherichia coli O157:H7. Infect. Immun. 74, 758–764 (2006).

    Google Scholar 

  9. Abe, A., Heczko, U., Hegele, R. G. & Brett Finlay, B. Two enteropathogenic Escherichia coli type III secreted proteins, EspA and EspB, are virulence factors. J. Exp. Med. 188, 1907–1916 (1998).

    Google Scholar 

  10. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    Google Scholar 

  11. Collins, J. W. et al. Citrobacter rodentium: infection, inflammation and the microbiota. Nat. Rev. Microbiol. 12, 612–623 (2014).

    Google Scholar 

  12. Deng, W., Li, Y., Vallance, B. A. & Finlay, B. B. Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect. Immun. 69, 6323–6335 (2001).

    Google Scholar 

  13. Platenkamp, A. & Mellies, J. L. Environment controls LEE regulation in enteropathogenic Escherichia coli. Front. Microbiol. 9, 1694 (2018).

    Google Scholar 

  14. Liu, B. et al. Escherichia coli O157:H7 senses microbiota-produced riboflavin to increase its virulence in the gut. Proc. Natl. Acad. Sci. USA 119, e2212436119 (2022).

    Google Scholar 

  15. Pacheco, A. R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492, 113–117 (2012).

    Google Scholar 

  16. Rosay, T., Jimenez, A. G. & Sperandio, V. Glucuronic acid confers colonization advantage to enteric pathogens. Proc. Natl. Acad. Sci. USA 121, e2400226121 (2024).

    Google Scholar 

  17. Jimenez, A. G., Ellermann, M., Abbott, W. & Sperandio, V. Diet-derived galacturonic acid regulates virulence and intestinal colonization in enterohaemorrhagic Escherichia coli and Citrobacter rodentium. Nat. Microbiol. 5, 368–378 (2019).

    Google Scholar 

  18. Larzábal, M. et al. Early immune innate hallmarks and microbiome changes across the gut during Escherichia coli O157: H7 infection in cattle. Sci. Rep. 10, 21535 (2020).

    Google Scholar 

  19. Langer, R. & Peppas, N. A. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 49, 2990–3006 (2003).

    Google Scholar 

  20. Bernhard, S. & Tibbitt, M. W. Supramolecular engineering of hydrogels for drug delivery. Adv. Drug Deliv. Rev. 171, 240–256 (2021).

    Google Scholar 

  21. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Acta Mater. 18, 1345–1360 (2006).

    Google Scholar 

  22. Li, W. et al. Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 47, 5646–5683 (2018).

    Google Scholar 

  23. Majumder, P., Baxa, U., Walsh, S. T. R. & Schneider, J. P. Design of a multicompartment hydrogel that facilitates time-resolved delivery of combination therapy and synergized killing of glioblastoma. Angew. Chem. Int. Ed. Engl. 57, 15040–15044 (2018).

    Google Scholar 

  24. He, F. et al. Controllable multicompartmental capsules with distinct cores and shells for synergistic release. ACS Appl. Mater. Interfaces 8, 8743–8754 (2016).

    Google Scholar 

  25. Hu, Y. et al. Microfluidic fabrication and thermoreversible response of core/shell photonic crystalline microspheres based on deformable nanogels. Langmuir 28, 17186–17192 (2012).

    Google Scholar 

  26. Yu, Y. et al. Microfluidic lithography of bioinspired helical micromotors. Angew. Chem. Int. Ed. Engl. 56, 12127–12131 (2017).

    Google Scholar 

  27. Ding, Z. et al. Janus hydrogel microrobots with bioactive ions for the regeneration of tendon-bone interface. Nat. Commun. 16, 2189 (2025).

    Google Scholar 

  28. Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).

    Google Scholar 

  29. Liu, M. et al. OptoLacI: optogenetically engineered lactose operon repressor LacI responsive to light instead of IPTG. Nucleic Acids Res. 52, 8003–8016 (2024).

    Google Scholar 

  30. Krekhno, Z. et al. Citrobacter rodentium possesses a functional type II secretion system necessary for successful host infection. Gut Microbes 16, 2308049 (2024).

    Google Scholar 

  31. Feuerbacher, L. A. & Hardwidge, P. R. Influence of NleH effector expression, host genetics, and inflammation on Citrobacter rodentium colonization of mice. Microbes Infect. 16, 429–433 (2014).

    Google Scholar 

  32. Mao, T. et al. Hyaluronan-induced alterations of the gut microbiome protects mice against Citrobacter rodentium infection and intestinal inflammation. Gut Microbes 13, 1972757 (2021).

    Google Scholar 

  33. Xie, L. et al. Effect of fecal microbiota transplantation in patients with slow transit constipation and the relative mechanisms based on the protein digestion and absorption pathway. J. Transl. Med. 19, 490 (2021).

    Google Scholar 

  34. Sulaiman, J. E. et al. Elucidating human gut microbiota interactions that robustly inhibit diverse Clostridioides difficile strains across different nutrient landscapes. Nat. Commun. 15, 7416 (2024).

    Google Scholar 

  35. Wiese, M. et al. 2’-Fucosyllactose inhibits proliferation of Clostridioides difficile ATCC 43599 in the CDi-screen, an in vitro model simulating Clostridioides difficile infection. Front. Cell Infect. Microbiol. 12, 991150 (2022).

    Google Scholar 

  36. Yang, W. et al. Enterohemorrhagic Escherichia coli senses microbiota-derived nicotinamide to increase its virulence and colonization in the large intestine. Cell Rep. 42, 112638 (2023).

    Google Scholar 

  37. Liu, Y. et al. 2’-Fucosyllactose and 3’-Sialyllactose reduce mortality in neonatal enteroaggregative Escherichia coli infection by improving the construction of intestinal mucosal immunity. J. Agric. Food Chem. 72, 26165–26177 (2024).

    Google Scholar 

  38. Lynch, J. P., Goers, L. & Lesser, C. F. Emerging strategies for engineering Escherichia coli Nissle 1917-based therapeutics. Trends Pharm. Sci. 43, 772–786 (2022).

    Google Scholar 

  39. Wang, Y. et al. The protective effects of 2’-Fucosyllactose against E. Coli O157 infection are mediated by the regulation of gut microbiota and the inhibition of pathogen adhesion. Nutrients 12, 1284 (2020).

    Google Scholar 

  40. Wang, J. et al. 2’-Fucosyllactose ameliorates oxidative stress damage in d-galactose-induced aging mice by regulating gut microbiota and AMPK/SIRT1/FOXO1 pathway. Foods 11, 151 (2022).

    Google Scholar 

  41. Dundas, S., Todd, W. T. A., Neill, M. A. & Tarr, P. I. Using antibiotics in suspected haemolytic-uraemic syndrome: antibiotics should not be used in Escherichia coli O157:H7 infection. BMJ 330, 1209 (2005).

    Google Scholar 

  42. Zhang, C. et al. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat. Commun. 4, 2163 (2013).

    Google Scholar 

  43. LoCascio, R. G. et al. Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J. Agric. Food Chem. 55, 8914–8919 (2007).

    Google Scholar 

  44. De Leoz, M. L. A. et al. Human milk glycomics and gut microbial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. J. Proteome Res. 14, 491–502 (2014).

    Google Scholar 

  45. Kong, C. et al. Human milk oligosaccharides mediate the crosstalk between intestinal epithelial caco-2 cells and Lactobacillus plantarum WCFS1 in an in vitro model with intestinal peristaltic shear force. J. Nutr. 150, 2077–2088 (2020).

    Google Scholar 

  46. Becerra, J. E., Yebra, M. J. & Monedero, V. An L-Fucose operon in the probiotic Lactobacillus rhamnosus GG is involved in adaptation to gastrointestinal conditions. Appl. Environ. Microbiol. 81, 3880–3888 (2015).

    Google Scholar 

  47. Cheong, Y. E., Kim, J., Jin, Y.-S. & Kim, K. H. Elucidation of the fucose metabolism of probiotic Lactobacillus rhamnosus GG by metabolomic and flux balance analyses. J. Biotechnol. 360, 110–116 (2022).

    Google Scholar 

  48. Cheng, L., Kong, C., Walvoort, M. T. C., Faas, M. M. & de Vos, P. Human milk oligosaccharides differently modulate goblet cells under homeostatic, proinflammatory conditions and ER stress. Mol. Nutr. Food Res. 64, e1900976 (2019).

    Google Scholar 

  49. Liu, Y. et al. A fructose/H+ symporter controlled by a LacI-type regulator promotes survival of pandemic Vibrio cholerae in seawater. Nat. Commun. 12, 4649 (2021).

    Google Scholar 

  50. Li, L. et al. Microbiota-derived succinate promotes enterohaemorrhagic Escherichia coli virulence via lysine succinylation. Nat. Microbiol. 10, 749–764 (2025).

    Google Scholar 

  51. Robinson, C. M., Sinclair, J. F., Smith, M. J. & O’Brien, A. D. Shiga toxin of enterohemorrhagic Escherichia coli type O157:H7 promotes intestinal colonization. Proc. Natl. Acad. Sci. USA 103, 9667–9672 (2006).

    Google Scholar 

  52. Johnson-Henry, K. C. et al. Short-chain fructo-oligosaccharide and inulin modulate inflammatory responses and microbial communities in Caco2-bbe cells and in a mouse model of intestinal injury. J. Nutr. 144, 1725–1733 (2014).

    Google Scholar 

  53. Liu, Y. et al. Vibrio cholerae virulence is blocked by chitosan oligosaccharide-mediated inhibition of ChsR activity. Nat. Microbiol. 9, 2909–2922 (2024).

    Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (NSFC) Grants 825B2066 (to R.L.), 32170144 (to T.W.), 32470146 (to T.W.), 32100144 (to Y.L.), 32201183 (to G.T.), 82502737 (to X.L.); and National Key R&D Program of China grant 2024YFE0198900 (to Y.L.); Scientific Research Project of Tianjin Municipal Education Commission Grants 2024ZXZD016 (to M.Z.); China Postdoctoral Science Foundation Grant 2025M772657 (to X.L.); China Postdoctoral Science Foundation-Tianjin Joint Support Program Grant 2025T024TJ (to X.L.); Postdoctoral Fellowship Program of China Postdoctoral Science Foundation Grant GZC20251763 (to X.L.).

Author information

Author notes
  1. These authors contributed equally: Guozhen Ma, Ruiying Liu, Xueping Li, Jialin Wu.

Authors and Affiliations

  1. National Key Laboratory of Intelligent Tracking and Forecasting for infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China

    Guozhen Ma, Yamin Sun & Yutao Liu

  2. Beijing Institute of Infectious Diseases, Beijing, China

    Guozhen Ma, Yamin Sun & Yutao Liu

  3. National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China

    Guozhen Ma, Yamin Sun & Yutao Liu

  4. TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China

    Guozhen Ma, Ruiying Liu, Yuanyuan Niu, Qian Wang, Jiamin Qian & Yu Pang

  5. School of Life Sciences, Tianjin University, Tianjin, China

    Xueping Li, Sheng Wang, Ziwei Chen, Xudong Qin & Tao Wang

  6. Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China

    Jialin Wu & Guosheng Tang

  7. Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China

    Junyue Wang

  8. The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China

    Mingqing Zhang

Authors
  1. Guozhen Ma
    View author publications

    Search author on:PubMed Google Scholar

  2. Ruiying Liu
    View author publications

    Search author on:PubMed Google Scholar

  3. Xueping Li
    View author publications

    Search author on:PubMed Google Scholar

  4. Jialin Wu
    View author publications

    Search author on:PubMed Google Scholar

  5. Yuanyuan Niu
    View author publications

    Search author on:PubMed Google Scholar

  6. Sheng Wang
    View author publications

    Search author on:PubMed Google Scholar

  7. Ziwei Chen
    View author publications

    Search author on:PubMed Google Scholar

  8. Xudong Qin
    View author publications

    Search author on:PubMed Google Scholar

  9. Qian Wang
    View author publications

    Search author on:PubMed Google Scholar

  10. Junyue Wang
    View author publications

    Search author on:PubMed Google Scholar

  11. Jiamin Qian
    View author publications

    Search author on:PubMed Google Scholar

  12. Mingqing Zhang
    View author publications

    Search author on:PubMed Google Scholar

  13. Yu Pang
    View author publications

    Search author on:PubMed Google Scholar

  14. Yamin Sun
    View author publications

    Search author on:PubMed Google Scholar

  15. Guosheng Tang
    View author publications

    Search author on:PubMed Google Scholar

  16. Tao Wang
    View author publications

    Search author on:PubMed Google Scholar

  17. Yutao Liu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.L., T.W., G.T., and Y.S. designed the research; G.M., R.L., X.L., J.W.(Jialin Wu), Y.N., and S.W. performed the research; G.M., R.L., X.L., Z.C., X.Q., Q.W., J.W.(Junyue Wang), J.Q., M.Z., and Y.P. analyzed the data; and Y.L., G.M., R.L., X.L., and J.W.(Jialin Wu) wrote the manuscript. All authors gave final approval for the version to be published.

Corresponding authors

Correspondence to Yamin Sun, Guosheng Tang, Tao Wang or Yutao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Yun Yang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review File

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Reporting Summary

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Liu, R., Li, X. et al. Engineered bacterial therapy suppresses Enterohemorrhagic Escherichia coli through metabolic competition and virulence silencing. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69126-4

Download citation

  • Received: 08 June 2025

  • Accepted: 26 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69126-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology