Abstract
Rafting dispersal has been proposed as a way for coastal species to track climate-driven niche shifts. However, little information exists on how rafting species disperse and adapt to shifting environmental conditions, particularly ocean currents and salinity. Here, we integrate dispersal simulations, ecological genomics, and salinity stress experiments to investigate rafting dynamics and adaptive shifts in widely distributed crustaceans across the Indo-Australian Archipelago. We develop a quantified model to examine asymmetric gene flow between populations driven by recent seasonal oceanographic shifts. Our climatic and dispersal models suggest that rafting populations must cope with increasing salinity fluctuation caused by rapidly-shifting oceanic connectivity patterns. Our genomic data provide evidence for recent selective sweeps at osmoregulatory loci, and key duplications at glycoside hydrolase gene families. Our experimental data reveal plastic expression of osmoregulatory genes required for survival during long-distance rafting voyages. These synergies between rafting dispersal and genomic change highlight the potential for rafting species to adapt to rapidly shifting oceanographic conditions.
Similar content being viewed by others
Data availability
All the raw RNA-seq (SRR34777140, SRR34777151–SRR34777186, SRR34777191, SRR34777202, SRR34777213, SRR34777215–SRR34777246, SRR34777256, SRR34777267, SRR34777278, SRR34777289, SRR34777300, SRR34777311–SRR34777313, SRR36240034–SRR36240062), and genome resequencing data (SRR34777130–SRR34777139, SRR34777141–SRR34777150, SRR34777187–SRR34777190, SRR34777192–SRR34777201, SRR34777203–SRR34777212, SRR34777214, SRR34777247–SRR34777255, SRR34777257–SRR34777266, SRR34777268–SRR34777277, SRR34777279–SRR34777288, SRR34777290–SRR34777299, SRR34777301–SRR34777310), and the genome assembly generated in this study has been deposited in the NCBI under the accession number GCA_054095995.1, datasets used to generate the assembly are available under the accession number PRJNA1297316. Sanger sequences have been deposited in GenBank with accession numbers in Supplementary Data 1. Other genomes used in this study include Hyalella azteca (GCA_000764305.4)94, Parhyale hawaiensis (GCA_001587735.2)37, Hirondellea gigas (CNGBdb Project ID CNP0005374)95, Trinorchestia longiramus (GCA_006783055.1)96, Morinoia aosen (GCA_030386875.1)71, Floresorchestia mkomani (SRR23898670 under PRJNA938803)71, Cochinorchestia sp. (SRR23898667 under PRJNA938803)71, Platorchestia pacifica (SRR23898669 under PRJNA938803)71. Four annual mean environmental variables (sea surface temperature, sea surface salinity, ocean current direction, and ocean current velocity) are from Bio-ORACLE (https://www.bio-oracle.org/), the variable “distance from shore” from the MARSPEC database (http://marspec.weebly.com). Sea surface ocean currents data from Global Ocean Ensemble Physics Reanalysis (GOEPR) are available in Copernicus Marine Environment Monitoring Service (CMEMS; https://marine.copernicus.eu/). The bathymetric data can be obtained from the ETOPO1 database (https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/). Sampling data can be found in Supplementary Data 1. Results of genetic offsets are available in Supplementary Data 2–6, and gene family can be found in Supplementary Data 7. Source data are provided in this paper.
Code availability
Analysis scripts can be found at Figshare (https://doi.org/10.6084/m9.figshare.29614727)100, and Code Ocean deposition (https://doi.org/10.24433/CO.2066999.v1).
References
Carlton, J. et al. Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography. Science 357, 1402–1406 (2017).
Fraser, C. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).
Villarino, E. et al. Large-scale ocean connectivity and planktonic body size. Nat. Commun. 9, 142 (2018).
Gillespie, R. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).
MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967)
Fraser, C. I., Nikula, R. & Waters, J. M. Oceanic rafting by a coastal community. Proc. Biol. Sci. 278, 649–655 (2010).
Collins, C. J., Fraser, C. I., Ashcroft, A. & Waters, J. M. Asymmetric dispersal of southern bull-kelp (Durvillaea antarctica) adults in coastal New Zealand: testing an oceanographic hypothesis. Mol. Evol. 19, 4572–4580 (2010).
