Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Indolent primary cutaneous B-cell lymphomas resemble persistent antigen reactions without signs of dedifferentiation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Indolent primary cutaneous B-cell lymphomas resemble persistent antigen reactions without signs of dedifferentiation

  • Johannes Griss  ORCID: orcid.org/0000-0003-2206-95111,
  • Sabina Gansberger  ORCID: orcid.org/0009-0003-3204-936X1,
  • Inigo Oyarzun  ORCID: orcid.org/0000-0003-1685-15311,
  • Martin Simon1,
  • Mathias C. Drach1,
  • Vy Nguyen1,
  • Lisa E. Shaw  ORCID: orcid.org/0000-0003-2273-76551,
  • Ulrike Mann1,
  • Stefanie Porkert1,
  • Matthias Farlik1,
  • Wolfgang Weninger1,
  • Werner Dolak  ORCID: orcid.org/0000-0002-7450-42152,
  • Bertram Aschenbrenner  ORCID: orcid.org/0000-0003-1177-71091,
  • Beate M. Lichtenberger  ORCID: orcid.org/0000-0001-6882-02571,
  • Shawn Ziegler-Santos1,
  • Christine Wagner1,
  • Ingrid Simonitsch-Klupp3,
  • Stephan N. Wagner  ORCID: orcid.org/0000-0003-4941-70291,
  • Constanze Jonak  ORCID: orcid.org/0000-0002-2347-436X1 &
  • …
  • Patrick M. Brunner  ORCID: orcid.org/0000-0002-3488-33454 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • B-cell lymphoma
  • Skin cancer

Abstract

Primary cutaneous B-cell lymphoma encompass clinically heterogeneous entities. While primary cutaneous diffuse large B-cell lymphoma, leg type (pcDLBCL-LT) is aggressive, primary cutaneous follicle centre lymphoma (pcFCL) and primary cutaneous marginal zone lymphoma (pcMZL) typically follow an indolent course. To clarify their pathophysiological basis, we perform single-cell RNA sequencing on pcFCL, pcMZL, and pcDLBCL-LT, alongside reactive B-cell rich lymphoid proliferations (rB-LP), gastric mucosa-associated lymphoid tissue (MALT) lymphoma, and systemic counterparts. Here we show that the indolent pcMZL, pcFCL, and rB-LP exhibit a persistent germinal centre reaction, not observed in pcDLBCL-LT or gastric MALT lymphoma. Further, pcMZL top expanded clones develop within lesions from naïve and not post-germinal centre B cells as currently presumed. Our data thus indicate that pcMZL and pcFCL, similar to rB-LP may be driven by (a yet unknown) antigen. While our data indicates that pcFCL exhibits some features of true lymphomas, it clearly supports the classification of pcMZL as a lymphoproliferative disease.

Data availability

The processed scRNA-seq data generated in this study have been deposited in the GEO database under accession code GSE218861. Data from healthy control samples are available on GEO under GSE17320580. The raw scRNAs-seq data are protected and are not available due to data privacy laws. The CBCL scRNA-seq data used in this study are available in the European Genome-Phenome Archive (EGA) database under accession code EGAD00001006829. The sFCL scRNA-seq data used in this study are available in the EGA database under accession code EGAS00001006052. The sDLBCL scRNA-seq data used in this study are available in the GEO database under accession code GSE182436. Source data are provided with this paper.

References

  1. Willemze, R. et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 133, 1703–1714 (2019).

    Google Scholar 

  2. Goodlad, J. R., Cerroni, L. & Swerdlow, S. H. Recent advances in cutaneous lymphoma-implications for current and future classifications. Virchows Arch. Int. J. Pathol. 482, 281–298 (2023).

    Google Scholar 

  3. Vitiello, P. et al. Primary cutaneous B-cell lymphomas: an update. Front. Oncol. 10, 651 (2020).

    Google Scholar 

  4. Kempf, W. et al. Classifications of cutaneous lymphomas and lymphoproliferative disorders: an update from the EORTC cutaneous lymphoma histopathology group. J. Eur. Acad. Dermatol. Venereol. https://doi.org/10.1111/jdv.19987 (2024).

  5. Di Napoli, A. et al. Deep sequencing of immunoglobulin genes identifies a very low percentage of monoclonal B cells in primary cutaneous marginal zone lymphomas with CD30-positive Hodgkin/Reed-Sternberg-like cells. Diagn. Basel Switz 12, 290 (2022).

    Google Scholar 

  6. Hristov, A. C., Comfere, N. I., Vidal, C. I. & Sundram, U. Kappa and lambda immunohistochemistry and in situ hybridization in the evaluation of atypical cutaneous lymphoid infiltrates. J. Cutan. Pathol 47, 1103–1110 (2020).

    Google Scholar 

  7. Willemze, R. Cutaneous lymphoproliferative disorders: Back to the future. J. Cutan. Pathol. https://doi.org/10.1111/cup.14609 (2024).

  8. Lima, M. Cutaneous primary B-cell lymphomas: from diagnosis to treatment. An. Bras. Dermatol. 90, 687–706 (2015).

    Google Scholar 

  9. Storz, M. N. et al. Gene expression profiles of cutaneous B cell lymphoma. J. Invest. Dermatol. 120, 865–870 (2003).

    Google Scholar 

  10. Hoefnagel, J. J. et al. Primary cutaneous marginal zone B-cell lymphoma: clinical and therapeutic features in 50 cases. Arch. Dermatol. 141, 1139–1145 (2005).

    Google Scholar 

  11. Nicolay, J. P. & Wobser, M. Cutaneous B-cell lymphomas - pathogenesis, diagnostic workup, and therapy. J. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. JDDG 14, 1207–1224 (2016).

    Google Scholar 

  12. Nakagawa, Y. et al. Analysis of clonality in cutaneous B-cell lymphoma and B-cell pseudolymphoma using skin flow cytometry: comparison of immunophenotyping and gene rearrangement studies. J. Dermatol. 49, 246–252 (2022).

    Google Scholar 

  13. Porkert, S. et al. Patients’ illness perception as a tool to improve individual disease management in primary cutaneous lymphomas. Acta Derm. Venereol. 98, 240–245 (2018).

    Google Scholar 

  14. Schirren, A. E. C. et al. Health-related quality of life and its influencing factors in patients with primary cutaneous B-cell lymphomas: a multicentric study in 100 patients. J. Eur. Acad. Dermatol. Venereol. JEADV 38, 954–966 (2024).

    Google Scholar 

  15. Suryani, S. et al. Differential expression of CD21 identifies developmentally and functionally distinct subsets of human transitional B cells. Blood 115, 519–529 (2010).

    Google Scholar 

  16. Ramelyte, E. et al. Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell 39, 394–406.e4 (2021).

    Google Scholar 

  17. Gibson, S. E. & Swerdlow, S. H. How I diagnose primary cutaneous marginal zone lymphoma. Am. J. Clin. Pathol. 154, 428–449 (2020).

    Google Scholar 

  18. Magro, C. M. & Olson, L. C. Small cell lymphocytic variant of marginal zone lymphoma: a distinct form of marginal zone lymphoma derived from naïve B cells as a cutaneous counterpart to the naïve marginal zone lymphoma of splenic origin. Ann. Diagn. Pathol. 34, 116–121 (2018).

    Google Scholar 

  19. Sagaert, X., Van Cutsem, E., De Hertogh, G., Geboes, K. & Tousseyn, T. Gastric MALT lymphoma: a model of chronic inflammation-induced tumor development. Nat. Rev. Gastroenterol. Hepatol. 7, 336–346 (2010).

    Google Scholar 

  20. Willemze, R. WHO-EORTC classification for cutaneous lymphomas. Blood 105, 3768–3785 (2005).

    Google Scholar 

  21. Han, G. et al. Follicular lymphoma microenvironment characteristics associated with tumor cell mutations and MHC class II expression. Blood Cancer Discov. 3, 428–443 (2022).

    Google Scholar 

  22. Steen, C. B. et al. The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma. Cancer Cell 39, 1422–1437.e10 (2021).

    Google Scholar 

  23. Dai, D. et al. The transcription factor ZEB2 drives the formation of age-associated B cells. Science 383, 413–421 (2024).

    Google Scholar 

  24. Huang, S. et al. CD1 lipidomes reveal lipid-binding motifs and size-based antigen-display mechanisms. Cell 186, 4583–4596.e13 (2023).

    Google Scholar 

  25. Grosjean, I. et al. CD23/CD21 interaction is required for presentation of soluble protein antigen by lymphoblastoid B cell lines to specific CD4+ T cell clones. Eur. J. Immunol. 24, 2982–2986 (1994).

    Google Scholar 

  26. Wu, L. et al. HMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation. Genes Dev. 36, 433–450 (2022).

    Google Scholar 

  27. Romero, X. et al. CD229 (Ly9) lymphocyte cell surface receptor interacts homophilically through its N-terminal domain and relocalizes to the immunological synapse. J. Immunol. Baltim. Md 174, 7033–7042 (2005).

    Google Scholar 

  28. Stokes, M. E. et al. Transcriptomic classification of diffuse large B-cell lymphoma identifies a high-risk activated B-cell-like subpopulation with targetable MYC dysregulation. Nat. Commun. 15, 6790 (2024).

    Google Scholar 

  29. Arcila, M. E. et al. Establishment of immunoglobulin heavy (IGH) chain clonality testing by next-generation sequencing for routine characterization of B-cell and plasma cell neoplasms. J. Mol. Diagn. JMD 21, 330–342 (2019).

    Google Scholar 

  30. Kuleape, J. A. et al. DNA damage triggers the nuclear accumulation of RASSF6 tumor suppressor protein via CDK9 and BAF53 to regulate p53 target gene transcription. Mol. Cell. Biol. 42, e0031021 (2022).

    Google Scholar 

  31. Odani, K. et al. Insulin-like growth factor II mRNA binding protein 3 is highly expressed in primary diffuse large B-cell lymphoma of the CNS. J. Clin. Exp. Hematop. JCEH 64, 203–207 (2024).

    Google Scholar 

  32. Charfi, C., Levros, L.-C., Edouard, E. & Rassart, E. Characterization and identification of PARM-1 as a new potential oncogene. Mol. Cancer 12, 84 (2013).

    Google Scholar 

  33. Nguyen, L., Papenhausen, P. & Shao, H. The role of c-MYC in B-cell lymphomas: diagnostic and molecular aspects. Genes 8, 116 (2017).

    Google Scholar 

  34. Mestre-Escorihuela, C. et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 109, 271–280 (2007).

    Google Scholar 

  35. Ying, X., Chan, K., Shenoy, P., Hill, M. & Ruddle, N. H. Lymphotoxin plays a crucial role in the development and function of nasal-associated lymphoid tissue through regulation of chemokines and peripheral node addressin. Am. J. Pathol. 166, 135–146 (2005).

    Google Scholar 

  36. Duell, J. et al. Sequential antigen loss and branching evolution in lymphoma after CD19- and CD20-targeted T-cell-redirecting therapy. Blood 143, 685–696 (2024).

    Google Scholar 

  37. Klasen, C. et al. MIF promotes B cell chemotaxis through the receptors CXCR4 and CD74 and ZAP-70 signaling. J. Immunol. Baltim. Md 192, 5273–5284 (2014).

    Google Scholar 

  38. Hu, J. et al. TSP-1-CD47-integrin α4β1 axis drives T cell infiltration and synovial inflammation in rheumatoid arthritis. Front. Immunol. 16, 1524304 (2025).

    Google Scholar 

  39. Kerr, S. C., Fieger, C. B., Snapp, K. R. & Rosen, S. D. Endoglycan, a member of the CD34 family of sialomucins, is a ligand for the vascular selectins. J. Immunol. Baltim. Md 181, 1480–1490 (2008).

  40. Greer, S. F. & Justement, L. B. CD45 regulates tyrosine phosphorylation of CD22 and its association with the protein tyrosine phosphatase SHP-1. J. Immunol. Baltim. Md 162, 5278–5286 (1999).

  41. Duan, L. et al. Follicular dendritic cells restrict interleukin-4 availability in germinal centers and foster memory B cell generation. Immunity 54, 2256–2272.e6 (2021).

    Google Scholar 

  42. Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013).

    Google Scholar 

  43. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Google Scholar 

  44. Robson, A. et al. Follicular T-helper cells in marginal zone lymphoma: evidence of an organoid immune response. Am. J. Dermatopathol. 43, e197–e203 (2021).

    Google Scholar 

  45. van Nierop, K. & de Groot, C. Human follicular dendritic cells: function, origin and development. Semin. Immunol. 14, 251–257 (2002).

    Google Scholar 

  46. Mechtcheriakova, D. et al. Activation-induced cytidine deaminase (AID)-associated multigene signature to assess impact of AID in etiology of diseases with inflammatory component. PloS One 6, e25611 (2011).

    Google Scholar 

  47. Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

    Google Scholar 

  48. Bombardieri, M., Lewis, M. & Pitzalis, C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nat. Rev. Rheumatol. 13, 141–154 (2017).

    Google Scholar 

  49. Sato, Y., Silina, K., van den Broek, M., Hirahara, K. & Yanagita, M. The roles of tertiary lymphoid structures in chronic diseases. Nat. Rev. Nephrol. 19, 525–537 (2023).

    Google Scholar 

  50. Yu, W.-W. et al. Skin immune-mesenchymal interplay within tertiary lymphoid structures promotes autoimmune pathogenesis in hidradenitis suppurativa. Immunity 57, 2827–2842.e5 (2024).

    Google Scholar 

  51. Travaglino, A. et al. Borrelia burgdorferi in primary cutaneous lymphomas: a systematic review and meta-analysis. J. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. JDDG 18, 1379–1384 (2020).

    Google Scholar 

  52. Cho, W. C. et al. Cutaneous lymphoid hyperplasia with T-cell clonality and monotypic plasma cells secondary to a tick bite: a hidden critter and the power of deeper levels. Am. J. Dermatopathol. 44, 226–229 (2022).

    Google Scholar 

  53. Messina, F., Cicogna, G. T., Salmaso, R., Rondinone, R. & Alaibac, M. Primary cutaneous follicle center B-cell lymphoma at the site of a resolved herpes zoster eruption. Dermatol. Pract. Concept. 12, e2022169 (2022).

    Google Scholar 

  54. Aouali, S., Benkaraache, M., Almheirat, Y., Zizi, N. & Dikhaye, S. Complete remission of primary cutaneous follicle centre cell lymphoma associated with COVID-19 vaccine. J. Eur. Acad. Dermatol. Venereol. JEADV 36, e676–e678 (2022).

    Google Scholar 

  55. Schreidah, C. M. et al. Clinical remission of primary cutaneous marginal zone B-cell lymphoma in a patient with Crohn’s disease after Helicobacter pylori quadruple therapy and vedolizumab. Am. J. Dermatopathol. 45, 572–576 (2023).

    Google Scholar 

  56. Robotis, J., Tsiodras, S. & Rokkas, T. Helicobacter pylori eradication may successfully treat primary cutaneous follicle center lymphoma. Helicobacter 23, e12499 (2018).

    Google Scholar 

  57. Eken, J. A. et al. Antigen-independent, autonomous B cell receptor signaling drives activated B cell DLBCL. J. Exp. Med. 221, e20230941 (2024).

  58. Mareschal, S. et al. Identification of somatic mutations in primary cutaneous diffuse large B-cell lymphoma, leg type by massive parallel sequencing. J. Invest. Dermatol. 137, 1984–1994 (2017).

    Google Scholar 

  59. Zhou, X. A. et al. Genomic landscape of cutaneous follicular lymphomas reveals 2 subgroups with clinically predictive molecular features. Blood Adv. 5, 649–661 (2021).

    Google Scholar 

  60. Barasch, N. J. K. et al. The molecular landscape and other distinctive features of primary cutaneous follicle center lymphoma. Hum. Pathol. 106, 93–105 (2020).

    Google Scholar 

  61. Hadj Khodabakhshi, A. et al. Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget 3, 1308–1319 (2012).

    Google Scholar 

  62. Michaeli, M., Carlotti, E., Hazanov, H., Gribben, J. G. & Mehr, R. Mutational patterns along different evolution paths of follicular lymphoma. Front. Oncol. 12, 1029995 (2022).

    Google Scholar 

  63. Koning, M. T. et al. Acquired N-linked glycosylation motifs in B-cell receptors of primary cutaneous B-cell lymphoma and the normal B-cell repertoire. J. Invest. Dermatol. 139, 2195–2203 (2019).

    Google Scholar 

  64. Senff, N. J., Kluin-Nelemans, H. C. & Willemze, R. Results of bone marrow examination in 275 patients with histological features that suggest an indolent type of cutaneous B-cell lymphoma. Br. J. Haematol. 142, 52–56 (2008).

    Google Scholar 

  65. Porkert, S. et al. Long-term therapeutic success of intravenous rituximab in 26 patients with indolent primary cutaneous B-cell lymphoma. Acta Derm. Venereol. 101, adv00383 (2021).

    Google Scholar 

  66. Valencak, J. et al. Rituximab monotherapy for primary cutaneous B-cell lymphoma: response and follow-up in 16 patients. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 20, 326–330 (2009).

    Google Scholar 

  67. Rindler, K. et al. Single-cell RNA sequencing reveals markers of disease progression in primary cutaneous T-cell lymphoma. Mol. Cancer 20, 124 (2021).

    Google Scholar 

  68. Rojahn, T. B. et al. Single-cell transcriptomics combined with interstitial fluid proteomics defines cell type-specific immune regulation in atopic dermatitis. J. Allergy Clin. Immunol 146, 1056–1069 (2020).

    Google Scholar 

  69. Bangert, C. et al. Persistence of mature dendritic cells, TH2A, and Tc2 cells characterize clinically resolved atopic dermatitis under IL-4Rα blockade. Sci. Immunol. 6, eabe2749 (2021).

    Google Scholar 

  70. Biostrings Bioconductor. http://bioconductor.org/packages/Biostrings/ (2024).

  71. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Google Scholar 

  72. Yang, S. et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Genome Biol 21, 57 (2020).

    Google Scholar 

  73. Germain, P.-L., Lun, A., Garcia Meixide, C., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Research 10, 979 (2021).

    Google Scholar 

  74. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    Google Scholar 

  75. Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

    Google Scholar 

  76. Choudhary, S. & Satija, R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol. 23, 27 (2022).

    Google Scholar 

  77. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Bioinformatics, https://doi.org/10.1101/2020.07.21.214387 (2020).

  78. Griss, J. et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat. Commun. 10, 4186 (2019).

    Google Scholar 

  79. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Google Scholar 

  80. Bangert, C. et al. Dupilumab-associated head and neck dermatitis shows a pronounced type 22 immune signature mediated by oligoclonally expanded T cells. Nat. Commun. 15, 2839 (2024).

    Google Scholar 

Download references

Acknowledgements

This work was funded by research grants from the Austrian Science Fund to P.M.B. (grant number KLI 849-B) and J.G. (grant number P35937). S.N.W. was supported by research grants from the Austrian Science Fund (grant number P31127 and IPPTO project number DOC 59-B33). I.O. was supported by a DOC fellowship from the Austrian Academy of Science (Grant number 27228). The Vienna Scientific Cluster (Project No. 71839) is gratefully acknowledged for providing computational resources.

Author information

Authors and Affiliations

  1. Department of Dermatology, Medical University of Vienna, Vienna, Austria

    Johannes Griss, Sabina Gansberger, Inigo Oyarzun, Martin Simon, Mathias C. Drach, Vy Nguyen, Lisa E. Shaw, Ulrike Mann, Stefanie Porkert, Matthias Farlik, Wolfgang Weninger, Bertram Aschenbrenner, Beate M. Lichtenberger, Shawn Ziegler-Santos, Christine Wagner, Stephan N. Wagner & Constanze Jonak

  2. Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria

    Werner Dolak

  3. Department of Pathology, Medical University of Vienna, Vienna, Austria

    Ingrid Simonitsch-Klupp

  4. Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

    Patrick M. Brunner

Authors
  1. Johannes Griss
    View author publications

    Search author on:PubMed Google Scholar

  2. Sabina Gansberger
    View author publications

    Search author on:PubMed Google Scholar

  3. Inigo Oyarzun
    View author publications

    Search author on:PubMed Google Scholar

  4. Martin Simon
    View author publications

    Search author on:PubMed Google Scholar

  5. Mathias C. Drach
    View author publications

    Search author on:PubMed Google Scholar

  6. Vy Nguyen
    View author publications

    Search author on:PubMed Google Scholar

  7. Lisa E. Shaw
    View author publications

    Search author on:PubMed Google Scholar

  8. Ulrike Mann
    View author publications

    Search author on:PubMed Google Scholar

  9. Stefanie Porkert
    View author publications

    Search author on:PubMed Google Scholar

  10. Matthias Farlik
    View author publications

    Search author on:PubMed Google Scholar

  11. Wolfgang Weninger
    View author publications

    Search author on:PubMed Google Scholar

  12. Werner Dolak
    View author publications

    Search author on:PubMed Google Scholar

  13. Bertram Aschenbrenner
    View author publications

    Search author on:PubMed Google Scholar

  14. Beate M. Lichtenberger
    View author publications

    Search author on:PubMed Google Scholar

  15. Shawn Ziegler-Santos
    View author publications

    Search author on:PubMed Google Scholar

  16. Christine Wagner
    View author publications

    Search author on:PubMed Google Scholar

  17. Ingrid Simonitsch-Klupp
    View author publications

    Search author on:PubMed Google Scholar

  18. Stephan N. Wagner
    View author publications

    Search author on:PubMed Google Scholar

  19. Constanze Jonak
    View author publications

    Search author on:PubMed Google Scholar

  20. Patrick M. Brunner
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Designed research J.G., C.J., S.N.W., P.M.B. Sample acquisition J.G., C.J., P.M.B., S.P., W.D. Histopathological analysis M.D., I.S.K. Sample analysis L.S., U.M., M.F., B.A., B.M.L., M.S., S.Z.S., C.W., S.N.W., W.W. Data analysis J.G., S.G., I.O., V.N. Acquisition of funding J.G., P.M.B. Writing of manuscript J.G., C.J., P.M.B., S.N.W., B.M.L.

Corresponding authors

Correspondence to Johannes Griss or Patrick M. Brunner.

Ethics declarations

Competing interests

J.G. received personal fees from AbbVie, Eli Lilly, Pfizer, Boehringer Ingelheim and Novartis. C.J. has received personal fees from Boehringer Ingelheim, LEO, Pfizer, Recordati Rare Diseases, Eli Lilly, Novartis, Takeda, Kyowa Kirin, STADA, UCB, BMS, AbbVie, Janssen, Stemline, and Almirall. C.J. is an investigator for Eli Lilly, Novartis, AbbVie, Boehringer Ingelheim, Incyte, 4SC, and Innate Pharma. W.W. has received personal fees from LEO Pharma, Pfizer, Sanofi Genzyme, Eli Lilly, Novartis, Boehringer Ingelheim, AbbVie, and Janssen. W.D. has received personal fees from Boston Scientific, Olympus, Medtronic, Norgine, MSD, Takeda and Ferring. P.M.B. has received personal fees from Almirall, Sanofi, Janssen, Amgen, LEO Pharma, AbbVie, Pfizer, Boehringer Ingelheim, GSK, Regeneron, Eli Lilly, Celgene, Arena Pharma, Novartis, UCB Pharma, Biotest and BMS. P.M.B. is an investigator for Pfizer and Abbvie.

Peer review

Peer review information

Nature Communications thanks Larisa Geskin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Supplementary Data 4

Supplementary Data 5

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griss, J., Gansberger, S., Oyarzun, I. et al. Indolent primary cutaneous B-cell lymphomas resemble persistent antigen reactions without signs of dedifferentiation. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69210-9

Download citation

  • Received: 13 December 2024

  • Accepted: 23 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69210-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer