Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Decoding efficacy and resistance space at a drug binding site
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Decoding efficacy and resistance space at a drug binding site

  • Simone Altmann  ORCID: orcid.org/0000-0001-8268-09161,
  • Cesar Mendoza-Martinez  ORCID: orcid.org/0000-0003-3439-98091,2,
  • Melanie Ridgway  ORCID: orcid.org/0000-0002-6763-23661,
  • Michele Tinti  ORCID: orcid.org/0000-0002-0051-017X1,
  • Jagmohan S. Saini1,2,
  • Peter E. G. F. Ibrahim  ORCID: orcid.org/0009-0001-8774-10681,2,
  • Michael Thomas  ORCID: orcid.org/0000-0003-0377-02811,2,
  • Manu De Rycker  ORCID: orcid.org/0000-0002-3171-35191,2,
  • Michael J. Bodkin1,2 &
  • …
  • David Horn  ORCID: orcid.org/0000-0001-5173-92841 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computational biophysics
  • Computational models
  • Drug discovery
  • Mutation
  • Structural biology

Abstract

Assessing and understanding the impacts of all possible mutations at a drug binding site remain challenging. Here we use multiplex oligo targeting for mutational profiling, and computational modelling, to decode efficacy and resistance space at the otherwise native binding site for an anti-trypanosomal proteasome inhibitor. We saturation-edit twenty codons in the Trypanosoma brucei proteasome and subject the resulting libraries to stepwise drug selection and codon variant scoring, yielding dose-response profiles for >100 resistance-conferring mutants. Codon variant scores are predictive of relative resistance observed using a bespoke set of mutants, while fitness profiling reveals otherwise extensive constraints on mutational fitness and resistance space. The resistance profile is predictive of routes to spontaneous drug resistance observed within ‘accessible’, single nucleotide mutational space, while in silico predictions are closely aligned with impacts on drug resistance observed in cellulo. Thus, multiplex oligo targeting facilitates assessment of all possible mutations at a drug binding site.

Data availability

The high-throughput sequencing data generated for this study have been deposited at the Sequence Read Archive under accession code PRJNA1295514 (https://www.ncbi.nlm.nih.gov/bioproject/1295514). Source data for Figs. 1c, 2b–d, 3a, 4b, c and 5a, b are available as a Source Data file and for Figs. 6c, d, f, g, 7a, b, Supplementary Figs. 7c and 10a,b in the Github repository (https://github.com/velocirraptor23/Decoding-efficacy-and-resistance-space-at-a-drug-binding-site-/tree/main) and Zenodo https://zenodo.org/records/18195459. The homology model used in Figs. 6 and 7 is available in ModelArchive (https://modelarchive.org/doi/10.5452/ma-cxis8).

Code availability

The code used to develop the homology model, perform analyses and generate results in this study is publicly available and has been deposited in Github at https://github.com/velocirraptor23/Decoding-efficacy-and-resistance-space-at-a-drug-binding-site-/tree/main, under MIT license. The specific version of the code associated with this publication is archived in Zenodo and is accessible via https://zenodo.org/records/1819545941.

References

  1. Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2023).

    Google Scholar 

  2. Duffey, M. et al. Combating antimicrobial resistance in malaria, HIV and tuberculosis. Nat. Rev. Drug Discov. 23, 461–479 (2024).

    Google Scholar 

  3. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).

    Google Scholar 

  4. Belli, O., Karava, K., Farouni, R. & Platt, R. J. Multimodal scanning of genetic variants with base and prime editing. Nat. Biotechnol. 43, 1458–1470 (2025).

  5. Chardon, F. M. et al. A multiplex, prime editing framework for identifying drug resistance variants at scale. bioRxiv, 2023 07, 550902 (2023).

    Google Scholar 

  6. Dorighi, K. M. et al. Accelerated drug-resistant variant discovery with an enhanced, scalable mutagenic base editor platform. Cell Rep. 43, 114313 (2024).

    Google Scholar 

  7. Kim, Y., Oh, H. C., Lee, S. & Kim, H. H. Saturation profiling of drug-resistant genetic variants using prime editing. Nat. Biotechnol. 43, 1471–1484 (2025).

    Google Scholar 

  8. Nyerges, A. et al. Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Proc. Natl. Acad. Sci. USA 115, E5726–E5735 (2018).

    Google Scholar 

  9. Pines, G., Fankhauser, R. G. & Eckert, C. A. Predicting drug resistance using deep mutational scanning. Molecules 25, 2265 (2020).

  10. Lue, N. Z. & Liau, B. B. Base editor screens for in situ mutational scanning at scale. Mol. Cell 83, 2167–2187 (2023).

    Google Scholar 

  11. Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).

    Google Scholar 

  12. Tabet, D., Parikh, V., Mali, P., Roth, F. P. & Claussnitzer, M. Scalable functional assays for the interpretation of human genetic variation. Annu. Rev. Genet. 56, 441–465 (2022).

    Google Scholar 

  13. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11, 801–807 (2014).

    Google Scholar 

  14. Barbieri, E. M., Muir, P., Akhuetie-Oni, B. O., Yellman, C. M. & Isaacs, F. J. Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes. Cell 171, 1453–1467.e13 (2017).

    Google Scholar 

  15. Altmann, S. et al. Oligo targeting for profiling drug resistance mutations in the parasitic trypanosomatids. Nucleic Acids Res. 50, e79 (2022).

    Google Scholar 

  16. Dekker, M., Brouwers, C. & te Riele, H. Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Res. 31, e27 (2003).

    Google Scholar 

  17. Eadsforth, T. C. et al. Pharmacological and structural understanding of the Trypanosoma cruzi proteasome provides key insights for developing site-specific inhibitors. J. Biol. Chem. 301, 108049 (2025).

    Google Scholar 

  18. Khare, S. et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537, 229–233 (2016).

    Google Scholar 

  19. Koester, D. C. et al. Discovery of novel quinoline-based proteasome inhibitors for human African trypanosomiasis (HAT). J. Med. Chem. 65, 11776–11787 (2022).

    Google Scholar 

  20. Thomas, M. G. et al. Structure-guided design and synthesis of a pyridazinone series of Trypanosoma cruzi proteasome inhibitors. J. Med. Chem. 66, 10413–10431 (2023).

    Google Scholar 

  21. Wyllie, S. et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc. Natl. Acad. Sci. USA 116, 9318–9323 (2019).

    Google Scholar 

  22. Lawong, A. et al. Identification of potent and reversible piperidine carboxamides that are species-selective orally active proteasome inhibitors to treat malaria. Cell Chem. Biol. 31, 1503–1517.e19 (2024).

    Google Scholar 

  23. Allmeroth, K. et al. Bortezomib resistance mutations in PSMB5 determine response to second-generation proteasome inhibitors in multiple myeloma. Leukemia 35, 887–892 (2021).

    Google Scholar 

  24. Santos, R. L. A. et al. Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes. Nat. Commun. 8, 1692 (2017).

    Google Scholar 

  25. Nagle, A. et al. Discovery and characterization of clinical candidate LXE408 as a kinetoplastid-selective proteasome inhibitor for the treatment of leishmaniases. J. Med. Chem. 63, 10773–10781 (2020).

    Google Scholar 

  26. Wang, C. C. et al. Biochemical analysis of the 20 S proteasome of Trypanosoma brucei. J. Biol. Chem. 278, 15800–15808 (2003).

    Google Scholar 

  27. Lima, M. L. et al. Identification of a proteasome-targeting arylsulfonamide with potential for the treatment of Chagas’ disease. Antimicrob. Agents Chemother. 66, e0153521 (2022).

    Google Scholar 

  28. Cosentino, R. O., Brink, B. G. & Siegel, T. N. Allele-specific assembly of a eukaryotic genome corrects apparent frameshifts and reveals a lack of nonsense-mediated mRNA decay. NAR Genom. Bioinform 3, lqab082 (2021).

    Google Scholar 

  29. Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10, 449–461 (2015).

    Google Scholar 

  30. Brixi, G. et al. Genome modeling and design across all domains of life with Evo 2. Preprint at https://www.biorxiv.org/content/10.1101/2025.02.18.638918v1 (2025).

  31. Hope, W. et al. Combining antibiotics to tackle antimicrobial resistance. Nat. Microbiol. 10, 813–816 (2025).

    Google Scholar 

  32. De Rycker, M., Wyllie, S., Horn, D., Read, K. D. & Gilbert, I. H. Anti-trypanosomatid drug discovery: progress and challenges. Nat. Rev. Microbiol. 21, 35–50 (2023).

    Google Scholar 

  33. Rao, S. P. S., Manjunatha, U. H., Mikolajczak, S., Ashigbie, P. G. & Diagana, T. T. Drug discovery for parasitic diseases: powered by technology, enabled by pharmacology, informed by clinical science. Trends Parasitol. 39, 260–271 (2023).

    Google Scholar 

  34. Schumann Burkard, G., Jutzi, P. & Roditi, I. Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol. Biochem. Parasitol. 175, 91–94 (2011).

    Google Scholar 

  35. Tinti, M. OligoSeeker. Zenodo, https://doi.org/10.5281/zenodo.15011916 (2025).

  36. Jacobson, M. P. et al. A hierarchical approach to all-atom protein loop prediction. Proteins 55, 351–367 (2004).

    Google Scholar 

  37. Friesner, R. A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).

    Google Scholar 

  38. Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the ACM/IEEE Conference on Supercomputing (IEEE, 2006).

  39. Bouysset, C. & Fiorucci, S. ProLIF: a library to encode molecular interactions as fingerprints. J. Cheminform 13, 72 (2021).

    Google Scholar 

  40. Cagiada, M., Jonsson, N. & Lindorff-Larsen, K. Decoding molecular mechanisms for loss-of-function variants in the human proteome. Preprint at https://www.biorxiv.org/content/10.1101/2024.05.21.595203v1 (2025).

  41. Mendoza-Martinez, C. et al. Decoding efficacy and resistance space at a drug binding site. Zenodo, https://zenodo.org/records/18195459 (2026).

Download references

Acknowledgements

We thank David Robinson for assistance with structural analysis and Anna Creelman and Hayley Bell for assistance with PCR and sequencing. This work was supported by a Wellcome Centre Award (223608/Z/21/Z to D.H. as co-applicant) and a Wellcome Investigator Award (217105/Z/19/Z to D.H.).

Author information

Authors and Affiliations

  1. Wellcome Centre for Anti-Infectives Research, Faculty of Life Sciences, University of Dundee, Dundee, UK

    Simone Altmann, Cesar Mendoza-Martinez, Melanie Ridgway, Michele Tinti, Jagmohan S. Saini, Peter E. G. F. Ibrahim, Michael Thomas, Manu De Rycker, Michael J. Bodkin & David Horn

  2. Drug Discovery Unit, Faculty of Life Sciences, University of Dundee, Dundee, UK

    Cesar Mendoza-Martinez, Jagmohan S. Saini, Peter E. G. F. Ibrahim, Michael Thomas, Manu De Rycker & Michael J. Bodkin

Authors
  1. Simone Altmann
    View author publications

    Search author on:PubMed Google Scholar

  2. Cesar Mendoza-Martinez
    View author publications

    Search author on:PubMed Google Scholar

  3. Melanie Ridgway
    View author publications

    Search author on:PubMed Google Scholar

  4. Michele Tinti
    View author publications

    Search author on:PubMed Google Scholar

  5. Jagmohan S. Saini
    View author publications

    Search author on:PubMed Google Scholar

  6. Peter E. G. F. Ibrahim
    View author publications

    Search author on:PubMed Google Scholar

  7. Michael Thomas
    View author publications

    Search author on:PubMed Google Scholar

  8. Manu De Rycker
    View author publications

    Search author on:PubMed Google Scholar

  9. Michael J. Bodkin
    View author publications

    Search author on:PubMed Google Scholar

  10. David Horn
    View author publications

    Search author on:PubMed Google Scholar

Contributions

The in cellulo experiments were designed by S.A., M.R. and D.H. and carried out by S.A. and M.R. Compound selection was carried out by M.D.R and M.T. Sequence data analysis was performed by M.T. Data analyses were performed by S.A., M.T. and D.H. Computational modelling was performed by C.M-M, J.S.S. and P.E.G.F.I. The work was supervised by D.H. and M.J.B. The manuscript was written by S.A., C.M-M. and D.H. The manuscript was edited by all authors.

Corresponding author

Correspondence to David Horn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Tom Beneke, Srinivasa Rao and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altmann, S., Mendoza-Martinez, C., Ridgway, M. et al. Decoding efficacy and resistance space at a drug binding site. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69187-5

Download citation

  • Received: 12 August 2025

  • Accepted: 19 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69187-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research