Waters, J. M. Seaweed rafts. Curr. Biol. 31, R1510–R1511 (2021).
Yu, L. et al. Ocean current patterns drive the worldwide colonization of eelgrass (Zostera marina). Nat. Plants 9, 1207–1220 (2023).
Kling, M. M. & Ackerly, D. D. Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees. Proc. Natl. Acad. Sci. USA 118, e2017317118 (2021).
Wilson, L. J. et al. Climate-driven changes to ocean circulation and their inferred impacts on marine dispersal patterns. Glob. Ecol. Biogeogr. 25, 923–939 (2016).
Peng, Q. et al. Surface warming–induced global acceleration of upper ocean currents. Sci. Adv. 8, eabj8394 (2022).
Röthig, T. et al. Sweet, Human-induced salinity changes impact marine organisms and ecosystems. Global Change Biol. 29, 4731–4749 (2023).
van der Stocken, T., Vanschoenwinkel, B., Carroll, D., Cavanaugh, K. C. & Koedam, N. Mangrove dispersal disrupted by projected changes in global seawater density. Nat. Clim. Change 12, 685–691 (2022).
Wildish, D. J. Evolutionary ecology of driftwood talitrids: a review. Zoosyst. Evol. 93, 353–361 (2017).
Fanini, L. & Lowry, J. Coastal talitrids and connectivity between beaches: A behavioural test. J Exp. Mar. Biol. Ecol. 457, 120–127 (2014).
He, Z., Feng, M., Wang, D. & Slawinski, D. Contribution of the Karimata Strait transport to the Indonesian Throughflow as seen from a data assimilation model. Cont. Shelf Res. 92, 16–22 (2015).
Wang, Y. et al. Seasonal variation of water transport through the Karimata Strait. Acta Oceanol. Sin. 38, 47–57 (2019).
Sholihah, A. et al. Impact of Pleistocene eustatic fluctuations on evolutionary dynamics in Southeast Asian biodiversity hotspots. Syst. Biol. 70, 940–960 (2021).
Hernawan, U. E. et al. Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago. Mol. Ecol. 26, 1008–1021 (2017).
Hou, Z. & Li, S. Intraspecific or interspecific variation: delimitation of species boundaries within the genus Gammarus (Crustacea, Amphipoda, Gammaridae), with description of four new species: delimitation of Gammarus species boundaries. Zool. J. Linn. Soc Lond. 160, 215–253 (2010).
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).
Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1034 (2011).
Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).
Hodel, R. G. et al. Terrestrial species adapted to sea dispersal: differences in propagule dispersal of two Caribbean mangroves. Mol. Ecol. 27, 4612–4626 (2018).
Bennett, A. Lagrangian Fluid Dynamics. (Cambridge University, Cambridge, 2006).
Dagestad, Röhrs, K. F., Breivik, J. & Ådlandsvik, Ø B. OpenDrift v1.0: a generic framework for trajectory modelling. Geosci. Model Dev. 11, 1405–1420 (2018).
Gougherty, A. V., Keller, S. R. & Fitzpatrick, M. C. Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nat. Clim. Change 11, 166–171 (2021).
Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).
Chiu, C. I. et al. Termite salinity tolerance and potential for transoceanic dispersal through rafting. Ecol. Entomol. 46, 106–116 (2021).
Jaspers, C. et al. Invasion genomics uncover contrasting scenarios of genetic diversity in a widespread marine invader. Proc. Natl. Acad. Sci. USA 118, e2116211118 (2021).
Frichot, E., Schoville, S., Bouchard, D. & François, G. O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).
Forester, B. R., Jones, M., Joost, R. S., Landguth, E. L. & Lasky, J. R. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol. Ecol. 25, 104–120 (2016).
Asaduzzaman, M. et al. Morpho-genetic divergence and adaptation of anadromous Hilsa shad (Tenualosa ilisha) along their heterogenic migratory habitats. Front. Mar. Sci. 7, https://doi.org/10.3389/fmars.2020.00554 (2020).
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
Kao, D. et al. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. Elife 5, e20062 (2016).
Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).
Petrick, B. et al. Glacial Indonesian Throughflow weakening across the mid-Pleistocene climatic transition. Sci. Rep. 9, 16995 (2019).
Zheng, B., Xu, Q. & Shen, Y. The relationship between climate change and Quaternary glacial cycles on the Qinghai–Tibetan Plateau: review and speculation. Quatern. Int. 97, 93–101 (2002).
van der Zee, J. P. et al. Demographic changes in Pleistocene sea turtles were driven by past sea level fluctuations affecting feeding habitat availability. Mol. Ecol. 31, 1044–1056 (2022).
Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).
Skeels, A. et al. Paleoenvironments shaped the exchange of terrestrial vertebrates across Wallace’s Line. Science 381, 86–92 (2023).
Barber, P. H., Palumbi, S. R., Erdmann, M. V. & Moosa, M. K. A. marine Wallace’s line?. Nature 406, 692–693 (2000).
Fraser, C. I. et al. Southern Hemisphere coasts are biologically connected by frequent, long-distance rafting events. Curr. Biol. 32, 3154–3160 (2022).
Liu, J., Lindstrom, A. J., Chen, Y., Nathan, R. & Gong, X. Congruence between ocean-dispersal modelling and phylogeography explains recent evolutionary history of Cycas species with buoyant seeds. New Phytol. 232, 1863–1875 (2021).
Murphy, E., Nistor, I., Cornett, A., Wilson, J. & Pilechi, A. Fate and transport of coastal driftwood: A critical review. Mar. Pollut. Bull. 170, 112649 (2021).
Layton, K. K. S. et al. Predicting the future of our oceans—Evaluating genomic forecasting approaches in marine species. Global Change Biol. 30, e17236 (2024).
Chen, Y. et al. Incorporating adaptive genomic variation into predictive models for invasion risk assessment. Environ. Sci. Ecotech. 18, 100299 (2024).
Bay, R. A. et al. Genomic signals of selection predict climate driven population declines in a migratory bird. Science 359, 83–86 (2018).
Ferrer Obiol, J. et al. Evolutionarily distinct lineages of a migratory bird of prey show divergent responses to climate change. Nat. Commun. 16, 3503 (2025).
Layton, K. K. S. et al. Genomic evidence of past and future climate-linked loss in a migratory Arctic fish. Nat. Clim. Change 11, 158–165 (2021).
Lotterhos, K. E. Interpretation issues with “genomic vulnerability” arise from conceptual issues in local adaptation and maladaptation. Evol. Lett. 8, 331–339 (2024).
Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol. 5, 1350–1360 (2021).
Barrett, N. J. et al. Molecular responses to thermal and osmotic stress in Arctic intertidal mussels (Mytilus edulis): the limits of resilience. Genes 13, 155 (2022).
Rumberger, C. et al. Selection Over Small and Large Spatial Scales in the Face of High Gene Flow. Mol. Ecol. 34, e17700 (2025).
Gleason, L. U. & Burton, R. S. Phenotypic evidence for local adaptation to heat stress in the marine snail Chlorostoma (formerly Tegula) funebralis. J. Exp. Mar. Biol. Ecol. 448, 360–366 (2013).
Nuñez, J. C. B. et al. From Tides to Nucleotides: Genomic Signatures of Adaptation to Environmental Heterogeneity in Barnacles. Mol. Ecol. 30, 6417–6433 (2021).
Lee, C. E. Ion transporter gene families as physiological targets of natural selection during salinity transitions in a copepod. Physiology 36, 335–349 (2021).
Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577 (2020).
Hoffmann, A. A., Weeks, A. R. & Sgrò, C. M. Opportunities and challenges in assessing climate change vulnerability through genomics. Cell 184, 1420–1425 (2021).
Rellstab, C., Dauphin, B. & Exposito-Alonso, M. Prospects and limitations of genomic offset in conservation management. Evol. Appl. 14, 1202–1212 (2021).
Stern, D. & Lee, C. Evolutionary origins of genomic adaptations in an invasive copepod. Nat. Ecol. Evol. 4, 1084–1094 (2020).
Liu, H., Wang, X., Liu, Z., Li, S. & Hou, Z. Osmoregulatory evolution of gills promoted salinity adaptation following the sea–land transition of crustaceans. Mar. Life Sci. Technol. 7, 205–217 (2025).
Cui, Z. et al. The Chinese mitten crab genome provides insights into adaptive plasticity and developmental regulation. Nat. Commun. 12, 2395 (2021).
Whitehead, A., Roach, J. L., Zhang, S. & Galvez, F. Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proc. Natl. Acad. Sci. USA 108, 6193–6198 (2011).
Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).
Thiel, M. Rafting of benthic macrofauna: important factors determining the temporal succession of the assemblage on detached macroalgae. Hydrobiologia 503, 49–57 (2003).
Gibson, R. N. & Robb, L. Piscine predation on juvenile fishes on a Scottish sandy beach. J. Fish Biol. 49, 120–138 (1996).
King, A. J. et al. Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. Proc. Natl. Acad. Sci. USA 107, 5345–5350 (2010).
Liu, H. et al. Marine-montane transitions coupled with gill and genetic convergence in extant crustacean. Sci. Adv. 9, eadg4011 (2023).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Alonge, M. et al. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23, 258 (2022).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Papa, Y., Morrison, M. A., Wellenreuther, M. & Ritchie, P. A. Genomic stock structure of the marine teleost tarakihi (Nemadactylus macropterus) provides evidence of potential fine-scale adaptation and a temperature-associated cline amid panmixia. Front. Ecol. Evol. 10, 862930 (2022).
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Zheng, X. SNPRelate: parrallel computing toolset for genome-wide association studies. R Package Version 95, B9 (2012).
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
Malinsky, M., Matschiner & Svardal, M. H. Dsuite-fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584–595 (2021).
Pante, E. & Simon-Bouhet, B. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).
Amante, C. & Eakins, B. W. ETOPO11 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (NOAA, 2009).
Sbrocco, E. J. & Barber, P. H. MARSPEC: ocean climate layers for marine spatial ecology: Ecological Archives E094–086. Ecology 94, 979 (2013).
Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
Capblancq, T. & Forester, B. R. Redundancy analysis: a Swiss Army Knife for landscape genomics. Methods Ecol. Evol. 12, 2298–2309 (2021).
Xie, C. et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–W322 (2011).
Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
Love, M., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
Yin, Y. et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012).
Poynton, H. C. et al. The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology. Environ. Sci. Technol. 52, 6009–6022 (2018).
Zhang, H. et al. The amphipod genome reveals population dynamics and adaptations to hadal environment. Cell 188, 1378–1392 (2025).
Patra, A. K. et al. First draft genome for the sand-hopper Trinorchestia longiramus. Sci. Data 7, 85 (2020).
Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121–e121 (2013).
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).
Liu, H. et al. Code and data for ‘Genomics of rafting crustaceans reveals adaptation to climate change in tropical oceans’. Figshare https://doi.org/10.6084/m9.figshare.29614727 (2025).
Acknowledgements
We thank Baocheng Guo, Yilin Chen, Dezhi Zhang, Bingyue Zhu, Tongyao Jiang, Zhe Zhao, Fengyuan Li, and Pengyu Jin for helpful discussion; Zeyu Liu and Wenpei Xin for help in salinity experiments; Knut-Frode Dagestad for help in OpenDrift analysis; Zilong Bai and O. Alfaruq for assistance in field collection. This study was supported by the National Natural Science Foundation of China (grant number 32470474 for Z.H., 32500387 for H.L.), the International Partnership Program of the Chinese Academy of Sciences (grant number 073GJHZ2024043MI for Z.H. and H.L.), the Institute of Zoology, Chinese Academy of Sciences (2023IOZ0104 and 2024IOZ0108 for Z.H.), Beijing Natural Science Foundation (grant number 5244045 for H.L.).
Author information
Authors and Affiliations
Contributions
H.L. and Z.H. designed research; H.L., M.H., and Z.W. performed research; W.J.C. and S.L. collected samples and participated in discussions; H.L. and Z.H. wrote the manuscript; J.M.W. reviewed and edited the manuscript. All authors proofread and approved the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Jilian Xiong, Zhiqiang Ye and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.”
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Liu, H., Waters, J.M., Huang, M. et al. Genomics of rafting crustaceans reveals adaptation to climate change in tropical oceans. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69173-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69173-x


