Abstract
Translation elongation is a universally conserved step in protein synthesis, relying on elongation factors that engage the ribosomal L7/L12 stalk to mediate aminoacyl-tRNA delivery, accommodation, and ribosomal translocation. Using in organello cryo-electron microscopy, we reveal how the mitochondrial translation accelerator TACO1 promotes efficient elongation on human mitoribosomes. TACO1 binds the mitoribosomal region typically bound by elongation factor Tu (mtEF-Tu), bridging the large and small subunits via contacts with 16S rRNA, bL12m, A-site tRNA, and uS12m. While active throughout elongation, TACO1 is especially critical when translating polyproline motifs. Its absence prolongs mtEF-Tu residence in A/T states, causes persistent mitoribosomal stalling and premature subunit dissociation. Structural analyses indicate that TACO1 competes with mtEF-Tu for mitoribosome binding, stabilizes A-site tRNA, and enhances peptidyl transfer through a mechanism distinct from EF-P and eIF5A. These findings suggest that bacterial TACO1 orthologs may serve analogous roles, highlighting an evolutionarily conserved strategy for maintaining elongation efficiency during challenging translation events.
Similar content being viewed by others
Data availability
The cryo-EM density maps of the mitoribosome–TACO1 complex generated in this study have been deposited in the Electron Microscopy Data Bank (EMDB) under the following accession codes: EMD-70621 (consensus map of the WT 55S mitoribosome), EMD-70620 (focused mtSSU map), EMD-70619 (focused mtLSU map), and EMD-70592 (composite map of the WT 55S mitoribosome). The corresponding atomic model has been deposited in the Protein Data Bank (PDB) under accession code 9OLF (55S mitoribosome in complex with LRPPRC, SLIRP, OXA1L, and TACO1). Cryo-EM maps of distinct mitoribosome states from WT and TACO1-KO cells have been deposited in the EMDB under accession codes EMD-71630 [https://www.ebi.ac.uk/emdb/EMD-70630], EMD-71634 [https://www.ebi.ac.uk/emdb/EMD-70634], EMD-71829, EMD-71623, EMD-71633, EMD-71797, EMD-71802, EMD-71809, EMD-71811, EMD-71815, EMD-71818, EMD-71635, EMD-71825, and EMD-71828. The corresponding atomic models have been deposited in the PDB under accession codes 9PGF, 9PGL, 9PSM, 9PG8, 9PGI, 9PR4, 9PRA, 9PRD, 9PRQ, 9PRX, 9PS0, 9PGM, 9PS7, and 9PSI. A complete list of accession codes is provided in Supplementary Tables 1-4. Mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD064026. Source data are provided with this paper.
References
Gebauer, F. & Hentze, M. W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827–835 (2004).
Knight, J. R. P. et al. Control of translation elongation in health and disease. Dis. Model Mech. 13, https://doi.org/10.1242/dmm.043208 (2020).
Samatova, E., Daberger, J., Liutkute, M. & Rodnina, M. V. Translational control by ribosome pausing in bacteria: how a non-uniform pace of translation affects protein production and folding. Front. Microbiol. 11, 619430 (2020).
Brischigliaro, M., Ahn, A., Hong, S., Fontanesi, F. & Barrientos, A. Emerging mechanisms of human mitochondrial translation regulation. Trends Biochem. Sci. https://doi.org/10.1016/j.tibs.2025.03.007 (2025).
Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).
O’Brien, T. W. Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene 286, 73–79 (2002).
Sharma, M. R. et al. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115, 97–108 (2003).
Amunts, A., Brown, A., Toots, J., Scheres, S. H. W. & Ramakrishnan, V. Ribosome. The structure of the human mitochondrial ribosome. Science 348, 95–98 (2015).
Greber, B. J. et al. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348, 303–308 (2015).
Rorbach, J. et al. Human mitochondrial ribosomes can switch their structural RNA composition. Proc. Natl. Acad. Sci. USA 113, 12198–12201 (2016).
De Silva, D., Tu, Y. T., Amunts, A., Fontanesi, F. & Barrientos, A. Mitochondrial ribosome assembly in health and disease. Cell Cycle 14, 2226–2250 (2015).
Ferrari, A., Del’Olio, S. & Barrientos, A. The diseased mitoribosome. FEBS Lett. 595, 1025–1061 (2021).
Lopez Sanchez, M. I. G., Kruger, A., Shiriaev, D. I., Liu, Y. & Rorbach, J. Human mitoribosome biogenesis and its emerging links to disease. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22083827 (2021).
Wang, F., Zhang, D., Zhang, D., Li, P. & Gao, Y. Mitochondrial protein translation: emerging roles and clinical significance in disease. Front. Cell Dev. Biol. 9, 675465 (2021).
Webb, B. D., Diaz, G. A. & Prasun, P. Mitochondrial translation defects and human disease. J. Transl. Genet. Genom. 4, 71–80 (2020).
Pearce, S., Nezich, C. L. & Spinazzola, A. Mitochondrial diseases: translation matters. Mol. Cell Neurosci. 55, 1–12 (2013).
Seeger, J. et al. Clinical and neuropathological findings in patients with TACO1 mutations. Neuromuscul. Disord. 20, 720–724 (2010).
Makrythanasis, P. et al. Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Hum. Mutat. 35, 1203–1210 (2014).
Oktay, Y. et al. Confirmation of TACO1 as a leigh syndrome disease gene in two additional families. J. Neuromuscul. Dis. 7, 301–308 (2020).
Sferruzza, G. et al. U-fiber leukoencephalopathy due to a novel mutation in the TACO1 gene. Neurol. Genet 7, e573 (2021).
Herskind, M. N., Granild-Jensen, J. B. & Bendixen, M. T. Distinct magnetic resonance imaging in a child with a TACO1 variant. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2024.1105 (2024).
Weraarpachai, W. et al. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat. Genet., 41, 833–837 (2009).
Brischigliaro, M. et al. The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae645 (2024).
Peil, L. et al. Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc. Natl. Acad. Sci. USA 110, 15265–15270 (2013).
Ude, S. et al. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339, 82–85 (2013).
Woolstenhulme, C. J. et al. Nascent peptides that block protein synthesis in bacteria. Proc. Natl. Acad. Sci. USA 110, E878–E887 (2013).
Chadani, Y. et al. The ABCF proteins in Escherichia coli individually cope with ‘hard-to-translate’ nascent peptide sequences. Nucleic Acids Res. 52, 5825–5840 (2024).
Hong, H. R., Prince, C. R., Tetreault, D. D., Wu, L. & Feaga, H. A. YfmR is a translation factor that prevents ribosome stalling and cell death in the absence of EF-P. Proc. Natl. Acad. Sci. USA 121, e2314437121 (2024).
Takada, H., Fujiwara, K., Atkinson, G. C., Chiba, S. & Hauryliuk, V. Resolution of ribosomal stalling by EF-P and ABCF ATPases YfmR and YkpA/YbiT. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae556 (2024).
Gutierrez, E. et al. eIF5A promotes translation of polyproline motifs. Mol. Cell 51, 35–45 (2013).
Blaha, G., Stanley, R. E. & Steitz, T. A. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325, 966–970 (2009).
Schmidt, C. et al. Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Res. 44, 1944–1951 (2016).
Huter, P. et al. Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P. Mol. Cell 68, 515–527 (2017).
Boel, G. et al. The ABC-F protein EttA gates ribosome entry into the translation elongation cycle. Nat. Struct. Mol. Biol. 21, 143–151 (2014).
Chen, B. et al. EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA dynamics. Nat. Struct. Mol. Biol. 21, 152–159 (2014).
Su, T. et al. Structure and function of Vms1 and Arb1 in RQC and mitochondrial proteome homeostasis. Nature 570, 538–542 (2019).
Crowe-McAuliffe, C. et al. Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nat. Commun. 12, 3577 (2021).
Richman, T. R. et al. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat. Commun. 7, 11884 (2016).
Singh, V. et al. Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk. Nat. Commun. 15, 4272 (2024).
Hillen, H. S. et al. Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling. Nat. Commun. 12, 3672 (2021).
Itoh, Y. et al. Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature 606, 603–608 (2022).
Harper, N. J., Burnside, C. & Klinge, S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature 614, 175–181 (2023).
Skaltsogiannis, V. et al. Structural insights into maturation and translation of a plant mitoribosome. BioRxiv, 2024.2010.2028.620559, https://doi.org/10.1101/2024.10.28.620559 %J bioRxiv (2024).
Sissler, M. & Hashem, Y. Mitoribosome assembly comes into view. Nat. Struct. Mol. Biol. 28, 631–633 (2021).
Brown, A. et al. Structures of the human mitochondrial ribosome in native states of assembly. Nat. Struct. Mol. Biol. 24, 866–869 (2017).
Cheng, J., Berninghausen, O. & Beckmann, R. A distinct assembly pathway of the human 39S late pre-mitoribosome. Nat. Commun. 12, 4544 (2021).
Cipullo, M., Gese, G. V., Khawaja, A., Hallberg, B. M. & Rorbach, J. Structural basis for late maturation steps of the human mitoribosomal large subunit. Nat. Commun. 12, 3673 (2021).
Pfeffer, S., Woellhaf, M. W., Herrmann, J. M. & Forster, F. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat. Commun. 6, 6019 (2015).
Englmeier, R., Pfeffer, S. & Forster, F. Structure of the human mitochondrial ribosome studied in situ by cryoelectron tomography. Structure 25, 1574–1581 (2017).
Ott, M. & Herrmann, J. M. Co-translational membrane insertion of mitochondrially encoded proteins. Biochim. Biophys. Acta 1803, 767–775 (2010).
Itoh, Y. et al. Mechanism of membrane-tethered mitochondrial protein synthesis. Science 371, 846–849 (2021).
Ott, M. et al. Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO J. 25, 1603–1610 (2006).
Szyrach, G., Ott, M., Bonnefoy, N., Neupert, W. & Herrmann, J. M. Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO J. 22, 6448–6457 (2003).
Ignatov, D. et al. RNA-binding protein YebC enhances translation of proline-rich amino acid stretches in bacteria. Nat. Commun. 16, 6262 (2025).
Hong, H. R. et al. YebC2 resolves ribosome stalling and increases fitness of cells lacking EF-P and the ABCF ATPase YfmR. PLoS Genet. 21, e1011633 (2025).
Lucas, B. A. et al. Locating macromolecular assemblies in cells by 2D template matching with cisTEM. Elife 10, https://doi.org/10.7554/eLife.68946 (2021).
Cheng, J. et al. Capturing eukaryotic ribosome dynamics in situ at high resolution. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01454-9 (2025).
Zheng, W. et al. Visualizing the translation landscape in human cells at high resolution. Nat. Commun. 16, 10757 (2025).
Cheng, J. et al. Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA. Nat. Commun. 14, 1282 (2023).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Waltz, F. et al. How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nat. Commun. 12, 7176 (2021).
Zeng, R., Smith, E. & Barrientos, A. Yeast mitoribosome large subunit assembly proceeds by hierarchical incorporation of protein clusters and modules on the inner membrane. Cell Metab. 27, 645–656 (2018).
Singh, V. et al. Structural basis of LRPPRC-SLIRP-dependent translation by the mitoribosome. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01365-9 (2024).
Holm, L., Laiho, A., Toronen, P. & Salgado, M. DALI shines a light on remote homologs: One hundred discoveries. Protein Sci. 32, e4519 (2023).
Desai, N. et al. Elongational stalling activates mitoribosome-associated quality control. Science 370, 1105–1110 (2020).
Cai, Y. C., Bullard, J. M., Thompson, N. L. & Spremulli, L. L. Interaction of mammalian mitochondrial elongation factor EF-Tu with guanine nucleotides. Protein Sci. 9, 1791–1800 (2000).
Zhang, J. et al. Predicting protein-protein interactions in the human proteome. Science 390, eadt1630 (2025).
Li, W. et al. Recognition of aminoacyl-tRNA: a common molecular mechanism revealed by cryo-EM. EMBO J. 27, 3322–3331 (2008).
Smith, R. C. L. et al. Translation initiation in cancer at a glance. J. Cell Sci. 134, https://doi.org/10.1242/jcs.248476 (2021).
Barros, G. C., Guerrero, S. & Silva, G. M. The central role of translation elongation in response to stress. Biochem. Soc. T 51, 959–969 (2023).
Shin, D. H., Yokota, H., Kim, R. & Kim, S. H. Crystal structure of conserved hypothetical protein Aq1575 from Aquifex aeolicus. Proc. Natl. Acad. Sci. USA 99, 7980–7985 (2002).
Hubble, K. A. & Henry, M. F. DPC29 promotes post-initiation mitochondrial translation in Saccharomyces cerevisiae. Nucleic Acids Res. 51, 1260–1276 (2023).
Liang, H., Li, L., Dong, Z., Surette, M. G. & Duan, K. The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J. Bacteriol. 190, 6217–6227 (2008).
Brown, L. et al. YebC, a putative transcriptional factor involved in the regulation of the proteolytic system of Lactobacillus. Sci. Rep. 7, 8579 (2017).
Wei, L. et al. YebC controls virulence by activating T3SS gene expression in the pathogen Edwardsiella piscicida. FEMS Microbiol. Lett. 365, https://doi.org/10.1093/femsle/fny137 (2018).
Choi, E., Jeon, H., Oh, C. & Hwang, J. Elucidation of a novel role of yebc in surface polysaccharides regulation of escherichia coli bipa-deletion. Front. Microbiol. 11, 597515 (2020).
Zhang, Y. et al. YebC regulates variable surface antigen VlsE expression and is required for host immune evasion in Borrelia burgdorferi. PLoS Pathog. 16, e1008953 (2020).
Pavlov, M. Y. et al. Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc. Natl. Acad. Sci. USA 106, 50–54 (2009).
Cai, Y. C., Bullard, J. M., Thompson, N. L. & Spremulli, L. L. Interaction of mitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts. J. Biol. Chem. 275, 20308–20314 (2000).
Tharichen, L., Englmeier, R. & Forster, F. Sample preparation of isolated mitochondria for cryoelectron tomography and in situ studies of translation. Methods Mol. Biol. 2661, 75–88 (2023).
Wieckowski, M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J. & Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat. Protoc. 4, 1582–1590 (2009).
Boldogh, I. R. & Pon, L. A. Purification and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. Methods Cell Biol. 80, 45–64 (2007).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).
Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D. Struct. Biol. 74, 531–544 (2018).
Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr D. Biol. Crystallogr 65, 1074–1080 (2009).
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).
Choi, A. & Barrientos, A. Sucrose gradient sedimentation analysis of mitochondrial ribosomes. Methods Mol. Biol. 2192, 211–226 (2021).
Chu, H. P. et al. iDRiP for the systematic discovery of proteins bound directly to noncoding RNA. Nat. Protoc. 16, 3672–3694 (2021).
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).
RStudio: Integrated Development Environment for R (RStudio, 2020).
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).
Choi, M. et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Acknowledgements
We thank V. Singh, A. Khawaja, and J. Rorbach at Karolinka Institutet for helpful discussions and providing purified mtEF-Tu. We thank J. Lin, K. Zhou, and S. Wu of the Yale Cryo-EM Resource for expert training and assistance with grid screening and data collection. We are grateful to N. Grigorieff and J. Elferich from University of Massachusetts for sharing the latest version of cisTEM. We also thank all members of the Xiong laboratory for assistance and encouragement throughout this project. Special thanks to S. Tang, A. Didychuk, I. Lomakin, and J. Wang for insightful discussions and suggestions. This work was supported by startup funds from Yale University to Y.X., National Institute of General Medicine (NIGMS) grant R35-GM118141 to A.B., Muscular Dystrophy Association Research grant 1069392 to A.B., Muscular Dystrophy Association Development grant 22-1288334 to M.B. and AFM-Téléthon Trampoline grant 28651 to M.B.
Author information
Authors and Affiliations
Contributions
Y.X. and A.B. conceived and supervised this study. S.W. performed cell culture and mitochondria isolation. S.W., C.W., and W.Z. carried out cryo-EM grid screening and data collection. S.W. and Y.X. processed the cryo-EM data. S.W. and Y.Z. identified the TACO1 and built the structural models. M.B. performed the GTP-binding assays, sucrose gradient sedimentation analyses and mass spectrometry experiments. S.W., Y.X., M.B., and A.B. contributed to drafting the manuscript. All authors participated in data analysis and manuscript review.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Iskander Khusainov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Wang, S., Brischigliaro, M., Zhang, Y. et al. Structural basis of TACO1-mediated efficient mitochondrial translation. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69156-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69156-y


