Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Genomics of rafting crustaceans reveals adaptation to climate change in tropical oceans
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 February 2026

Genomics of rafting crustaceans reveals adaptation to climate change in tropical oceans

  • Hongguang Liu1,2,
  • Jonathan M. Waters  ORCID: orcid.org/0000-0002-1514-79163,
  • Mengyi Huang1,4,
  • Ziyan Wang1,4,
  • Wan-Jin Chang5,
  • Shuqiang Li  ORCID: orcid.org/0000-0002-3290-54166 &
  • …
  • Zhonge Hou  ORCID: orcid.org/0000-0001-5929-11541,2 

Nature Communications , Article number:  (2026) Cite this article

  • 868 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biogeography
  • Ecological genetics
  • Marine biology

Abstract

Rafting dispersal has been proposed as a way for coastal species to track climate-driven niche shifts. However, little information exists on how rafting species disperse and adapt to shifting environmental conditions, particularly ocean currents and salinity. Here, we integrate dispersal simulations, ecological genomics, and salinity stress experiments to investigate rafting dynamics and adaptive shifts in widely distributed crustaceans across the Indo-Australian Archipelago. We develop a quantified model to examine asymmetric gene flow between populations driven by recent seasonal oceanographic shifts. Our climatic and dispersal models suggest that rafting populations must cope with increasing salinity fluctuation caused by rapidly-shifting oceanic connectivity patterns. Our genomic data provide evidence for recent selective sweeps at osmoregulatory loci, and key duplications at glycoside hydrolase gene families. Our experimental data reveal plastic expression of osmoregulatory genes required for survival during long-distance rafting voyages. These synergies between rafting dispersal and genomic change highlight the potential for rafting species to adapt to rapidly shifting oceanographic conditions.

Similar content being viewed by others

Genome of the estuarine oyster provides insights into climate impact and adaptive plasticity

Article Open access 12 November 2021

Population genomic analyses reveal that salinity and geographic isolation drive diversification in a free-living protist

Article Open access 29 February 2024

Genetic and particle modelling approaches to assessing population connectivity in a deep sea lobster

Article Open access 06 October 2022

Data availability

All the raw RNA-seq (SRR34777140, SRR34777151–SRR34777186, SRR34777191, SRR34777202, SRR34777213, SRR34777215–SRR34777246, SRR34777256, SRR34777267, SRR34777278, SRR34777289, SRR34777300, SRR34777311–SRR34777313, SRR36240034–SRR36240062), and genome resequencing data (SRR34777130–SRR34777139, SRR34777141–SRR34777150, SRR34777187–SRR34777190, SRR34777192–SRR34777201, SRR34777203–SRR34777212, SRR34777214, SRR34777247–SRR34777255, SRR34777257–SRR34777266, SRR34777268–SRR34777277, SRR34777279–SRR34777288, SRR34777290–SRR34777299, SRR34777301–SRR34777310), and the genome assembly generated in this study has been deposited in the NCBI under the accession number GCA_054095995.1, datasets used to generate the assembly are available under the accession number PRJNA1297316. Sanger sequences have been deposited in GenBank with accession numbers in Supplementary Data 1. Other genomes used in this study include Hyalella azteca (GCA_000764305.4)94, Parhyale hawaiensis (GCA_001587735.2)37, Hirondellea gigas (CNGBdb Project ID CNP0005374)95, Trinorchestia longiramus (GCA_006783055.1)96, Morinoia aosen (GCA_030386875.1)71, Floresorchestia mkomani (SRR23898670 under PRJNA938803)71, Cochinorchestia sp. (SRR23898667 under PRJNA938803)71, Platorchestia pacifica (SRR23898669 under PRJNA938803)71. Four annual mean environmental variables (sea surface temperature, sea surface salinity, ocean current direction, and ocean current velocity) are from Bio-ORACLE (https://www.bio-oracle.org/), the variable “distance from shore” from the MARSPEC database (http://marspec.weebly.com). Sea surface ocean currents data from Global Ocean Ensemble Physics Reanalysis (GOEPR) are available in Copernicus Marine Environment Monitoring Service (CMEMS; https://marine.copernicus.eu/). The bathymetric data can be obtained from the ETOPO1 database (https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/). Sampling data can be found in Supplementary Data 1. Results of genetic offsets are available in Supplementary Data 2–6, and gene family can be found in Supplementary Data 7. Source data are provided in this paper.

Code availability

Analysis scripts can be found at Figshare (https://doi.org/10.6084/m9.figshare.29614727)100, and Code Ocean deposition (https://doi.org/10.24433/CO.2066999.v1).

References

  1. Carlton, J. et al. Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography. Science 357, 1402–1406 (2017).

    Google Scholar 

  2. Fraser, C. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).

    Google Scholar 

  3. Villarino, E. et al. Large-scale ocean connectivity and planktonic body size. Nat. Commun. 9, 142 (2018).

    Google Scholar 

  4. Gillespie, R. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).

    Google Scholar 

  5. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967)

  6. Fraser, C. I., Nikula, R. & Waters, J. M. Oceanic rafting by a coastal community. Proc. Biol. Sci. 278, 649–655 (2010).

    Google Scholar 

  7. Collins, C. J., Fraser, C. I., Ashcroft, A. & Waters, J. M. Asymmetric dispersal of southern bull-kelp (Durvillaea antarctica) adults in coastal New Zealand: testing an oceanographic hypothesis. Mol. Evol. 19, 4572–4580 (2010).

    Google Scholar 

  8. Waters, J. M. Seaweed rafts. Curr. Biol. 31, R1510–R1511 (2021).

    Google Scholar 

  9. Yu, L. et al. Ocean current patterns drive the worldwide colonization of eelgrass (Zostera marina). Nat. Plants 9, 1207–1220 (2023).

    Google Scholar 

  10. Kling, M. M. & Ackerly, D. D. Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees. Proc. Natl. Acad. Sci. USA 118, e2017317118 (2021).

    Google Scholar 

  11. Wilson, L. J. et al. Climate-driven changes to ocean circulation and their inferred impacts on marine dispersal patterns. Glob. Ecol. Biogeogr. 25, 923–939 (2016).

    Google Scholar 

  12. Peng, Q. et al. Surface warming–induced global acceleration of upper ocean currents. Sci. Adv. 8, eabj8394 (2022).

    Google Scholar 

  13. Röthig, T. et al. Sweet, Human-induced salinity changes impact marine organisms and ecosystems. Global Change Biol. 29, 4731–4749 (2023).

    Google Scholar 

  14. van der Stocken, T., Vanschoenwinkel, B., Carroll, D., Cavanaugh, K. C. & Koedam, N. Mangrove dispersal disrupted by projected changes in global seawater density. Nat. Clim. Change 12, 685–691 (2022).

    Google Scholar 

  15. Wildish, D. J. Evolutionary ecology of driftwood talitrids: a review. Zoosyst. Evol. 93, 353–361 (2017).

    Google Scholar 

  16. Fanini, L. & Lowry, J. Coastal talitrids and connectivity between beaches: A behavioural test. J Exp. Mar. Biol. Ecol. 457, 120–127 (2014).

    Google Scholar 

  17. He, Z., Feng, M., Wang, D. & Slawinski, D. Contribution of the Karimata Strait transport to the Indonesian Throughflow as seen from a data assimilation model. Cont. Shelf Res. 92, 16–22 (2015).

    Google Scholar 

  18. Wang, Y. et al. Seasonal variation of water transport through the Karimata Strait. Acta Oceanol. Sin. 38, 47–57 (2019).

    Google Scholar 

  19. Sholihah, A. et al. Impact of Pleistocene eustatic fluctuations on evolutionary dynamics in Southeast Asian biodiversity hotspots. Syst. Biol. 70, 940–960 (2021).

    Google Scholar 

  20. Hernawan, U. E. et al. Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Mol. Ecol. 26, 1008–1021 (2017).

    Google Scholar 

  21. Hou, Z. & Li, S. Intraspecific or interspecific variation: delimitation of species boundaries within the genus Gammarus (Crustacea, Amphipoda, Gammaridae), with description of four new species: delimitation of Gammarus species boundaries. Zool. J. Linn. Soc Lond. 160, 215–253 (2010).

    Google Scholar 

  22. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Google Scholar 

  23. Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1034 (2011).

    Google Scholar 

  24. Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    Google Scholar 

  25. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).

    Google Scholar 

  26. Hodel, R. G. et al. Terrestrial species adapted to sea dispersal: differences in propagule dispersal of two Caribbean mangroves. Mol. Ecol. 27, 4612–4626 (2018).

    Google Scholar 

  27. Bennett, A. Lagrangian Fluid Dynamics. (Cambridge University, Cambridge, 2006).

  28. Dagestad, Röhrs, K. F., Breivik, J. & Ådlandsvik, Ø B. OpenDrift v1.0: a generic framework for trajectory modelling. Geosci. Model Dev. 11, 1405–1420 (2018).

    Google Scholar 

  29. Gougherty, A. V., Keller, S. R. & Fitzpatrick, M. C. Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nat. Clim. Change 11, 166–171 (2021).

    Google Scholar 

  30. Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).

    Google Scholar 

  31. Chiu, C. I. et al. Termite salinity tolerance and potential for transoceanic dispersal through rafting. Ecol. Entomol. 46, 106–116 (2021).

    Google Scholar 

  32. Jaspers, C. et al. Invasion genomics uncover contrasting scenarios of genetic diversity in a widespread marine invader. Proc. Natl. Acad. Sci. USA 118, e2116211118 (2021).

    Google Scholar 

  33. Frichot, E., Schoville, S., Bouchard, D. & François, G. O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).

    Google Scholar 

  34. Forester, B. R., Jones, M., Joost, R. S., Landguth, E. L. & Lasky, J. R. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol. Ecol. 25, 104–120 (2016).

    Google Scholar 

  35. Asaduzzaman, M. et al. Morpho-genetic divergence and adaptation of anadromous Hilsa shad (Tenualosa ilisha) along their heterogenic migratory habitats. Front. Mar. Sci. 7, https://doi.org/10.3389/fmars.2020.00554 (2020).

  36. Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    Google Scholar 

  37. Kao, D. et al. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. Elife 5, e20062 (2016).

    Google Scholar 

  38. Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

    Google Scholar 

  39. Petrick, B. et al. Glacial Indonesian Throughflow weakening across the mid-Pleistocene climatic transition. Sci. Rep. 9, 16995 (2019).

    Google Scholar 

  40. Zheng, B., Xu, Q. & Shen, Y. The relationship between climate change and Quaternary glacial cycles on the Qinghai–Tibetan Plateau: review and speculation. Quatern. Int. 97, 93–101 (2002).

    Google Scholar 

  41. van der Zee, J. P. et al. Demographic changes in Pleistocene sea turtles were driven by past sea level fluctuations affecting feeding habitat availability. Mol. Ecol. 31, 1044–1056 (2022).

    Google Scholar 

  42. Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    Google Scholar 

  43. Skeels, A. et al. Paleoenvironments shaped the exchange of terrestrial vertebrates across Wallace’s Line. Science 381, 86–92 (2023).

    Google Scholar 

  44. Barber, P. H., Palumbi, S. R., Erdmann, M. V. & Moosa, M. K. A. marine Wallace’s line?. Nature 406, 692–693 (2000).

    Google Scholar 

  45. Fraser, C. I. et al. Southern Hemisphere coasts are biologically connected by frequent, long-distance rafting events. Curr. Biol. 32, 3154–3160 (2022).

    Google Scholar 

  46. Liu, J., Lindstrom, A. J., Chen, Y., Nathan, R. & Gong, X. Congruence between ocean-dispersal modelling and phylogeography explains recent evolutionary history of Cycas species with buoyant seeds. New Phytol. 232, 1863–1875 (2021).

    Google Scholar 

  47. Murphy, E., Nistor, I., Cornett, A., Wilson, J. & Pilechi, A. Fate and transport of coastal driftwood: A critical review. Mar. Pollut. Bull. 170, 112649 (2021).

    Google Scholar 

  48. Layton, K. K. S. et al. Predicting the future of our oceans—Evaluating genomic forecasting approaches in marine species. Global Change Biol. 30, e17236 (2024).

    Google Scholar 

  49. Chen, Y. et al. Incorporating adaptive genomic variation into predictive models for invasion risk assessment. Environ. Sci. Ecotech. 18, 100299 (2024).

    Google Scholar 

  50. Bay, R. A. et al. Genomic signals of selection predict climate driven population declines in a migratory bird. Science 359, 83–86 (2018).

    Google Scholar 

  51. Ferrer Obiol, J. et al. Evolutionarily distinct lineages of a migratory bird of prey show divergent responses to climate change. Nat. Commun. 16, 3503 (2025).

    Google Scholar 

  52. Layton, K. K. S. et al. Genomic evidence of past and future climate-linked loss in a migratory Arctic fish. Nat. Clim. Change 11, 158–165 (2021).

    Google Scholar 

  53. Lotterhos, K. E. Interpretation issues with “genomic vulnerability” arise from conceptual issues in local adaptation and maladaptation. Evol. Lett. 8, 331–339 (2024).

    Google Scholar 

  54. Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol. 5, 1350–1360 (2021).

    Google Scholar 

  55. Barrett, N. J. et al. Molecular responses to thermal and osmotic stress in Arctic intertidal mussels (Mytilus edulis): the limits of resilience. Genes 13, 155 (2022).

    Google Scholar 

  56. Rumberger, C. et al. Selection Over Small and Large Spatial Scales in the Face of High Gene Flow. Mol. Ecol. 34, e17700 (2025).

    Google Scholar 

  57. Gleason, L. U. & Burton, R. S. Phenotypic evidence for local adaptation to heat stress in the marine snail Chlorostoma (formerly Tegula) funebralis. J. Exp. Mar. Biol. Ecol. 448, 360–366 (2013).

    Google Scholar 

  58. Nuñez, J. C. B. et al. From Tides to Nucleotides: Genomic Signatures of Adaptation to Environmental Heterogeneity in Barnacles. Mol. Ecol. 30, 6417–6433 (2021).

    Google Scholar 

  59. Lee, C. E. Ion transporter gene families as physiological targets of natural selection during salinity transitions in a copepod. Physiology 36, 335–349 (2021).

    Google Scholar 

  60. Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577 (2020).

    Google Scholar 

  61. Hoffmann, A. A., Weeks, A. R. & Sgrò, C. M. Opportunities and challenges in assessing climate change vulnerability through genomics. Cell 184, 1420–1425 (2021).

    Google Scholar 

  62. Rellstab, C., Dauphin, B. & Exposito-Alonso, M. Prospects and limitations of genomic offset in conservation management. Evol. Appl. 14, 1202–1212 (2021).

    Google Scholar 

  63. Stern, D. & Lee, C. Evolutionary origins of genomic adaptations in an invasive copepod. Nat. Ecol. Evol. 4, 1084–1094 (2020).

    Google Scholar 

  64. Liu, H., Wang, X., Liu, Z., Li, S. & Hou, Z. Osmoregulatory evolution of gills promoted salinity adaptation following the sea–land transition of crustaceans. Mar. Life Sci. Technol. 7, 205–217 (2025).

    Google Scholar 

  65. Cui, Z. et al. The Chinese mitten crab genome provides insights into adaptive plasticity and developmental regulation. Nat. Commun. 12, 2395 (2021).

    Google Scholar 

  66. Whitehead, A., Roach, J. L., Zhang, S. & Galvez, F. Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proc. Natl. Acad. Sci. USA 108, 6193–6198 (2011).

    Google Scholar 

  67. Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).

    Google Scholar 

  68. Thiel, M. Rafting of benthic macrofauna: important factors determining the temporal succession of the assemblage on detached macroalgae. Hydrobiologia 503, 49–57 (2003).

    Google Scholar 

  69. Gibson, R. N. & Robb, L. Piscine predation on juvenile fishes on a Scottish sandy beach. J. Fish Biol. 49, 120–138 (1996).

    Google Scholar 

  70. King, A. J. et al. Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. Proc. Natl. Acad. Sci. USA 107, 5345–5350 (2010).

    Google Scholar 

  71. Liu, H. et al. Marine-montane transitions coupled with gill and genetic convergence in extant crustacean. Sci. Adv. 9, eadg4011 (2023).

    Google Scholar 

  72. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  73. Alonge, M. et al. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23, 258 (2022).

    Google Scholar 

  74. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Google Scholar 

  75. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Google Scholar 

  76. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Google Scholar 

  77. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Google Scholar 

  78. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Google Scholar 

  79. Papa, Y., Morrison, M. A., Wellenreuther, M. & Ritchie, P. A. Genomic stock structure of the marine teleost tarakihi (Nemadactylus macropterus) provides evidence of potential fine-scale adaptation and a temperature-associated cline amid panmixia. Front. Ecol. Evol. 10, 862930 (2022).

    Google Scholar 

  80. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Google Scholar 

  81. Zheng, X. SNPRelate: parrallel computing toolset for genome-wide association studies. R Package Version 95, B9 (2012).

    Google Scholar 

  82. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Google Scholar 

  83. Malinsky, M., Matschiner & Svardal, M. H. Dsuite-fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584–595 (2021).

    Google Scholar 

  84. Pante, E. & Simon-Bouhet, B. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).

    Google Scholar 

  85. Amante, C. & Eakins, B. W. ETOPO11 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (NOAA, 2009).

  86. Sbrocco, E. J. & Barber, P. H. MARSPEC: ocean climate layers for marine spatial ecology: Ecological Archives E094–086. Ecology 94, 979 (2013).

    Google Scholar 

  87. Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).

    Google Scholar 

  88. Capblancq, T. & Forester, B. R. Redundancy analysis: a Swiss Army Knife for landscape genomics. Methods Ecol. Evol. 12, 2298–2309 (2021).

    Google Scholar 

  89. Xie, C. et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–W322 (2011).

    Google Scholar 

  90. Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).

    Google Scholar 

  91. Love, M., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Google Scholar 

  92. Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    Google Scholar 

  93. Yin, Y. et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012).

    Google Scholar 

  94. Poynton, H. C. et al. The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology. Environ. Sci. Technol. 52, 6009–6022 (2018).

    Google Scholar 

  95. Zhang, H. et al. The amphipod genome reveals population dynamics and adaptations to hadal environment. Cell 188, 1378–1392 (2025).

    Google Scholar 

  96. Patra, A. K. et al. First draft genome for the sand-hopper Trinorchestia longiramus. Sci. Data 7, 85 (2020).

    Google Scholar 

  97. Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121–e121 (2013).

    Google Scholar 

  98. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Google Scholar 

  99. De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    Google Scholar 

  100. Liu, H. et al. Code and data for ‘Genomics of rafting crustaceans reveals adaptation to climate change in tropical oceans’. Figshare https://doi.org/10.6084/m9.figshare.29614727 (2025).

Download references

Acknowledgements

We thank Baocheng Guo, Yilin Chen, Dezhi Zhang, Bingyue Zhu, Tongyao Jiang, Zhe Zhao, Fengyuan Li, and Pengyu Jin for helpful discussion; Zeyu Liu and Wenpei Xin for help in salinity experiments; Knut-Frode Dagestad for help in OpenDrift analysis; Zilong Bai and O. Alfaruq for assistance in field collection. This study was supported by the National Natural Science Foundation of China (grant number 32470474 for Z.H., 32500387 for H.L.), the International Partnership Program of the Chinese Academy of Sciences (grant number 073GJHZ2024043MI for Z.H. and H.L.), the Institute of Zoology, Chinese Academy of Sciences (2023IOZ0104 and 2024IOZ0108 for Z.H.), Beijing Natural Science Foundation (grant number 5244045 for H.L.).

Author information

Authors and Affiliations

  1. State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China

    Hongguang Liu, Mengyi Huang, Ziyan Wang & Zhonge Hou

  2. College of Life Sciences, Capital Normal University, Beijing, China

    Hongguang Liu & Zhonge Hou

  3. University of Otago, Department of Zoology, Dunedin, New Zealand

    Jonathan M. Waters

  4. University of Chinese Academy of Sciences, Beijing, China

    Mengyi Huang & Ziyan Wang

  5. Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, Malaysia

    Wan-Jin Chang

  6. College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China

    Shuqiang Li

Authors
  1. Hongguang Liu
    View author publications

    Search author on:PubMed Google Scholar

  2. Jonathan M. Waters
    View author publications

    Search author on:PubMed Google Scholar

  3. Mengyi Huang
    View author publications

    Search author on:PubMed Google Scholar

  4. Ziyan Wang
    View author publications

    Search author on:PubMed Google Scholar

  5. Wan-Jin Chang
    View author publications

    Search author on:PubMed Google Scholar

  6. Shuqiang Li
    View author publications

    Search author on:PubMed Google Scholar

  7. Zhonge Hou
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H.L. and Z.H. designed research; H.L., M.H., and Z.W. performed research; W.J.C. and S.L. collected samples and participated in discussions; H.L. and Z.H. wrote the manuscript; J.M.W. reviewed and edited the manuscript. All authors proofread and approved the manuscript.

Corresponding author

Correspondence to Zhonge Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jilian Xiong, Zhiqiang Ye and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.”

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Descriptions of Additional Supplementary Files

Supplementary Data 1 to 7.

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Waters, J.M., Huang, M. et al. Genomics of rafting crustaceans reveals adaptation to climate change in tropical oceans. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69173-x

Download citation

  • Received: 27 November 2024

  • Accepted: 27 January 2026

  • Published: 06 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69173-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing