Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Structural basis of TACO1-mediated efficient mitochondrial translation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 February 2026

Structural basis of TACO1-mediated efficient mitochondrial translation

  • Shuhui Wang  ORCID: orcid.org/0000-0002-2393-95181 na1,
  • Michele Brischigliaro  ORCID: orcid.org/0000-0003-1520-13422 na1,
  • Yuekang Zhang  ORCID: orcid.org/0000-0002-4690-38251,
  • Chunxiang Wu  ORCID: orcid.org/0000-0002-8635-15781,
  • Wei Zheng1,
  • Antoni Barrientos  ORCID: orcid.org/0000-0001-9018-32312,3,4 &
  • …
  • Yong Xiong  ORCID: orcid.org/0000-0001-9625-93131 

Nature Communications , Article number:  (2026) Cite this article

  • 326 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cryoelectron microscopy
  • Mitochondria
  • Ribosome

Abstract

Translation elongation is a universally conserved step in protein synthesis, relying on elongation factors that engage the ribosomal L7/L12 stalk to mediate aminoacyl-tRNA delivery, accommodation, and ribosomal translocation. Using in organello cryo-electron microscopy, we reveal how the mitochondrial translation accelerator TACO1 promotes efficient elongation on human mitoribosomes. TACO1 binds the mitoribosomal region typically bound by elongation factor Tu (mtEF-Tu), bridging the large and small subunits via contacts with 16S rRNA, bL12m, A-site tRNA, and uS12m. While active throughout elongation, TACO1 is especially critical when translating polyproline motifs. Its absence prolongs mtEF-Tu residence in A/T states, causes persistent mitoribosomal stalling and premature subunit dissociation. Structural analyses indicate that TACO1 competes with mtEF-Tu for mitoribosome binding, stabilizes A-site tRNA, and enhances peptidyl transfer through a mechanism distinct from EF-P and eIF5A. These findings suggest that bacterial TACO1 orthologs may serve analogous roles, highlighting an evolutionarily conserved strategy for maintaining elongation efficiency during challenging translation events.

Similar content being viewed by others

Structural basis for late maturation steps of the human mitoribosomal large subunit

Article Open access 16 June 2021

Translational activators align mRNAs at the small mitoribosomal subunit for translation initiation

Article Open access 03 December 2025

Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk

Article Open access 20 May 2024

Data availability

The cryo-EM density maps of the mitoribosome–TACO1 complex generated in this study have been deposited in the Electron Microscopy Data Bank (EMDB) under the following accession codes: EMD-70621 (consensus map of the WT 55S mitoribosome), EMD-70620 (focused mtSSU map), EMD-70619 (focused mtLSU map), and EMD-70592 (composite map of the WT 55S mitoribosome). The corresponding atomic model has been deposited in the Protein Data Bank (PDB) under accession code 9OLF (55S mitoribosome in complex with LRPPRC, SLIRP, OXA1L, and TACO1). Cryo-EM maps of distinct mitoribosome states from WT and TACO1-KO cells have been deposited in the EMDB under accession codes EMD-71630 [https://www.ebi.ac.uk/emdb/EMD-70630], EMD-71634 [https://www.ebi.ac.uk/emdb/EMD-70634], EMD-71829, EMD-71623, EMD-71633, EMD-71797, EMD-71802, EMD-71809, EMD-71811, EMD-71815, EMD-71818, EMD-71635, EMD-71825, and EMD-71828. The corresponding atomic models have been deposited in the PDB under accession codes 9PGF, 9PGL, 9PSM, 9PG8, 9PGI, 9PR4, 9PRA, 9PRD, 9PRQ, 9PRX, 9PS0, 9PGM, 9PS7, and 9PSI. A complete list of accession codes is provided in Supplementary Tables 1-4. Mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD064026. Source data are provided with this paper.

References

  1. Gebauer, F. & Hentze, M. W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827–835 (2004).

    Google Scholar 

  2. Knight, J. R. P. et al. Control of translation elongation in health and disease. Dis. Model Mech. 13, https://doi.org/10.1242/dmm.043208 (2020).

  3. Samatova, E., Daberger, J., Liutkute, M. & Rodnina, M. V. Translational control by ribosome pausing in bacteria: how a non-uniform pace of translation affects protein production and folding. Front. Microbiol. 11, 619430 (2020).

    Google Scholar 

  4. Brischigliaro, M., Ahn, A., Hong, S., Fontanesi, F. & Barrientos, A. Emerging mechanisms of human mitochondrial translation regulation. Trends Biochem. Sci. https://doi.org/10.1016/j.tibs.2025.03.007 (2025).

  5. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Google Scholar 

  6. O’Brien, T. W. Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene 286, 73–79 (2002).

    Google Scholar 

  7. Sharma, M. R. et al. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115, 97–108 (2003).

    Google Scholar 

  8. Amunts, A., Brown, A., Toots, J., Scheres, S. H. W. & Ramakrishnan, V. Ribosome. The structure of the human mitochondrial ribosome. Science 348, 95–98 (2015).

    Google Scholar 

  9. Greber, B. J. et al. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348, 303–308 (2015).

    Google Scholar 

  10. Rorbach, J. et al. Human mitochondrial ribosomes can switch their structural RNA composition. Proc. Natl. Acad. Sci. USA 113, 12198–12201 (2016).

    Google Scholar 

  11. De Silva, D., Tu, Y. T., Amunts, A., Fontanesi, F. & Barrientos, A. Mitochondrial ribosome assembly in health and disease. Cell Cycle 14, 2226–2250 (2015).

    Google Scholar 

  12. Ferrari, A., Del’Olio, S. & Barrientos, A. The diseased mitoribosome. FEBS Lett. 595, 1025–1061 (2021).

    Google Scholar 

  13. Lopez Sanchez, M. I. G., Kruger, A., Shiriaev, D. I., Liu, Y. & Rorbach, J. Human mitoribosome biogenesis and its emerging links to disease. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22083827 (2021).

  14. Wang, F., Zhang, D., Zhang, D., Li, P. & Gao, Y. Mitochondrial protein translation: emerging roles and clinical significance in disease. Front. Cell Dev. Biol. 9, 675465 (2021).

    Google Scholar 

  15. Webb, B. D., Diaz, G. A. & Prasun, P. Mitochondrial translation defects and human disease. J. Transl. Genet. Genom. 4, 71–80 (2020).

    Google Scholar 

  16. Pearce, S., Nezich, C. L. & Spinazzola, A. Mitochondrial diseases: translation matters. Mol. Cell Neurosci. 55, 1–12 (2013).

    Google Scholar 

  17. Seeger, J. et al. Clinical and neuropathological findings in patients with TACO1 mutations. Neuromuscul. Disord. 20, 720–724 (2010).

    Google Scholar 

  18. Makrythanasis, P. et al. Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Hum. Mutat. 35, 1203–1210 (2014).

    Google Scholar 

  19. Oktay, Y. et al. Confirmation of TACO1 as a leigh syndrome disease gene in two additional families. J. Neuromuscul. Dis. 7, 301–308 (2020).

    Google Scholar 

  20. Sferruzza, G. et al. U-fiber leukoencephalopathy due to a novel mutation in the TACO1 gene. Neurol. Genet 7, e573 (2021).

    Google Scholar 

  21. Herskind, M. N., Granild-Jensen, J. B. & Bendixen, M. T. Distinct magnetic resonance imaging in a child with a TACO1 variant. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2024.1105 (2024).

  22. Weraarpachai, W. et al. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat. Genet., 41, 833–837 (2009).

    Google Scholar 

  23. Brischigliaro, M. et al. The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae645 (2024).

  24. Peil, L. et al. Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc. Natl. Acad. Sci. USA 110, 15265–15270 (2013).

    Google Scholar 

  25. Ude, S. et al. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339, 82–85 (2013).

    Google Scholar 

  26. Woolstenhulme, C. J. et al. Nascent peptides that block protein synthesis in bacteria. Proc. Natl. Acad. Sci. USA 110, E878–E887 (2013).

    Google Scholar 

  27. Chadani, Y. et al. The ABCF proteins in Escherichia coli individually cope with ‘hard-to-translate’ nascent peptide sequences. Nucleic Acids Res. 52, 5825–5840 (2024).

    Google Scholar 

  28. Hong, H. R., Prince, C. R., Tetreault, D. D., Wu, L. & Feaga, H. A. YfmR is a translation factor that prevents ribosome stalling and cell death in the absence of EF-P. Proc. Natl. Acad. Sci. USA 121, e2314437121 (2024).

    Google Scholar 

  29. Takada, H., Fujiwara, K., Atkinson, G. C., Chiba, S. & Hauryliuk, V. Resolution of ribosomal stalling by EF-P and ABCF ATPases YfmR and YkpA/YbiT. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae556 (2024).

  30. Gutierrez, E. et al. eIF5A promotes translation of polyproline motifs. Mol. Cell 51, 35–45 (2013).

    Google Scholar 

  31. Blaha, G., Stanley, R. E. & Steitz, T. A. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325, 966–970 (2009).

    Google Scholar 

  32. Schmidt, C. et al. Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Res. 44, 1944–1951 (2016).

    Google Scholar 

  33. Huter, P. et al. Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P. Mol. Cell 68, 515–527 (2017).

    Google Scholar 

  34. Boel, G. et al. The ABC-F protein EttA gates ribosome entry into the translation elongation cycle. Nat. Struct. Mol. Biol. 21, 143–151 (2014).

    Google Scholar 

  35. Chen, B. et al. EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA dynamics. Nat. Struct. Mol. Biol. 21, 152–159 (2014).

    Google Scholar 

  36. Su, T. et al. Structure and function of Vms1 and Arb1 in RQC and mitochondrial proteome homeostasis. Nature 570, 538–542 (2019).

    Google Scholar 

  37. Crowe-McAuliffe, C. et al. Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nat. Commun. 12, 3577 (2021).

    Google Scholar 

  38. Richman, T. R. et al. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat. Commun. 7, 11884 (2016).

    Google Scholar 

  39. Singh, V. et al. Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk. Nat. Commun. 15, 4272 (2024).

    Google Scholar 

  40. Hillen, H. S. et al. Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling. Nat. Commun. 12, 3672 (2021).

    Google Scholar 

  41. Itoh, Y. et al. Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature 606, 603–608 (2022).

    Google Scholar 

  42. Harper, N. J., Burnside, C. & Klinge, S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature 614, 175–181 (2023).

    Google Scholar 

  43. Skaltsogiannis, V. et al. Structural insights into maturation and translation of a plant mitoribosome. BioRxiv, 2024.2010.2028.620559, https://doi.org/10.1101/2024.10.28.620559 %J bioRxiv (2024).

  44. Sissler, M. & Hashem, Y. Mitoribosome assembly comes into view. Nat. Struct. Mol. Biol. 28, 631–633 (2021).

    Google Scholar 

  45. Brown, A. et al. Structures of the human mitochondrial ribosome in native states of assembly. Nat. Struct. Mol. Biol. 24, 866–869 (2017).

    Google Scholar 

  46. Cheng, J., Berninghausen, O. & Beckmann, R. A distinct assembly pathway of the human 39S late pre-mitoribosome. Nat. Commun. 12, 4544 (2021).

    Google Scholar 

  47. Cipullo, M., Gese, G. V., Khawaja, A., Hallberg, B. M. & Rorbach, J. Structural basis for late maturation steps of the human mitoribosomal large subunit. Nat. Commun. 12, 3673 (2021).

    Google Scholar 

  48. Pfeffer, S., Woellhaf, M. W., Herrmann, J. M. & Forster, F. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat. Commun. 6, 6019 (2015).

    Google Scholar 

  49. Englmeier, R., Pfeffer, S. & Forster, F. Structure of the human mitochondrial ribosome studied in situ by cryoelectron tomography. Structure 25, 1574–1581 (2017).

    Google Scholar 

  50. Ott, M. & Herrmann, J. M. Co-translational membrane insertion of mitochondrially encoded proteins. Biochim. Biophys. Acta 1803, 767–775 (2010).

    Google Scholar 

  51. Itoh, Y. et al. Mechanism of membrane-tethered mitochondrial protein synthesis. Science 371, 846–849 (2021).

    Google Scholar 

  52. Ott, M. et al. Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO J. 25, 1603–1610 (2006).

    Google Scholar 

  53. Szyrach, G., Ott, M., Bonnefoy, N., Neupert, W. & Herrmann, J. M. Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO J. 22, 6448–6457 (2003).

    Google Scholar 

  54. Ignatov, D. et al. RNA-binding protein YebC enhances translation of proline-rich amino acid stretches in bacteria. Nat. Commun. 16, 6262 (2025).

  55. Hong, H. R. et al. YebC2 resolves ribosome stalling and increases fitness of cells lacking EF-P and the ABCF ATPase YfmR. PLoS Genet. 21, e1011633 (2025).

    Google Scholar 

  56. Lucas, B. A. et al. Locating macromolecular assemblies in cells by 2D template matching with cisTEM. Elife 10, https://doi.org/10.7554/eLife.68946 (2021).

  57. Cheng, J. et al. Capturing eukaryotic ribosome dynamics in situ at high resolution. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01454-9 (2025).

  58. Zheng, W. et al. Visualizing the translation landscape in human cells at high resolution. Nat. Commun. 16, 10757 (2025).

  59. Cheng, J. et al. Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA. Nat. Commun. 14, 1282 (2023).

    Google Scholar 

  60. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  61. Waltz, F. et al. How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nat. Commun. 12, 7176 (2021).

    Google Scholar 

  62. Zeng, R., Smith, E. & Barrientos, A. Yeast mitoribosome large subunit assembly proceeds by hierarchical incorporation of protein clusters and modules on the inner membrane. Cell Metab. 27, 645–656 (2018).

    Google Scholar 

  63. Singh, V. et al. Structural basis of LRPPRC-SLIRP-dependent translation by the mitoribosome. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01365-9 (2024).

  64. Holm, L., Laiho, A., Toronen, P. & Salgado, M. DALI shines a light on remote homologs: One hundred discoveries. Protein Sci. 32, e4519 (2023).

    Google Scholar 

  65. Desai, N. et al. Elongational stalling activates mitoribosome-associated quality control. Science 370, 1105–1110 (2020).

    Google Scholar 

  66. Cai, Y. C., Bullard, J. M., Thompson, N. L. & Spremulli, L. L. Interaction of mammalian mitochondrial elongation factor EF-Tu with guanine nucleotides. Protein Sci. 9, 1791–1800 (2000).

    Google Scholar 

  67. Zhang, J. et al. Predicting protein-protein interactions in the human proteome. Science 390, eadt1630 (2025).

    Google Scholar 

  68. Li, W. et al. Recognition of aminoacyl-tRNA: a common molecular mechanism revealed by cryo-EM. EMBO J. 27, 3322–3331 (2008).

    Google Scholar 

  69. Smith, R. C. L. et al. Translation initiation in cancer at a glance. J. Cell Sci. 134, https://doi.org/10.1242/jcs.248476 (2021).

  70. Barros, G. C., Guerrero, S. & Silva, G. M. The central role of translation elongation in response to stress. Biochem. Soc. T 51, 959–969 (2023).

    Google Scholar 

  71. Shin, D. H., Yokota, H., Kim, R. & Kim, S. H. Crystal structure of conserved hypothetical protein Aq1575 from Aquifex aeolicus. Proc. Natl. Acad. Sci. USA 99, 7980–7985 (2002).

    Google Scholar 

  72. Hubble, K. A. & Henry, M. F. DPC29 promotes post-initiation mitochondrial translation in Saccharomyces cerevisiae. Nucleic Acids Res. 51, 1260–1276 (2023).

    Google Scholar 

  73. Liang, H., Li, L., Dong, Z., Surette, M. G. & Duan, K. The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J. Bacteriol. 190, 6217–6227 (2008).

    Google Scholar 

  74. Brown, L. et al. YebC, a putative transcriptional factor involved in the regulation of the proteolytic system of Lactobacillus. Sci. Rep. 7, 8579 (2017).

    Google Scholar 

  75. Wei, L. et al. YebC controls virulence by activating T3SS gene expression in the pathogen Edwardsiella piscicida. FEMS Microbiol. Lett. 365, https://doi.org/10.1093/femsle/fny137 (2018).

  76. Choi, E., Jeon, H., Oh, C. & Hwang, J. Elucidation of a novel role of yebc in surface polysaccharides regulation of escherichia coli bipa-deletion. Front. Microbiol. 11, 597515 (2020).

    Google Scholar 

  77. Zhang, Y. et al. YebC regulates variable surface antigen VlsE expression and is required for host immune evasion in Borrelia burgdorferi. PLoS Pathog. 16, e1008953 (2020).

    Google Scholar 

  78. Pavlov, M. Y. et al. Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc. Natl. Acad. Sci. USA 106, 50–54 (2009).

    Google Scholar 

  79. Cai, Y. C., Bullard, J. M., Thompson, N. L. & Spremulli, L. L. Interaction of mitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts. J. Biol. Chem. 275, 20308–20314 (2000).

    Google Scholar 

  80. Tharichen, L., Englmeier, R. & Forster, F. Sample preparation of isolated mitochondria for cryoelectron tomography and in situ studies of translation. Methods Mol. Biol. 2661, 75–88 (2023).

    Google Scholar 

  81. Wieckowski, M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J. & Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat. Protoc. 4, 1582–1590 (2009).

    Google Scholar 

  82. Boldogh, I. R. & Pon, L. A. Purification and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. Methods Cell Biol. 80, 45–64 (2007).

    Google Scholar 

  83. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  84. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Google Scholar 

  85. Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    Google Scholar 

  86. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    Google Scholar 

  87. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D. Struct. Biol. 74, 531–544 (2018).

    Google Scholar 

  88. Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr D. Biol. Crystallogr 65, 1074–1080 (2009).

    Google Scholar 

  89. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Google Scholar 

  90. Choi, A. & Barrientos, A. Sucrose gradient sedimentation analysis of mitochondrial ribosomes. Methods Mol. Biol. 2192, 211–226 (2021).

    Google Scholar 

  91. Chu, H. P. et al. iDRiP for the systematic discovery of proteins bound directly to noncoding RNA. Nat. Protoc. 16, 3672–3694 (2021).

    Google Scholar 

  92. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).

    Google Scholar 

  93. RStudio: Integrated Development Environment for R (RStudio, 2020).

  94. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

  95. Choi, M. et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014).

    Google Scholar 

  96. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank V. Singh, A. Khawaja, and J. Rorbach at Karolinka Institutet for helpful discussions and providing purified mtEF-Tu. We thank J. Lin, K. Zhou, and S. Wu of the Yale Cryo-EM Resource for expert training and assistance with grid screening and data collection. We are grateful to N. Grigorieff and J. Elferich from University of Massachusetts for sharing the latest version of cisTEM. We also thank all members of the Xiong laboratory for assistance and encouragement throughout this project. Special thanks to S. Tang, A. Didychuk, I. Lomakin, and J. Wang for insightful discussions and suggestions. This work was supported by startup funds from Yale University to Y.X., National Institute of General Medicine (NIGMS) grant R35-GM118141 to A.B., Muscular Dystrophy Association Research grant 1069392 to A.B., Muscular Dystrophy Association Development grant 22-1288334 to M.B. and AFM-Téléthon Trampoline grant 28651 to M.B.

Author information

Author notes
  1. These authors contributed equally: Shuhui Wang, Michele Brischigliaro.

Authors and Affiliations

  1. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA

    Shuhui Wang, Yuekang Zhang, Chunxiang Wu, Wei Zheng & Yong Xiong

  2. Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA

    Michele Brischigliaro & Antoni Barrientos

  3. Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA

    Antoni Barrientos

  4. The Miami Veterans Affairs (VA) Medical System, Miami, FL, USA

    Antoni Barrientos

Authors
  1. Shuhui Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Michele Brischigliaro
    View author publications

    Search author on:PubMed Google Scholar

  3. Yuekang Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Chunxiang Wu
    View author publications

    Search author on:PubMed Google Scholar

  5. Wei Zheng
    View author publications

    Search author on:PubMed Google Scholar

  6. Antoni Barrientos
    View author publications

    Search author on:PubMed Google Scholar

  7. Yong Xiong
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.X. and A.B. conceived and supervised this study. S.W. performed cell culture and mitochondria isolation. S.W., C.W., and W.Z. carried out cryo-EM grid screening and data collection. S.W. and Y.X. processed the cryo-EM data. S.W. and Y.Z. identified the TACO1 and built the structural models. M.B. performed the GTP-binding assays, sucrose gradient sedimentation analyses and mass spectrometry experiments. S.W., Y.X., M.B., and A.B. contributed to drafting the manuscript. All authors participated in data analysis and manuscript review.

Corresponding authors

Correspondence to Antoni Barrientos or Yong Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Iskander Khusainov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Peer Review file

Reporting Summary

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Brischigliaro, M., Zhang, Y. et al. Structural basis of TACO1-mediated efficient mitochondrial translation. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69156-y

Download citation

  • Received: 20 June 2025

  • Accepted: 22 January 2026

  • Published: 09 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69156-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing