Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Global impacts of transportation infrastructure on forest degradation and loss
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Global impacts of transportation infrastructure on forest degradation and loss

  • Decheng Zhou  (周德成)  ORCID: orcid.org/0000-0003-0947-08531,
  • Jingfeng Xiao  (肖劲锋)  ORCID: orcid.org/0000-0002-0622-69032,
  • Shuguang Liu  (刘曙光)1,
  • Lin Huang  (黄麟)3,
  • Liangxia Zhang  (张良侠)1,
  • Jiangwen Fan  (樊江文)3 &
  • …
  • Shuqing Zhao  (赵淑清)  ORCID: orcid.org/0000-0002-3205-14141 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Conservation biology
  • Environmental impact
  • Forest ecology

Abstract

Transportation networks threaten global forests, but prior assessments have been regional or limited to single metrics (e.g., forest cover). Here, we present a global analysis of multidimensional road effects on forests, using high-resolution remote sensing data and a Grid-wise Environmental Matching for Background Reference (GEM-BR) strategy. We detect 18.6% lower forest cover, 2.7 m shorter canopy height, 52.2 gC m-2 yr-1 reduced net primary productivity, and 23.0 patches per km2 higher fragmentation within 1 km of roads compared to reference areas. Impacts extend up to 5 km with a clear distance decay effect, totaling 4.26 million km2 of forest loss—equivalent to 10.7% of the 2020 global forest extent. The Global South (tropics accounting for 54.8%) faces severe, worsening degradation (2000–2020), while the Global North shows milder impacts, with partial recovery. Critically, 89% of grid cells exhibit conflicting long-term trends across metrics, highlighting the inadequacy of cover-only assessments. We further find that road-linked degradation is tightly coupled with local human activity, and that global protected areas have insufficient capacity to curb ongoing degradation. Differences in impacts among regions suggest that road-linked forest degradation is tied to governance choices—urging integrated transport-forest planning to balance development and conservation.

Data availability

All the processed source data generated in this study (supporting bar, column, line charts, and statistical analyses) are available as a Source Data file. The raw public datasets used in this study are available in their respective official or recommended public repositories under the following persistent access links/DOIs: OpenStreetMap (OSM) vector road data in Geofabrik (https://download.geofabrik.de/); Global Roads Inventory Project 4 (GRIP4) dataset in the GLOBIO information portal (https://www.globio.info/download-grip-dataset); GLAD Global Land Cover and Land Use Change (GLCLUC2020) datasets in the University of Maryland’s GLAD Laboratory (https://glad.umd.edu/dataset/GLCLUC2020/); MOD17A3HGF V061 product in NASA’s EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov/products/mod17a3hgfv061/)77; SoilGrids Version 2 in the International Soil Reference and Information Center (ISRIC) (https://files.isric.org/soilgrids/latest/); CHELSA Version 2.1 in the CHELSA Climate Portal (https://www.chelsa-climate.org/)90; ASTER Global Digital Elevation Model (GDEM) Version 3 in NASA Earthdata Search (https://search.earthdata.nasa.gov/); 2019 Human Footprint Index (ml-HFI) data in the Mountain Scholar repository (https://hdl.handle.net/10217/216207)91; 2020 nighttime light datasets in Figshare (https://doi.org/10.6084/m9.figshare.9828827.v2)92; World Database on Protected Areas (WDPA) in Protected Planet (https://www.protectedplanet.net/en); Köppen-Geiger climate zone map in the GLOH2O portal (https://www.gloh2o.org/koppen/); and Version 2 global map of plantation establishment years (1982–2020) in Figshare (https://doi.org/10.6084/m9.figshare.19070084.v2)93. Large spatial distribution raster datasets are not provided in the Supplementary Information or Source Data file due to their substantial file sizes, but are openly accessible via the original public repositories listed above. All DOIs for datasets have been included in the Reference list. No access restrictions apply to any of the minimum dataset necessary for interpreting, verifying, or extending the research—all data are freely available without undue qualifications. Source data are provided in this paper.

Code availability

The Python code used to calculate the Comprehensive Environmental Index (CEI) and quantify road impacts in road/RRI zones, along with example data to support reproducibility of the analyses in this study, is publicly available via GitHub (https://github.com/DechengZHOU/RoadImpactsForests.git). The exact version (v1.0.0) used in the manuscript has been assigned a permanent, citable DOI and is included in the reference list94. The code is provided for non-commercial, academic research purposes only, with permission for use, modification, and redistribution provided appropriate attribution to the original authors and this study is included. Unauthorized re-publication or commercial exploitation of the code is prohibited.

References

  1. Thacker, S. et al. Infrastructure for sustainable development. Nat. Sustain. 2, 324–331 (2019).

    Google Scholar 

  2. Engert, J. E. et al. Ghost roads and the destruction of Asia-Pacific tropical forests. Nature 629, 370–375 (2024).

    Google Scholar 

  3. Forman, R. T. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Evol. Syst. 29, 207–231 (1998).

    Google Scholar 

  4. Kleinschroth, F., Laporte, N., Laurance, W. F., Goetz, S. J. & Ghazoul, J. Road expansion and persistence in forests of the Congo Basin. Nat. Sustain. 2, 628–634 (2019).

    Google Scholar 

  5. Laurance, W. F., Goosem, M. & Laurance, S. G. W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 24, 659–669 (2009).

    Google Scholar 

  6. Tisler, T. R., Teixeira, F. Z. & Nóbrega, R. A. A. Conservation opportunities and challenges in Brazil’s roadless and railroad-less areas. Sci. Adv. 8, eabi5548 (2022).

    Google Scholar 

  7. Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl. Acad. Sci. USA 117, 7095–7102 (2020).

    Google Scholar 

  8. Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232 (2014).

    Google Scholar 

  9. Li, W. et al. Human fingerprint on structural density of forests globally. Nat. Sustain. 6, 368–379 (2023).

    Google Scholar 

  10. Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).

    Google Scholar 

  11. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Google Scholar 

  12. Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024).

    Google Scholar 

  13. Ma, J., Li, J., Wu, W. & Liu, J. Global forest fragmentation change from 2000 to 2020. Nat. Commun. 14, 3752 (2023).

    Google Scholar 

  14. Bourgoin, C. et al. Human degradation of tropical moist forests is greater than previously estimated. Nature 631, 570–576 (2024).

    Google Scholar 

  15. Lapola, D. M. et al. The drivers and impacts of Amazon forest degradation. Science 379, eabp8622 (2023).

    Google Scholar 

  16. Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).

    Google Scholar 

  17. Betts, M. G. et al. Quantifying forest degradation requires a long-term, landscape-scale approach. Nat. Ecol. Evol. 8, 1054–1057 (2024).

    Google Scholar 

  18. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Google Scholar 

  19. Fischer, R. et al. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 7, eabg7012 (2021).

    Google Scholar 

  20. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Google Scholar 

  21. Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

    Google Scholar 

  22. McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Google Scholar 

  23. Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).

    Google Scholar 

  24. Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    Google Scholar 

  25. Hughes, A. C. Have Indo-Malaysian forests reached the end of the road? Biol. Conserv. 223, 129–137 (2018).

    Google Scholar 

  26. Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).

    Google Scholar 

  27. Dantas de Paula, M., Groeneveld, J. & Huth, A. The extent of edge effects in fragmented landscapes: Insights from satellite measurements of tree cover. Ecol. Indic. 69, 196–204 (2016).

    Google Scholar 

  28. Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).

    Google Scholar 

  29. Keys, P. W., Barnes, E. A. & Carter, N. H. A machine-learning approach to human footprint index estimation with applications to sustainable development. Environ. Res. Lett. 16, 044061 (2021).

    Google Scholar 

  30. Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 26, 3005–3035 (2017).

    Google Scholar 

  31. Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).

    Google Scholar 

  32. Martins, A. C., Willig, M. R., Presley, S. J. & Marinho-Filho, J. Effects of forest height and vertical complexity on abundance and biodiversity of bats in Amazonia. For. Ecol. Manag. 391, 427–435 (2017).

    Google Scholar 

  33. Ibisch, P. L. et al. A global map of roadless areas and their conservation status. Science 354, 1423–1427 (2016).

    Google Scholar 

  34. Haklay, M. & Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008).

    Google Scholar 

  35. Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 7, 168 (2020).

    Google Scholar 

  36. Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. Species–fragmented area relationship. Proc. Natl. Acad. Sci. USA 110, 12715–12720 (2013).

    Google Scholar 

  37. Munguía-Rosas, M. A. & Montiel, S. Patch size and isolation predict plant species density in a naturally fragmented forest. PLOS ONE 9, e111742 (2014).

    Google Scholar 

  38. Cote, J. et al. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 40, 56–73 (2017).

    Google Scholar 

  39. Fahrig, L. et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 230, 179–186 (2019).

    Google Scholar 

  40. Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    Google Scholar 

  41. Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Google Scholar 

  42. Crockett, E. T. H. et al. Structural and species diversity explain aboveground carbon storage in forests across the United States: Evidence from GEDI and forest inventory data. Remote Sens. Environ. 295, 113703 (2023).

    Google Scholar 

  43. Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).

    Google Scholar 

  44. Assis, T. O. et al. CO2 emissions from forest degradation in Brazilian Amazon. Environ. Res. Lett. 15, 104035 (2020).

    Google Scholar 

  45. Aizen, M. A. & Feinsinger, P. Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology 75, 330–351 (1994).

    Google Scholar 

  46. Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    Google Scholar 

  47. Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).

    Google Scholar 

  48. Wu, S., Chen, B., Webster, C., Xu, B. & Gong, P. Improved human greenspace exposure equality during 21st century urbanization. Nat. Commun. 14, 6460 (2023).

    Google Scholar 

  49. Kaczan, D. J. Can roads contribute to forest transitions? World Dev. 129, 104898 (2020).

    Google Scholar 

  50. Zhang, D. China’s forest expansion in the last three plus decades: Why and how? For. Policy Econ. 98, 75–81 (2019).

    Google Scholar 

  51. Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environ. Change 56, 1–10 (2019).

    Google Scholar 

  52. Kastner, T., Erb, K.-H. & Haberl, H. Rapid growth in agricultural trade: effects on global area efficiency and the role of management. Environ. Res. Lett. 9, 034015 (2014).

    Google Scholar 

  53. Laso Bayas, J. C. et al. Drivers of tropical forest loss between 2008 and 2019. Sci. Data 9, 146 (2022).

    Google Scholar 

  54. Kuliešis, A. et al. The impact of strip roads on the productivity of spruce plantations. Forests 9, 640 (2018).

    Google Scholar 

  55. Meeussen, C. et al. Microclimatic edge-to-interior gradients of European deciduous forests. Agric. For. Meteorol. 311, 108699 (2021).

    Google Scholar 

  56. Zhao, S., Liu, S. & Zhou, D. Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. USA 113, 6313–6318 (2016).

    Google Scholar 

  57. Dial, R. J., Maher, C. T., Hewitt, R. E. & Sullivan, P. F. Sufficient conditions for rapid range expansion of a boreal conifer. Nature 608, 546–551 (2022).

    Google Scholar 

  58. Wang, J., Taylor, A. R. & D’Orangeville, L. Warming-induced tree growth may help offset increasing disturbance across the Canadian boreal forest. Proc. Natl. Acad. Sci. USA 120, e2212780120 (2023).

    Google Scholar 

  59. Bonan, G. B. et al. Reimagining earth in the earth system. J. Adv. Model. Earth Syst. 16, e2023MS004017 (2024).

    Google Scholar 

  60. Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: An empirical review and synthesis. Ecol. Soc. 14, 21 (2009).

    Google Scholar 

  61. Quiles, P. & Barrientos, R. Interspecific interactions disrupted by roads. Biol. Rev. 99, 1121–1139 (2024).

    Google Scholar 

  62. Naughton-Treves, L., Holland, M. B. & Brandon, K. The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annu. Rev. Environ. Resour. 30, 219–252 (2005).

    Google Scholar 

  63. Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. USA 105, 16089–16094 (2008).

    Google Scholar 

  64. Meng, Z. et al. Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Nat. Sustain. 6, 758–768 (2023).

    Google Scholar 

  65. Asner, G. P., Llactayo, W., Tupayachi, R. & Luna, E. R. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc. Natl. Acad. Sci. USA 110, 18454–18459 (2013).

    Google Scholar 

  66. Senior, R. A. et al. Global shortfalls in documented actions to conserve biodiversity. Nature 630, 387–391 (2024).

    Google Scholar 

  67. Han, D., Attipoe, S. G., Han, D. & Cao, J. Does transportation infrastructure construction promote population agglomeration? Evidence from 1838 Chinese county-level administrative units. Cities 140, 104409 (2023).

    Google Scholar 

  68. Laurance, W. F. & Balmford, A. A global map for road building. Nature 495, 308–309 (2013).

    Google Scholar 

  69. FAO & UNEP. The state of the world’s forests 2020: Forests, biodiversity and people (Food and Agriculture Organization of the United Nations, Rome, 2020).

  70. Herfort, B., Lautenbach, S., Porto de Albuquerque, J., Anderson, J. & Zipf, A. A spatio-temporal analysis investigating completeness and inequalities of global urban building data in OpenStreetMap. Nat. Commun. 14, 3985 (2023).

    Google Scholar 

  71. Barrington-Leigh, C. & Millard-Ball, A. The world’s user-generated road map is more than 80% complete. PLOS ONE 12, e0180698 (2017).

    Google Scholar 

  72. Hoffmann, M. T., Ostapowicz, K., Bartoń, K., Ibisch, P. L. & Selva, N. Mapping roadless areas in regions with contrasting human footprint. Sci. Rep. 14, 4722 (2024).

    Google Scholar 

  73. Potapov, P. et al. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: First results. Front. Remote Sens. 3, 856903 (2022).

    Google Scholar 

  74. Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).

    Google Scholar 

  75. Turner, M. G. & Gardner, R. H. (eds.) Landscape ecology in theory and practice: Pattern and process (Springer New York, New York, 2015).

  76. Šímová, P. & Gdulová, K. Landscape indices behavior: A review of scale effects. Appl. Geogr. 34, 385–394 (2012).

    Google Scholar 

  77. Running, S. W. & Zhao, M. MODIS/Terra net primary production gap-filled yearly L4 global 500m SIN grid V061 [Dataset]. NASA EOSDIS Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MOD17A3HGF.061 (2021).

  78. Hu, Z. et al. Shifts in the dynamics of productivity signal ecosystem state transitions at the biome-scale. Ecol. Lett. 21, 1457–1466 (2018).

    Google Scholar 

  79. Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240 (2021).

    Google Scholar 

  80. Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).

    Google Scholar 

  81. Luo, Z. et al. Evaluating soil water dynamics and vegetation growth characteristics under different soil depths in semiarid loess areas. Geoderma 442, 116791 (2024).

    Google Scholar 

  82. Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Google Scholar 

  83. NASA. NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team. ASTER global digital elevation model V003 (NASA Land Processes Distributed Active Archive Center, Sioux Falls, 2019).

  84. Du, Z. et al. A global map of planting years of plantations. Sci. Data 9, 141 (2022).

    Google Scholar 

  85. Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).

    Google Scholar 

  86. IUCN, UNEP-WCMC. The world database on protected areas (WDPA) (eds. Cambridge, UU-W; IUCN, Gland, 2020).

  87. Beck, H. E. et al. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data 10, 724 (2023).

    Google Scholar 

  88. Mitchell, J. C. et al. Forest ecosystem properties emerge from interactions of structure and disturbance. Front. Ecol. Environ. 21, 14–23 (2023).

    Google Scholar 

  89. Saaty, T. L. Decision making with the analytic hierarchy process. Int. J. Services Sci. 1, 83–98 (2008).

    Google Scholar 

  90. Karger, D. N. CHELSA-daily climate data at high resolution [Dataset]. EnviDat, https://doi.org/10.16904/envidat.687 (2025).

  91. Keys, P. W., Barnes, E. A. & Carter, N. A machine-learning approach to human footprint index estimation with applications to sustainable development [Dataset]. Colorado State University Libraries, https://doi.org/10.25675/10217/216207 (2021).

  92. Li, X. C., Zhou, Y. Y., Zhao, M. & Zhao, X. Harmonization of DMSP and VIIRS nighttime light data from 1992–2018 at the global scale [Dataset]. figshare, 2020. https://doi.org/10.6084/m9.figshare.9828827.v2

  93. Du, Z. R. et al. A global map of planting years of plantations [Dataset]. figshare, https://doi.org/10.6084/m9.figshare.19070084.v2 (2022).

  94. Zhou, D. et al. Code for global impacts of transportation infrastructure on forest degradation and loss (v1.0.0) [Computer software]. Zenodo https://doi.org/10.5281/zenodo.17873268 (2025).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 42571127; D.Z.), the National Key R&D Program of China (Grant No. 2021YFB2600100; L.H.), and the Hainan Talent Convergence Initiative (Grant No. HNYT20250005; S.L.). J.X. was supported by bridge support and the Iola Hubbard Climate Change Endowment from the University of New Hampshire.

Author information

Authors and Affiliations

  1. Center for Eco-Environment Restoration of Hainan Province/Hainan Baoting Tropical Forest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou, China

    Decheng Zhou  (周德成), Shuguang Liu  (刘曙光), Liangxia Zhang  (张良侠) & Shuqing Zhao  (赵淑清)

  2. Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA

    Jingfeng Xiao  (肖劲锋)

  3. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

    Lin Huang  (黄麟) & Jiangwen Fan  (樊江文)

Authors
  1. Decheng Zhou  (周德成)
    View author publications

    Search author on:PubMed Google Scholar

  2. Jingfeng Xiao  (肖劲锋)
    View author publications

    Search author on:PubMed Google Scholar

  3. Shuguang Liu  (刘曙光)
    View author publications

    Search author on:PubMed Google Scholar

  4. Lin Huang  (黄麟)
    View author publications

    Search author on:PubMed Google Scholar

  5. Liangxia Zhang  (张良侠)
    View author publications

    Search author on:PubMed Google Scholar

  6. Jiangwen Fan  (樊江文)
    View author publications

    Search author on:PubMed Google Scholar

  7. Shuqing Zhao  (赵淑清)
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.Z., J.X., and S.Z. conceived the study and designed the research framework. D.Z. and L.Z. curated, processed, and analyzed the datasets. D.Z. drafted the initial manuscript. S.Z. supervised the entire research process. D.Z., J.X., S.L., L.H., J.F., and S.Z. contributed to data interpretation, manuscript drafting, and critical revision of intellectual content. All authors approved the final version for submission.

Corresponding authors

Correspondence to Jingfeng Xiao  (肖劲锋) or Shuqing Zhao  (赵淑清).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review file

Reporting Summary

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Xiao, J., Liu, S. et al. Global impacts of transportation infrastructure on forest degradation and loss. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69150-4

Download citation

  • Received: 18 March 2025

  • Accepted: 22 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69150-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene