Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
An mRNA-delivered consensus allergen induces a neutralizing IgG response against food and pollen allergens
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

An mRNA-delivered consensus allergen induces a neutralizing IgG response against food and pollen allergens

  • Mark Møiniche1 na1,
  • Kristoffer H. Johansen  ORCID: orcid.org/0000-0002-7711-94512 na1,
  • Jorge Parrón-Ballesteros  ORCID: orcid.org/0000-0002-9048-70133,
  • Josefine K. Corneliussen  ORCID: orcid.org/0000-0002-2465-70021,
  • Helena Højsted Eriksen  ORCID: orcid.org/0009-0000-7850-49601,
  • Lasse F. Voss  ORCID: orcid.org/0000-0003-0904-67532,
  • Blanca Morillo1,
  • Ulrikke F. Furland1,
  • Jens Vindahl Kringelum  ORCID: orcid.org/0000-0002-7415-32834,
  • Sine Reker Hadrup  ORCID: orcid.org/0000-0002-5937-43442,
  • Olga Luengo5,
  • Victoria Cardona  ORCID: orcid.org/0000-0003-2197-97675,
  • Joan Bartra6,7,8,
  • Mariona Pascal7,8,9,
  • Juan L. Paris10,
  • Carlos J. Aranda11,12,
  • Javier Turnay  ORCID: orcid.org/0000-0002-6135-21793,
  • Mayte Villalba3,
  • Rasmus Münter  ORCID: orcid.org/0000-0001-5595-95402,
  • Cristobalina Mayorga10,13,
  • Timothy P. Jenkins  ORCID: orcid.org/0000-0003-2979-56631,
  • Andreas H. Laustsen  ORCID: orcid.org/0000-0001-6918-55741 &
  • …
  • Esperanza Rivera-de-Torre  ORCID: orcid.org/0000-0002-0272-61501 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Antibodies
  • Chronic inflammation
  • Mucosal immunology
  • RNA vaccines

Abstract

Cross-allergies affect a significant proportion of the population, and contribute to detrimental health and socioeconomic impacts, yet allergen immunotherapies often target a single allergen source disregarding cross-reactive allergens from other sources. Here we introduce an immunization approach developed for improved desensitization in cross-allergic patients using a consensus allergen (cnsLTP1), which contains orthologous non-specific lipid transfer proteins (nsLTP) derived from relevant fruit and pollen allergens. In BALB/c mice, vaccination via either mRNA-lipid nanoparticle (LNP) vehicle or traditional protein formulation induces cnsLTP1-specific IgGs capable of recognizing and binding to multiple nsLTPs. These IgGs block allergen binding by patient serum IgEs and prevent humanized rat basophil degranulation in vitro. Meanwhile, in an allergic mouse model, the mRNA-LNP formulation is tolerated and induces allergen-specific IgG responses but does not ameliorate subsequent allergen challenge responses. Regardless, this cross-allergen mRNA-LNP-based immunotherapy may have translation value once route of administration, formulation and/or dosing are optimized.

Data availability

All data are included in the Supplementary Information or available from the authors, as are unique reagents used in this Article. The raw numbers for charts and graphs are available in the Source Data file whenever possible. Any further requests can be addressed to the corresponding author. Source data are provided with this paper.

References

  1. Pawankar, R. Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organ. J. 7, 1–3 (2014).

    Google Scholar 

  2. Carlson, G. & Coop, C. Pollen food allergy syndrome (PFAS): A review of current available literature. Ann. Allergy, Asthma Immunol. 123, 359–365 (2019).

    Google Scholar 

  3. Mastrorilli, C., Cardinale, F., Giannetti, A. & Caffarelli, C. Pollen-food allergy syndrome: a not so rare disease in childhood. Medicine 55, 641 (2019).

    Google Scholar 

  4. Cox, A. L., Eigenmann, P. A. & Sicherer, S. H. Clinical relevance of cross-reactivity in food allergy. J. Allergy Clin. Immunol. Pract. 9, 82–99 (2021).

    Google Scholar 

  5. Zuberbier, T., Lötvall, J., Simoens, S., Subramanian, S. V. & Church, M. K. Economic burden of inadequate management of allergic diseases in the European Union: a GA2LEN review. Allergy 69, 1275–1279 (2014).

    Google Scholar 

  6. Kleine-Tebbe, J. et al. Is allergy immunotherapy with birch sufficient to treat patients allergic to pollen of tree species of the birch homologous group? Allergy 75, 1327–1336 (2020).

    Google Scholar 

  7. Randall, K. L. & Hawkins, C. A. Antihistamines and allergy. Aust. Prescr. 41, 41–45 (2018).

    Google Scholar 

  8. Baker, D. L., Nakamura, G. R., Lowman, H. B. & Fischer, S. K. Evaluation of IgE antibodies to omalizumab (Xolair®) and their potential correlation to anaphylaxis. AAPS J. 18, 115–123 (2015).

    Google Scholar 

  9. Romagnani, S. Immunologic influences on allergy and the TH1/TH2 balance. J. Allergy Clin. Immunol. 113, 395–400 (2004).

    Google Scholar 

  10. Zissler, U. M. et al. Early IL-10 producing B-cells and coinciding Th/Tr17 shifts during three year grass-pollen AIT. eBioMedicine 36, 475–488 (2018).

    Google Scholar 

  11. Akdis, M. et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J. Exp. Med. 199, 1567–1575 (2004).

    Google Scholar 

  12. Akdis, C. A. & Akdis, M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ J. 8, 17 (2015).

    Google Scholar 

  13. Anvari, S. & Anagnostou, K. The nuts and bolts of food immunotherapy: the future of food allergy. Children 5, 47 (2018).

    Google Scholar 

  14. Moote, W., Kim, H. & Ellis, A. K. Allergen-specific immunotherapy. Allergy, Asthma Clin. Immunol. 14, 53 (2018).

    Google Scholar 

  15. Calderón, M. A., Cox, L., Casale, T. B., Moingeon, P. & Demoly, P. Multiple-allergen and single-allergen immunotherapy strategies in polysensitized patients: Looking at the published evidence. J. Allergy Clin. Immunol. 129, 929–934 (2012).

    Google Scholar 

  16. Hamada, K., Horiike, T., Ota, H., Mizuno, K. & Shinozawa, T. Presence of isochore structures in reptile genomes suggested by the relationship between GC contents of intron regions and those of coding regions. Genes Genet. Syst. 78, 195–198 (2003).

    Google Scholar 

  17. Finley, A. & Atkinson, E. Subcutaneous immunotherapy for pollen food allergy syndrome: a systematic review. J. Allergy Clin. Immunol. 147, AB107 (2021).

    Google Scholar 

  18. González Pérez, A., Carbonell Martínez, A., Escudero Pastor, A. I., Navarro Garrido, C. & Miralles López, J. C. Pru p 3 oral immunotherapy efficacy, induced immunological changes and quality of life improvement in patients with LTP syndrome. Clin. Transl. Allergy 10, 20 (2020).

    Google Scholar 

  19. Musa, F., Al-Ahmad, M., Arifhodzic, N. & Al-Herz, W. Compliance with allergen immunotherapy and factors affecting compliance among patients with respiratory allergies. Hum. Vaccines Immunother. 13, 514–517 (2017).

    Google Scholar 

  20. Penagos, M., Eifan, A. O., Durham, S. R. & Scadding, G. W. Duration of allergen immunotherapy for long-term efficacy in allergic rhinoconjunctivitis. Curr. Treat. Options Allergy 5, 275–290 (2018).

    Google Scholar 

  21. Gehrt, F., Xu, Q., Baiardini, I., Canonica, G. W. & Pfaar, O. Adherence in allergen immunotherapy: current situation and future implications. Allergol. Sel. 6, 276–284 (2022).

    Google Scholar 

  22. Liu, D. et al. Clinical response to subcutaneous immunotherapy at 3 years in allergic rhinitis patients is predicted by short-term treatment effectiveness. Clin. Transl. Allergy 13, e12223 (2023).

    Google Scholar 

  23. Skypala, I. J. et al. Non-specific lipid-transfer proteins: Allergen structure and function, cross-reactivity, sensitization, and epidemiology. Clin. Transl. Allergy 11, e12010 (2021).

    Google Scholar 

  24. Scheurer, S., van Ree, R. & Vieths, S. The role of lipid transfer proteins as food and pollen allergens outside the Mediterranean area. Curr. Allergy Asthma Rep. 21, 7 (2021).

    Google Scholar 

  25. Oeo-Santos, C. et al. A recombinant isoform of the Ole e 7 olive pollen allergen assembled by de novo mass spectrometry retains the allergenic ability of the natural allergen. J. Proteom. 187, 39–46 (2018).

    Google Scholar 

  26. Rivera-de-Torre, E. et al. Discovery of broadly-neutralizing antibodies against brown recluse spider and Gadim scorpion sphingomyelinases using consensus toxins as antigens. Protein Sci. 33, e4901 (2024).

    Google Scholar 

  27. James, L. K. & Till, S. J. Potential mechanisms for IgG4 inhibition of immediate hypersensitivity reactions. Curr. Allergy Asthma Rep. 16, 23 (2016).

    Google Scholar 

  28. Castan, L. et al. Overview of in vivo and ex vivo endpoints in murine food allergy models: Suitable for evaluation of the sensitizing capacity of novel proteins? Allergy 75, 289–301 (2020).

    Google Scholar 

  29. Nelson, H. S. Allergen immunotherapy (AIT) for the multiple-pollen sensitive patient. Expert Rev. Clin. Pharmacol. 9, 1443–1451 (2016).

    Google Scholar 

  30. Pajno, G. B. et al. Clinical practice recommendations for allergen-specific immunotherapy in children: the Italian consensus report. Ital. J. Pediatrics 43, 13 (2017).

    Google Scholar 

  31. Zemelka-Wiacek, M. et al. Hot topics in allergen immunotherapy, 2023: Current status and future perspective. Allergy n/a

  32. Ferreira, F., Hawranek, T., Gruber, P., Wopfner, N. & Mari, A. Allergic cross-reactivity: from gene to the clinic. Allergy 59, 243–267 (2004).

    Google Scholar 

  33. Weber, R. W. Cross-reactivity of pollen allergens: impact on allergen immunotherapy. Ann. Allergy Asthma Immunol. 99, 203–212 (2007).

    Google Scholar 

  34. Biedermann, T. et al. Birch pollen allergy in Europe. Allergy 74, 1237–1248 (2019).

    Google Scholar 

  35. Scheurer, S. & Schülke, S. Interaction of non-specific lipid-transfer proteins with plant-derived lipids and its impact on allergic sensitization. Front. Immunol. 9, 1389 (2018).

    Google Scholar 

  36. Satitsuksanoa, P., Angelina, A., Palomares, O. & Akdis, M. Mechanisms in AIT: Insights 2021. Allergol. Sel. 6, 259–266 (2022).

    Google Scholar 

  37. Huber, S. et al. Does clinical outcome of birch pollen immunotherapy relate to induction of blocking antibodies preventing IgE from allergen binding? A pilot study monitoring responses during first year of AIT. Clin. Transl. Allergy 8, 39 (2018).

    Google Scholar 

  38. Sabbaghi, A. et al. A formulated poly (I:C)/CCL21 as an effective mucosal adjuvant for gamma-irradiated influenza vaccine. Virol. J. 18, 201 (2021).

    Google Scholar 

  39. Firacative, C. et al. Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection. Sci. Rep. 8, 2681 (2018).

    Google Scholar 

  40. Mountford, A. P., Fisher, A. & Wilson, R. A. The profile of IgG1 and IgG2a antibody responses in mice exposed to Schistosoma mansoni. Parasite Immunol. 16, 521–527 (1994).

    Google Scholar 

  41. Xu, X. et al. Use of a Liver-Targeting Immune-Tolerogenic mRNA Lipid Nanoparticle Platform to Treat Peanut-Induced Anaphylaxis by Single- and Multiple-Epitope Nucleotide Sequence Delivery. ACS Nano 17, 4942–4957 (2023).

    Google Scholar 

  42. Jitthamstaporn, S. et al. Nucleoside-modified mRNA vaccines yield robust blocking antibody responses against major house dust mite allergens. Allergy 78, 315–318 (2023).

    Google Scholar 

  43. Li, J., Li, X., Guan, K. & Yin, J. Allergen-specific immunotherapy with mRNA vaccines reduces allergic airway inflammation in mice. J. Allergy Clin. Immunol. 155, AB288 (2025).

    Google Scholar 

  44. Kanjarawi, R. et al. Regulatory CD4+Foxp3+ T cells control the severity of anaphylaxis. PLoS ONE 8, e69183 (2013).

    Google Scholar 

  45. Shao, X. et al. Leveraging an mRNA platform for the development of vaccines against egg allergy. Vaccines 13, 448 (2025).

    Google Scholar 

  46. Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276–W279 (2022).

    Google Scholar 

  47. Damsbo, A. et al. A comparative study of the performance of E. coli and K. phaffii for expressing α-cobratoxin. Toxicon 239, 107613 (2024).

    Google Scholar 

  48. Wilke, S., Krausze, J. & Büssow, K. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx. BMC Biol. 10, 1–15 (2012).

    Google Scholar 

  49. Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Google Scholar 

  50. Lee, Y., Jeong, M., Park, J., Jung, H. & Lee, H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp. Mol. Med 55, 2085–2096 (2023).

    Google Scholar 

  51. Szebeni, J. et al. Insights into the structure of comirnaty Covid-19 vaccine: a theory on soft, partially bilayer-covered nanoparticles with hydrogen bond-stabilized mRNA–lipid complexes. ACS Nano 17, 13147–13157 (2023).

    Google Scholar 

  52. Münter, R., Larsen, J. B. & Andresen, T. L. The vast majority of nucleic acid-loaded lipid nanoparticles contain cargo. J. Colloid Interface Sci. 674, 139–144 (2024).

    Google Scholar 

  53. Roesler, E. et al. Immunize and disappear—Safety-optimized mRNA vaccination with a panel of 29 allergens. J. Allergy Clin. Immunol. 124, 1070–1077.e11 (2009).

    Google Scholar 

  54. Rodriguez, M. J. et al. Pru p 3-Epitope-based sublingual immunotherapy in a murine model for the treatment of peach allergy. Mol. Nutr. Food Res. 61, 1700110 (2017).

    Google Scholar 

  55. Rodriguez, M. J. et al. LPS promotes Th2 dependent sensitisation leading to anaphylaxis in a Pru p 3 mouse model. Sci. Rep. 7, 40449 (2017).

    Google Scholar 

  56. Li, X. M. et al. A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses. J. Allergy Clin. Immunol. 106, 150–158 (2000).

    Google Scholar 

  57. Vogel, L., Lüttkopf, D., Hatahet, L., Haustein, D. & Vieths, S. Development of a functional in vitro assay as a novel tool for the standardization of allergen extracts in the human system. Allergy 60, 1021–1028 (2005).

    Google Scholar 

  58. Hernández-Aguilar, I., Vizuet-de-Rueda, J. C., Galván-Morales, M. Á, Montero-Vargas, J. M. & Teran, L. M. Rapid generation of an RBL cellular model to study proteins that cause allergenic reactions in vitro. Immunol. Res. 72, 874–879 (2024).

    Google Scholar 

Download references

Acknowledgements

E.R.dT acknowledges support from DTU Discovery Grant, DTU Proof of Concept, Innovation Fund Denmark InnoExplorer [2071-00021] and DFF Inge Lehmann program [4306-00008B]. A.H.L. acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme [850974 and 101112851] and the Villum Foundation [00025302]. K.H.J. acknowledges support from Lundbeckfonden [R347-2020-2174] and Arvid Nilssons Foundation. M.T.V. acknowledges support from the Spanish Ministry of Science and Education [PID2020-116692RB-I00]. CM holds a “Nicolas Monardes” research contract by the Andalusian Regional Ministry Health (RC0004-2021). JLP acknowledges grants RYC2021-034536-I and CNS2023-145619 funded by MICIU/AEI/10.13039/501100011033 and by European Union NextGenerationEU/PRTR. CJA acknowledges grant RYC2023-043687-I funded by MICIU/AEI/10.13039/501100011033 and by ESF + .

Author information

Author notes
  1. These authors contributed equally: Mark Møiniche, Kristoffer H. Johansen.

Authors and Affiliations

  1. Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark

    Mark Møiniche, Josefine K. Corneliussen, Helena Højsted Eriksen, Blanca Morillo, Ulrikke F. Furland, Timothy P. Jenkins, Andreas H. Laustsen & Esperanza Rivera-de-Torre

  2. Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark

    Kristoffer H. Johansen, Lasse F. Voss, Sine Reker Hadrup & Rasmus Münter

  3. Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain

    Jorge Parrón-Ballesteros, Javier Turnay & Mayte Villalba

  4. SeeQ Diagnostics, Copenhagen, Denmark

    Jens Vindahl Kringelum

  5. Department of Allergy, Hospital Universitari Vall d’Hebron, Barcelona, Spain

    Olga Luengo & Victoria Cardona

  6. Department of Allergy, ICR, Hospital Clínic, University of Barcelona, Barcelona, Spain

    Joan Bartra

  7. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

    Joan Bartra & Mariona Pascal

  8. Immunology Department, CDB, Hospital Clinic, University of Barcelona, Barcelona, Spain

    Joan Bartra & Mariona Pascal

  9. RETIC ARADyAL, RICORS de Enfermedades Inflamatorias REI (ISCIII), Madrid, Spain

    Mariona Pascal

  10. Research Laboratory, IBIMA-Plataforma BIONAND, Málaga, Spain

    Juan L. Paris & Cristobalina Mayorga

  11. Department of Biochemistry and Molecular Biology II, Instituto de Investigación Biosanitaria ibs.Granada, School of Pharmacy, University of Granada, Granada, Spain

    Carlos J. Aranda

  12. Institute of Nutrition and Food Technology “José Mataix (INYTA)”, Center of Biomedical Research, University of Granada, Granada, Spain

    Carlos J. Aranda

  13. Allergy Unit, Regional University Hospital of Malaga, Málaga, Spain

    Cristobalina Mayorga

Authors
  1. Mark Møiniche
    View author publications

    Search author on:PubMed Google Scholar

  2. Kristoffer H. Johansen
    View author publications

    Search author on:PubMed Google Scholar

  3. Jorge Parrón-Ballesteros
    View author publications

    Search author on:PubMed Google Scholar

  4. Josefine K. Corneliussen
    View author publications

    Search author on:PubMed Google Scholar

  5. Helena Højsted Eriksen
    View author publications

    Search author on:PubMed Google Scholar

  6. Lasse F. Voss
    View author publications

    Search author on:PubMed Google Scholar

  7. Blanca Morillo
    View author publications

    Search author on:PubMed Google Scholar

  8. Ulrikke F. Furland
    View author publications

    Search author on:PubMed Google Scholar

  9. Jens Vindahl Kringelum
    View author publications

    Search author on:PubMed Google Scholar

  10. Sine Reker Hadrup
    View author publications

    Search author on:PubMed Google Scholar

  11. Olga Luengo
    View author publications

    Search author on:PubMed Google Scholar

  12. Victoria Cardona
    View author publications

    Search author on:PubMed Google Scholar

  13. Joan Bartra
    View author publications

    Search author on:PubMed Google Scholar

  14. Mariona Pascal
    View author publications

    Search author on:PubMed Google Scholar

  15. Juan L. Paris
    View author publications

    Search author on:PubMed Google Scholar

  16. Carlos J. Aranda
    View author publications

    Search author on:PubMed Google Scholar

  17. Javier Turnay
    View author publications

    Search author on:PubMed Google Scholar

  18. Mayte Villalba
    View author publications

    Search author on:PubMed Google Scholar

  19. Rasmus Münter
    View author publications

    Search author on:PubMed Google Scholar

  20. Cristobalina Mayorga
    View author publications

    Search author on:PubMed Google Scholar

  21. Timothy P. Jenkins
    View author publications

    Search author on:PubMed Google Scholar

  22. Andreas H. Laustsen
    View author publications

    Search author on:PubMed Google Scholar

  23. Esperanza Rivera-de-Torre
    View author publications

    Search author on:PubMed Google Scholar

Contributions

E.R.dT., K.H.J., A.H.L., and T.P.J. conceptualized the study. E.R.dT., K.H.J., M.V., T.P.J., M.M., R.M., C.M. and J.K.C. developed the methodology. E.R.dT., M.M., J.P.B., J.T., R.M., J.K.C., K.H.J., L.F.V., H.H.E., U.F.F., J.L.P., C.J.A., and B.M. carried out the investigation. K.H.J., E.R.dT., J.V.K., M.M., and J.P.B. handled data analysis and visualization. E.R.dT., A.H.L., K.H.J., and M.V. were responsible for funding acquisition. E.R.dT took the lead in project administration, while E.R.dT, A.H.L., O.L., V.C., J.B., M.P., S.R.H., and M.V. provided resources. E.R.dT., K.H.J., and A.H.L. supervised. E.R.dT., A.H.L., M.M., and K.H.J. wrote the original draft, and all authors contributed to the review and editing process.

Corresponding authors

Correspondence to Andreas H. Laustsen or Esperanza Rivera-de-Torre.

Ethics declarations

Competing interests

E.R.dT., A.H.L., and T.P.J. are named inventors on a patent application (WO2023242436) based on the work presented in this paper. The rest of the authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Ronald Van Ree and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Møiniche, M., Johansen, K.H., Parrón-Ballesteros, J. et al. An mRNA-delivered consensus allergen induces a neutralizing IgG response against food and pollen allergens. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69134-4

Download citation

  • Received: 26 February 2024

  • Accepted: 26 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69134-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing