Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Integrative functional genomics analysis identifies pleiotropic genes for vascular diseases
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Integrative functional genomics analysis identifies pleiotropic genes for vascular diseases

  • Charles U. Solomon  ORCID: orcid.org/0000-0002-6462-33841,2,3 na1,
  • David G. McVey  ORCID: orcid.org/0000-0002-6402-25461,2,3 na1,
  • Catherine Andreadi1,2,3,
  • Peng Gong1,2,3,
  • Lenka Turner1,2,3,
  • Dedrick S. S. Song  ORCID: orcid.org/0009-0001-2747-798X4,
  • Heming Zhang4,
  • Dominic P. Lee  ORCID: orcid.org/0000-0001-6880-453X4,
  • Elisavet Karamanavi1,2,3,
  • Wei Yang5,6,
  • Jiapeng Chu4,
  • Runji Chen5,7,
  • Kim E. Haworth1,2,3,
  • Chukwuemeka George Anene-Nzelu4,8,
  • Hui Li4,
  • Matthew J. Denniff1,2,3,
  • Peter Y. Li4,
  • Yanhong Zhang5,
  • Xiaoxin Huang5,
  • Gavin E. Morris1,2,3,
  • Peter A. Greer9,
  • Emma J. Stringer1,2,3,
  • Haojie Yu  ORCID: orcid.org/0000-0002-0559-02524,
  • Roger S. Y. Foo  ORCID: orcid.org/0000-0002-8079-46184,
  • Gillian Douglas10,11,
  • Nilesh J. Samani1,2,3 na2,
  • Tom R. Webb  ORCID: orcid.org/0000-0001-5998-82261,2,3 na2 &
  • …
  • Shu Ye  ORCID: orcid.org/0000-0002-4126-42781,2,3,4,5,7 na2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cardiovascular genetics
  • Functional genomics
  • Population genetics

Abstract

Several vascular diseases including coronary artery disease, hypertension, stroke, and abdominal aortic aneurysm, have significant genetic underpinnings. Genome-wide association studies have unveiled many genetic loci associated with one or more of these diseases. However, the causative genes at most of these loci are yet to be determined, which hampers the translation of the genetic findings into a better understanding of the disease mechanisms and the identification of new therapeutic targets. Here, in an integrative functional genomics analysis of these loci, we identify a panel of likely causal genes, some of which are pleiotropic for more than one of these vascular diseases. Pooled CRISPR knockout screen analyses of these likely causal genes indicate that many of them influence vascular smooth muscle cell behaviour, and validation experiments of selected genes confirm that FES, BCAR1, CARF and SMARCA4 exert such effects. Further functional experiments focusing on FES, a pleiotropic gene for both coronary artery disease and hypertension, show that it modulates the expression of genes involved in vascular remodeling and that Fes knockout in mice promotes atherosclerosis as well as raises blood pressure. These findings provide an insight into the genetic basis of vascular diseases and inform targets for therapeutic development.

Data availability

The data that support the findings of this study are available from the corresponding author. The RNA-Seq data and H3K27ac HiChIP-seq data are available from Gene Expression Omnibus with the accession numbers GSE189300 and GSE282557. The DNA methylation data are available from ArrayExpress with the accession ID E-MTAB-15426. The proteomics data and phosphoproteomics data are available from MassIVE with the accession IDs PXD061984 [https://massive.ucsd.edu/ProteoSAFe/private-dataset.jsp?task=8660bf01bde54a50899b9126643cf52c] and PXD061992 [https://massive.ucsd.edu/ProteoSAFe/private-dataset.jsp?task=c1493e7d255a401b93782a307e5f0b64], respectively. Source data are provided in this paper.

References

  1. Aragam, K. G. et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat. Genet. 54, 1803–1815 (2022).

    Google Scholar 

  2. Nelson, C. P. et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 49, 1385–1391 (2017).

    Google Scholar 

  3. van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res. 122, 433–443 (2018).

    Google Scholar 

  4. Howson, J. M. M. et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat. Genet. 49, 1113–1119 (2017).

    Google Scholar 

  5. The_Pan-UKBB_team.Pan UKBB, https://pan.ukbb.broadinstitute.org (2020).

  6. Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).

    Google Scholar 

  7. Mishra, A. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 611, 115–123 (2022).

    Google Scholar 

  8. Roychowdhury, T. et al. Genome-wide association meta-analysis identifies risk loci for abdominal aortic aneurysm and highlights PCSK9 as a therapeutic target. Nat. Genet. 55, 1831–1842 (2023).

    Google Scholar 

  9. Basatemur, G. L., Jorgensen, H. F., Clarke, M. C. H., Bennett, M. R. & Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 16, 727–744 (2019).

    Google Scholar 

  10. Touyz, R. M. et al. Vascular smooth muscle contraction in hypertension. Cardiovasc. Res. 114, 529–539 (2018).

    Google Scholar 

  11. Nordon, I. M., Hinchliffe, R. J., Loftus, I. M. & Thompson, M. M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat. Rev. Cardiol. 8, 92–102 (2011).

    Google Scholar 

  12. Frosen, J. & Joutel, A. Smooth muscle cells of intracranial vessels: from development to disease. Cardiovasc. Res. 114, 501–512 (2018).

    Google Scholar 

  13. Khera, A. V. & Kathiresan, S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat. Rev. Genet. 18, 331–344 (2017).

    Google Scholar 

  14. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Google Scholar 

  15. Aherrahrou, R. et al. Genetic regulation of atherosclerosis-relevant phenotypes in human vascular smooth muscle cells. Circ. Res. 127, 1552–1565 (2020).

    Google Scholar 

  16. Solomon, C. U. et al. Effects of coronary artery disease-associated variants on vascular smooth muscle cells. Circulation 146, 917–929 (2022).

    Google Scholar 

  17. Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

    Google Scholar 

  18. Aherrahrou, R. et al. Genetic regulation of SMC gene expression and splicing predict causal CAD genes. Circ. Res. 132, 323–338 (2023).

    Google Scholar 

  19. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

    Google Scholar 

  20. Hormozdiari, F. et al. Colocalization of GWAS and eQTL Signals Detects Target Genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).

    Google Scholar 

  21. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Google Scholar 

  22. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Google Scholar 

  23. Szustakowski, J. D. et al. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat. Genet. 53, 942–948 (2021).

    Google Scholar 

  24. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Google Scholar 

  25. Wang, Q. et al. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature 597, 527–532 (2021).

    Google Scholar 

  26. Freshour, S. L. et al. Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 49, D1144–D1151 (2021).

    Google Scholar 

  27. Greer, P. Closing in on the biological functions of Fps/Fes and Fer. Nat. Rev. Mol. Cell Biol. 3, 278–289 (2002).

    Google Scholar 

  28. Karamanavi, E. et al. The FES gene at the 15q26 coronary artery disease locus inhibits atherosclerosis. Circ. Res. 131, 1004–1017 (2022).

    Google Scholar 

  29. Bauer, R. C. et al. Knockout of Adamts7, a novel coronary artery disease locus in humans, reduces atherosclerosis in mice. Circulation 131, 1202–1213 (2015).

    Google Scholar 

  30. Douglas, G. et al. A key role for the novel coronary artery disease gene JCAD in atherosclerosis via shear stress mechanotransduction. Cardiovasc. Res. 116, 1863–1874 (2020).

    Google Scholar 

  31. Cheng, P. et al. Smad3 regulates smooth muscle cell fate and mediates adverse remodeling and calcification of the atherosclerotic plaque. Nat. Cardiovasc. Res. 1, 322–333 (2022).

    Google Scholar 

  32. Woon, P. Y. et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl. Acad. Sci. USA 104, 14412–14417 (2007).

    Google Scholar 

  33. Klemens, C. A. et al. Loss of chloride channel 6 (CLC-6) affects vascular smooth muscle contractility and arterial stiffness via alterations to golgi calciumstores. Hypertension 77, 582–593 (2021).

    Google Scholar 

  34. Jin, Y. J. et al. Protein kinase N2 mediates flow-induced endothelial NOS activation and vascular tone regulation. J. Clin. Invest. 131, e145734 (2021).

    Google Scholar 

  35. Steffensen, L. B. et al. Basement membrane collagen IV deficiency promotes abdominal aortic aneurysm formation. Sci. Rep. 11, 12903 (2021).

    Google Scholar 

  36. Zhang, X. et al. Brg1 trans-activates endothelium-derived colony stimulating factor to promote calcium chloride induced abdominal aortic aneurysm in mice. J. Mol. Cell Cardiol. 125, 6–17 (2018).

    Google Scholar 

  37. Zhao, Q. et al. Molecular mechanisms of coronary disease revealed using quantitative trait loci for TCF21 binding, chromatin accessibility, and chromosomal looping. Genome Biol. 21, 135 (2020).

    Google Scholar 

  38. Tsai, S. et al. TGF-beta through Smad3 signaling stimulates vascular smooth muscle cell proliferation and neointimal formation. Am. J. Physiol. Heart Circ. Physiol. 297, H540–H549 (2009).

    Google Scholar 

  39. Lacolley, P., Regnault, V., Nicoletti, A., Li, Z. & Michel, J. B. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc. Res. 95, 194–204 (2012).

    Google Scholar 

  40. Maki-Petaja, K. M. et al. Mechanisms underlying vascular endothelial growth factor receptor inhibition-induced hypertension: the HYPAZ trial. Hypertension 77, 1591–1599 (2021).

    Google Scholar 

  41. Wang, H. & Keiser, J. A. Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circ. Res. 83, 832–840 (1998).

    Google Scholar 

  42. Raines, E. W. PDGF and cardiovascular disease. Cytokine Growth Factor Rev. 15, 237–254 (2004).

    Google Scholar 

  43. Jang, Y., Lincoff, A. M., Plow, E. F. & Topol, E. J. Cell adhesion molecules in coronary artery disease. J. Am. Coll. Cardiol. 24, 1591–1601 (1994).

    Google Scholar 

  44. Jones, R. B., Gordus, A., Krall, J. A. & MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174 (2006).

    Google Scholar 

  45. Hause, R. J. Jr. et al. Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors. PLoS ONE 7, e44471 (2012).

    Google Scholar 

  46. Yamanaka, Y. et al. EGF family ligand-dependent phenotypic modulation of smooth muscle cells through EGF receptor. Biochem. Biophys. Res. Commun. 281, 373–377 (2001).

    Google Scholar 

  47. Schreier, B. et al. Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture. Biochim. Biophys. Acta 1863, 1519–1533 (2016).

    Google Scholar 

  48. Nutt, J. E., Mellon, J. K., Qureshi, K. & Lunec, J. Matrix metalloproteinase-1 is induced by epidermal growth factor in human bladder tumour cell lines and is detectable in urine of patients with bladder tumours. Br. J. Cancer 78, 215–220 (1998).

    Google Scholar 

  49. Cho, A., Graves, J. & Reidy, M. A. Mitogen-activated protein kinases mediate matrix metalloproteinase-9 expression in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 20, 2527–2532 (2000).

    Google Scholar 

  50. Park, H. J. et al. Gastrin-releasing peptide promotes the migration of vascular smooth muscle cells through upregulation of matrix metalloproteinase-2 and −9. BMB Rep. 50, 628–633 (2017).

    Google Scholar 

  51. Azar, P. et al. Smooth muscle cells in atherosclerosis: essential but overlooked translational perspectives.Eur. Heart J. 46, 4862–4875 (2025).

  52. Zaman, S. et al. The Lancet Commission on rethinking coronary artery disease: moving from ischaemia to atheroma. Lancet 405, 1264–1312 (2025).

    Google Scholar 

  53. Newby, A. C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 85, 1–31 (2005).

    Google Scholar 

  54. Renna, N. F., de Las Heras, N. & Miatello, R. M. Pathophysiology of vascular remodeling in hypertension. Int. J. Hypertens. 2013, 808353 (2013).

    Google Scholar 

  55. Intengan, H. D. & Schiffrin, E. L. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38, 581–587 (2001).

    Google Scholar 

  56. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Google Scholar 

  57. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).

    Google Scholar 

  58. Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9, eaag1166 (2017).

    Google Scholar 

  59. Liu, B. et al. Genetic regulatory mechanisms of smooth muscle cells map to coronary artery disease risk loci. Am. J. Hum. Genet. 103, 377–388 (2018).

    Google Scholar 

  60. Kim-Hellmuth, S. et al. Cell type-specific genetic regulation of gene expression across human tissues. Science 369, eaaz8528 (2020).

    Google Scholar 

  61. Leik, C. E., Willey, A., Graham, M. F. & Walsh, S. W. Isolation and culture of arterial smooth muscle cells from human placenta. Hypertension 43, 837–840 (2004).

    Google Scholar 

  62. Huang, Q. Q., Ritchie, S. C., Brozynska, M. & Inouye, M. Power, false discovery rate and Winner’s Curse in eQTL studies. Nucleic Acids Res. 46, e133 (2018).

    Google Scholar 

  63. Erdmann, J., Kessler, T., Munoz Venegas, L. & Schunkert, H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc. Res. 114, 1241–1257 (2018).

    Google Scholar 

  64. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Google Scholar 

  65. Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    Google Scholar 

  66. Aherrahrou, R., Lue, D. & Civelek, M. Genetic regulation of circular RNA expression in human aortic smooth muscle cells and vascular traits. HGG Adv. 4, 100164 (2023).

    Google Scholar 

  67. Ardlie, K. G., Kruglyak, L. & Seielstad, M. Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 3, 299–309 (2002).

    Google Scholar 

  68. Pritchard, J. K. & Przeworski, M. Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet. 69, 1–14 (2001).

    Google Scholar 

  69. Varilo, T. et al. The interval of linkage disequilibrium (LD) detected with microsatellite and SNP markers in chromosomes of Finnish populations with different histories. Hum. Mol. Genet. 12, 51–59 (2003).

    Google Scholar 

  70. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Google Scholar 

  71. McVey, D. G. et al. Genetic influence on vascular smooth muscle cell apoptosis. Cell Death Dis. 15, 402 (2024).

    Google Scholar 

  72. Batut, B. et al. Community-Driven Data Analysis Training for Biology. Cell Syst. 6, 752–758 (2018).

    Google Scholar 

  73. Rickner H. D., Niu S. Y. & Cheng C. S. ATAC-seq Assay with low mitochondrial DNA contamination from primary human CD4+ T lymphocytes.J. Vis. Exp. https://doi.org/10.3791/59120 (2019).

  74. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    Google Scholar 

  75. Anene-Nzelu, C. G. et al. Assigning Distal Genomic Enhancers to Cardiac Disease-Causing Genes. Circulation 142, 910–912 (2020).

    Google Scholar 

  76. Open2C, et al. Pairtools: From sequencing data to chromosome contacts.PLoS Comput. Biol. 20, e1012164 (2024).

  77. Hahne F. & Ivanek R. Visualizing genomic data using Gviz and Bioconductor. inStatistical Genomics: Methods and Protocols (eds Mathé E&Davis S). (Springer New York, 2016).

  78. Morris, T. J. et al. ChAMP: 450k Chip analysis methylation pipeline. Bioinformatics 30, 428–430 (2014).

    Google Scholar 

  79. Tian, Y. et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 33, 3982–3984 (2017).

    Google Scholar 

  80. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Google Scholar 

  81. Tang, D. et al. SRplot: A free online platform for data visualization and graphing. PLoS ONE 18, e0294236 (2023).

    Google Scholar 

  82. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Google Scholar 

  83. Ng, P. C. & Henikoff, S. Predicting deleterious amino acid substitutions. Genome Res. 11, 863–874 (2001).

    Google Scholar 

  84. Ramensky, V., Bork, P. & Sunyaev, S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 30, 3894–3900 (2002).

    Google Scholar 

  85. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    Google Scholar 

  86. Ioannidis, N. M. et al. REVEL: An ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).

    Google Scholar 

  87. Dong, C. et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24, 2125–2137 (2015).

    Google Scholar 

  88. Reva, B., Antipin, Y. & Sander, C. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol. 8, R232 (2007).

    Google Scholar 

  89. Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    Google Scholar 

  90. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Google Scholar 

  91. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17, 10–12 (2011).

    Google Scholar 

  92. Laxton, R. C. et al. A role of matrix metalloproteinase-8 in atherosclerosis. Circ. Res. 105, 921–929 (2009).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the British Heart Foundation [RG/16/13/32609, RG/19/9/34655, PG/16/9/31995, PG/18/73/34059, and SP/19/2/344612 to S.Y.), The National Medical Research Council of Singapore (MOH-001229 and MOH-001479 to S.Y.), and the National University of Singapore/National University Health System (NUHSRO/2022/004/Startup/01 to S.Y.). C.U.S. is a Leicester British Heart Foundation Accelerator Award (AA/18/3/34220) Research Fellow. D.G.M. is supported by the British Heart Foundation Research Excellence Award (RE/24/130031), the van Geest Foundation Heart and Cardiovascular Diseases Research Fund, and was awarded a BHF Accelerator Early Careers Researcher Interdisciplinary Fellowship and pump-priming funding from the Leicester British Heart Foundation Accelerator Award (AA/18/3/34220). This work falls under the portfolio of research conducted within the National Institute for Health Research Leicester Biomedical Research Centre and the Leicester BHF Centre of Research Excellence. This research used the ALICE High Performance Computing Facility at the University of Leicester.

Author information

Author notes
  1. These authors contributed equally: Charles U. Solomon, David G. McVey.

  2. These authors jointly supervised this work; Nilesh J. Samani, Tom R. Webb, Shu Ye.

Authors and Affiliations

  1. Division of Cardiovascular Sciences, University of Leicester, Leicester, UK

    Charles U. Solomon, David G. McVey, Catherine Andreadi, Peng Gong, Lenka Turner, Elisavet Karamanavi, Kim E. Haworth, Matthew J. Denniff, Gavin E. Morris, Emma J. Stringer, Nilesh J. Samani, Tom R. Webb & Shu Ye

  2. National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK

    Charles U. Solomon, David G. McVey, Catherine Andreadi, Peng Gong, Lenka Turner, Elisavet Karamanavi, Kim E. Haworth, Matthew J. Denniff, Gavin E. Morris, Emma J. Stringer, Nilesh J. Samani, Tom R. Webb & Shu Ye

  3. Leicester British Heart Foundation Centre of Research Excellence, University of Leicester, Leicester, UK

    Charles U. Solomon, David G. McVey, Catherine Andreadi, Peng Gong, Lenka Turner, Elisavet Karamanavi, Kim E. Haworth, Matthew J. Denniff, Gavin E. Morris, Emma J. Stringer, Nilesh J. Samani, Tom R. Webb & Shu Ye

  4. Cardiovascular-Metabolic Disease Translational Research Programme, Department of Medicine, National University of Singapore, Singapore, Singapore

    Dedrick S. S. Song, Heming Zhang, Dominic P. Lee, Jiapeng Chu, Chukwuemeka George Anene-Nzelu, Hui Li, Peter Y. Li, Haojie Yu, Roger S. Y. Foo & Shu Ye

  5. Division of Basic Medicine, Shantou University Medical College, Shantou, China

    Wei Yang, Runji Chen, Yanhong Zhang, Xiaoxin Huang & Shu Ye

  6. Department of Pathophysiology, Gannan Medical University, Ganzhou, Jiangxi, China

    Wei Yang

  7. First Affiliated Hospital of Shantou University Medical College, Shantou, China

    Runji Chen & Shu Ye

  8. Montreal Heart Institute, Montreal, Canada

    Chukwuemeka George Anene-Nzelu

  9. Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Canada

    Peter A. Greer

  10. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK

    Gillian Douglas

  11. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK

    Gillian Douglas

Authors
  1. Charles U. Solomon
    View author publications

    Search author on:PubMed Google Scholar

  2. David G. McVey
    View author publications

    Search author on:PubMed Google Scholar

  3. Catherine Andreadi
    View author publications

    Search author on:PubMed Google Scholar

  4. Peng Gong
    View author publications

    Search author on:PubMed Google Scholar

  5. Lenka Turner
    View author publications

    Search author on:PubMed Google Scholar

  6. Dedrick S. S. Song
    View author publications

    Search author on:PubMed Google Scholar

  7. Heming Zhang
    View author publications

    Search author on:PubMed Google Scholar

  8. Dominic P. Lee
    View author publications

    Search author on:PubMed Google Scholar

  9. Elisavet Karamanavi
    View author publications

    Search author on:PubMed Google Scholar

  10. Wei Yang
    View author publications

    Search author on:PubMed Google Scholar

  11. Jiapeng Chu
    View author publications

    Search author on:PubMed Google Scholar

  12. Runji Chen
    View author publications

    Search author on:PubMed Google Scholar

  13. Kim E. Haworth
    View author publications

    Search author on:PubMed Google Scholar

  14. Chukwuemeka George Anene-Nzelu
    View author publications

    Search author on:PubMed Google Scholar

  15. Hui Li
    View author publications

    Search author on:PubMed Google Scholar

  16. Matthew J. Denniff
    View author publications

    Search author on:PubMed Google Scholar

  17. Peter Y. Li
    View author publications

    Search author on:PubMed Google Scholar

  18. Yanhong Zhang
    View author publications

    Search author on:PubMed Google Scholar

  19. Xiaoxin Huang
    View author publications

    Search author on:PubMed Google Scholar

  20. Gavin E. Morris
    View author publications

    Search author on:PubMed Google Scholar

  21. Peter A. Greer
    View author publications

    Search author on:PubMed Google Scholar

  22. Emma J. Stringer
    View author publications

    Search author on:PubMed Google Scholar

  23. Haojie Yu
    View author publications

    Search author on:PubMed Google Scholar

  24. Roger S. Y. Foo
    View author publications

    Search author on:PubMed Google Scholar

  25. Gillian Douglas
    View author publications

    Search author on:PubMed Google Scholar

  26. Nilesh J. Samani
    View author publications

    Search author on:PubMed Google Scholar

  27. Tom R. Webb
    View author publications

    Search author on:PubMed Google Scholar

  28. Shu Ye
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.U.S., D.G.M., H.Z., and Y.Z. performed the analyses. D.G.M., C.A., P.G., L.T., D.S.S.S., H.Z., D.P.L., E.K., W.Y., J.C., R.C., K.E.H., C.G.A-N., H.L., M.J.D., P.Y.L, X.H., G.E.M., E.J.S., and G.D. performed the experiments. P.A.G. provided the mouse line. H.Y., R.S.Y.F., N.J.S., T.R.W., and S.Y. supervised the work. S.Y. wrote the paper. All the authors revised the manuscript, contributed with discussions and revisions and approved the final version of the manuscript.

Corresponding author

Correspondence to Shu Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Bo Zhang and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1–26

Supplementary Data 27

Supplementary Data 28–36

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomon, C.U., McVey, D.G., Andreadi, C. et al. Integrative functional genomics analysis identifies pleiotropic genes for vascular diseases. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69273-8

Download citation

  • Received: 02 March 2025

  • Accepted: 29 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69273-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research