Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Antecedent moisture enhances early warning of atmospheric river flood hazards
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 February 2026

Antecedent moisture enhances early warning of atmospheric river flood hazards

  • Mariana J. Webb  ORCID: orcid.org/0000-0003-0331-26351,
  • Christine M. Albano1,
  • Deniz Bozkurt  ORCID: orcid.org/0000-0003-1021-82412,3,4,
  • René D. Garreaud3,5,
  • Anna M. Wilson6,
  • Guo Yu1,
  • Michael L. Anderson7 &
  • …
  • F. Martin Ralph6 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate sciences
  • Hydrology
  • Natural hazards
  • Water resources

Abstract

Atmospheric rivers are narrow bands of water vapor transport and serve as key drivers of water supplies and flood hazards in mid-latitude regions. The atmospheric river scale supports early-warning communication by ranking events from potentially beneficial to hazardous based on atmospheric forcing represented by water vapor transport magnitude and duration. However, the scale does not consider land-surface conditions that can influence how precipitation derived from water vapor translates into streamflow and flood hazards. Analyzing atmospheric river landfalls across catchments in California and central Chile, we show that divergences between atmospheric river rank and flood response are primarily explained by pre-existing soil moisture conditions. Based on this insight, we develop a simple modification to the atmospheric river scale that nearly doubles the scale’s correspondence with peak streamflow and increases the number of flood-generating atmospheric rivers classified as hazardous by more than 30%. These findings demonstrate that incorporating land-surface conditions can enhance early-warning hazard classification tools.

Data availability

All source data used in this study are publicly available and accessible from the sources described in the Methods and Supplementary Methods. The data generated in this study are available in a CUAHSI HydroShare repository (https://doi.org/10.4211/hs.cee30237618d48e8bb0d09ecff9a4a7c)71.

Code availability

Statistical analyses were conducted in the R programming language. The code used to conduct these analyses is available in a CUAHSI HydroShare repository (https://doi.org/10.4211/hs.cee30237618d48e8bb0d09ecff9a4a7c)71.

References

  1. Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J. & Eylander, J. Defining “Atmospheric River”: How the Glossary of Meteorology Helped Resolve a Debate. Bull. Am. Meteorol. Soc. 99, 837–839 (2018).

    Google Scholar 

  2. Ralph, F. M. et al. Dropsonde Observations of Total Integrated Water Vapor Transport within North Pacific Atmospheric Rivers. J. Hydrometeorol. 18, 2577–2596 (2017).

    Google Scholar 

  3. Blamey, R. C., Ramos, A. M., Trigo, R. M., Tomé, R. & Reason, C. J. C. The Influence of Atmospheric Rivers over the South Atlantic on Winter Rainfall in South Africa. J. Hydrometeorol. 19, 127–142 (2018).

    Google Scholar 

  4. Kamae, Y., Mei, W. & Xie, S.-P. Climatological Relationship between Warm Season Atmospheric Rivers and Heavy Rainfall over East Asia. J. Meteorol. Soc. Jpn. Ser. II 95, 411–431 (2017).

    Google Scholar 

  5. Lavers, D. A. & Villarini, G. The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol. 522, 382–390 (2015).

    Google Scholar 

  6. Viale, M., Valenzuela, R., Garreaud, R. D. & Ralph, F. M. Impacts of Atmospheric Rivers on Precipitation in Southern South America. J. Hydrometeorol. 19, 1671–1687 (2018).

    Google Scholar 

  7. Paltan, H. et al. Global Floods and Water Availability Driven by Atmospheric Rivers. Geophys. Res. Lett. 44, 10,387–10,395 (2017).

    Google Scholar 

  8. Dettinger, M. D. Atmospheric Rivers as Drought Busters on the U.S. West Coast. J. Hydrometeorol. 14, 1721–1732 (2013).

    Google Scholar 

  9. Siirila-Woodburn, E. R. et al. The Role of Atmospheric Rivers on Groundwater: Lessons Learned From an Extreme Wet Year. Water Resour. Res. 59, e2022WR033061 (2023).

    Google Scholar 

  10. Ionita, M., Nagavciuc, V. & Guan, B. Rivers in the sky, flooding on the ground: the role of atmospheric rivers in inland flooding in central Europe. Hydrol. Earth Syst. Sci. 24, 5125–5147 (2020).

    Google Scholar 

  11. Konrad, C. P. & Dettinger, M. D. Flood Runoff in Relation to Water Vapor Transport by Atmospheric Rivers Over the Western United States, 1949–2015. Geophys. Res. Lett. 44, 11,456–11,462 (2017).

    Google Scholar 

  12. Corringham, T. W., Ralph, F. M., Gershunov, A., Cayan, D. R. & Talbot, C. A. Atmospheric rivers drive flood damages in the western United States. Sci. Adv. 5, eaax4631 (2019).

    Google Scholar 

  13. Ralph, F. M. et al. A Scale to Characterize the Strength and Impacts of Atmospheric Rivers. Bull. Am. Meteorol. Soc. 100, 269–289 (2019).

    Google Scholar 

  14. Lavers, D. A., Waliser, D. E., Ralph, F. M. & Dettinger, M. D. Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophys. Res. Lett. 43, 2275–2282 (2016).

    Google Scholar 

  15. Webb, M. J., Albano, C. M., Harpold, A. A., Wagner, D. M. & Wilson, A. M. Wet Antecedent Soil Moisture Increases Atmospheric River Streamflow Magnitudes Nonlinearly. J. Hydrometeorol. 26, 741–758 (2025).

    Google Scholar 

  16. Zhou, Y. et al. Atmospheric River Frequency-Category Characteristics Shape U.S. West Coast Runoff. J. Geophys. Res. Atmospheres 130, e2024JD041805 (2025).

    Google Scholar 

  17. Bartlett, S. M. & Cordeira, J. M. A Climatological Study of National Weather Service Watches, Warnings, and Advisories and Landfalling Atmospheric Rivers in the Western United States 2006–18. Weather Forecast 36, 1097–1112 (2021).

    Google Scholar 

  18. Albano, C. M., Dettinger, M. D. & Harpold, A. A. Patterns and Drivers of Atmospheric River Precipitation and Hydrologic Impacts across the Western United States. J. Hydrometeorol. 21, 143–159 (2020).

    Google Scholar 

  19. Rutz, J. J., Steenburgh, W. J. & Ralph, F. M. Climatological Characteristics of Atmospheric Rivers and Their Inland Penetration over the Western United States. Mon. Weather Rev. 142, 905–921 (2014).

    Google Scholar 

  20. Garreaud, R., Jacques-Coper, M., Marín, J. C. & Narváez, D. A. Atmospheric Rivers in South-Central Chile: Zonal and Tilted Events. Atmosphere 15, 406 (2024).

    Google Scholar 

  21. Griffith, H. V., Wade, A. J., Lavers, D. A. & Watts, G. Atmospheric river orientation determines flood occurrence. Hydrol. Process. 34, 4547–4555 (2020).

    Google Scholar 

  22. Dettinger, M. D., Redmond, K. & Cayan, D. Winter Orographic Precipitation Ratios in the Sierra Nevada—Large-Scale Atmospheric Circulations and Hydrologic Consequences. J. Hydrometeorol. 5, 1102–1116 (2004).

    Google Scholar 

  23. Lundquist, J. D., Minder, J. R., Neiman, P. J. & Sukovich, E. Relationships between Barrier Jet Heights, Orographic Precipitation Gradients, and Streamflow in the Northern Sierra Nevada. J. Hydrometeorol. 11, 1141–1156 (2010).

    Google Scholar 

  24. Kirshbaum, D. J. & Smith, R. B. Temperature and moist-stability effects on midlatitude orographic precipitation. Q. J. R. Meteorol. Soc. 134, 1183–1199 (2008).

    Google Scholar 

  25. Backes, T. M., Kaplan, M. L., Schumer, R. & Mejia, J. F. A Climatology of the Vertical Structure of Water Vapor Transport to the Sierra Nevada in Cool Season Atmospheric River Precipitation Events. J. Hydrometeorol. 16, 1029–1047 (2015).

    Google Scholar 

  26. Henn, B., Musselman, K. N., Lestak, L., Ralph, F. M. & Molotch, N. P. Extreme Runoff Generation From Atmospheric River Driven Snowmelt During the 2017 Oroville Dam Spillways Incident. Geophys. Res. Lett. 47, e2020GL088189 (2020).

    Google Scholar 

  27. Berghuijs, W. R., Woods, R. A., Hutton, C. J. & Sivapalan, M. Dominant flood generating mechanisms across the United States. Geophys. Res. Lett. 43, 4382–4390 (2016).

    Google Scholar 

  28. Ivancic, T. J. & Shaw, S. B. Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Clim. Change 133, 681–693 (2015).

    Google Scholar 

  29. Sharma, A., Wasko, C. & Lettenmaier, D. P. If Precipitation Extremes Are Increasing, Why Aren’t Floods? Water Resour. Res. 54, 8545–8551 (2018).

    Google Scholar 

  30. Chen, X., Leung, L. R., Wigmosta, M. & Richmond, M. Impact of Atmospheric Rivers on Surface Hydrological Processes in Western U.S. Watersheds. J. Geophys. Res. Atmospheres 124, 8896–8916 (2019).

    Google Scholar 

  31. Ralph, F. M., Coleman, T., Neiman, P. J., Zamora, R. J. & Dettinger, M. D. Observed Impacts of Duration and Seasonality of Atmospheric-River Landfalls on Soil Moisture and Runoff in Coastal Northern California. J. Hydrometeorol. 14, 443–459 (2013).

    Google Scholar 

  32. Guan, B., Waliser, D. E., Ralph, F. M., Fetzer, E. J. & Neiman, P. J. Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett. 43, 2964–2973 (2016).

    Google Scholar 

  33. Li, D., Lettenmaier, D. P., Margulis, S. A. & Andreadis, K. The Role of Rain-on-Snow in Flooding Over the Conterminous United States. Water Resour. Res. 55, 8492–8513 (2019).

    Google Scholar 

  34. Dettinger, M. D. et al. Effects of Atmospheric Rivers. in Atmospheric Rivers (eds Ralph, F. M., Dettinger, M. D., Rutz, J. J. & Waliser, D. E.) 141–177 (Springer International Publishing, Cham, 2020). https://doi.org/10.1007/978-3-030-28906-5_5.

  35. Berghuijs, W. R. & Slater, L. J. Groundwater shapes North American river floods. Environ. Res. Lett. 18, 034043 (2023).

    Google Scholar 

  36. Spellman, P. & Webster, V. Quantifying Long-Term and Event-Scale Baseflow Effects across the Flood Frequency Curve. JAWRA J. Am. Water Resour. Assoc. 56, 868–881 (2020).

    Google Scholar 

  37. Eiras-Barca, J. et al. European West Coast atmospheric rivers: A scale to characterize strength and impacts. Weather Clim. Extrem. 31, 100305 (2021).

    Google Scholar 

  38. Guan, B., Waliser, D. E. & Ralph, F. M. Global Application of the Atmospheric River Scale. J. Geophys. Res. Atmospheres 128, e2022JD037180 (2023).

    Google Scholar 

  39. Zhang, Z. et al. Extending the Center for Western Weather and Water Extremes (CW3E) atmospheric river scale to the polar regions. Cryosphere 18, 5239–5258 (2024).

    Google Scholar 

  40. Mo, R. et al. Column Relative Humidity and Primary Condensation Rate as Two Useful Supplements to Atmospheric River Analysis. Water Resour. Res. 57, e2021WR029678 (2021).

    Google Scholar 

  41. Guan, B. & Waliser, D. E. A regionally refined quarter-degree global atmospheric rivers database based on ERA5. Sci. Data 11, 440 (2024).

    Google Scholar 

  42. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  43. Munoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).

    Google Scholar 

  44. Guan, B. & Waliser, D. E. Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmospheres 120, 12514–12535 (2015).

    Google Scholar 

  45. Saavedra, F., Cortés, G., Viale, M., Margulis, S. & McPhee, J. Atmospheric Rivers Contribution to the Snow Accumulation Over the Southern Andes (26.5° S–37.5° S). Front. Earth Sci. 8, 261 (2020).

  46. Lindeman, R. H., Merenda, P. F. & Gold, R. Z. Introduction to Bivariate and Multivariate Analysis. (Scott, Foresman and Co, Glenview, Ill, 1980).

  47. Lyne, V. & Hollick, M. Stochastic Time-Variable Rainfall-Runoff Modeling. Australian National Conference Publication vol. 79 (1979).

  48. Castillo, V. M., Gómez-Plaza, A. & Martı́nez-Mena, M. The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach. J. Hydrol. 284, 114–130 (2003).

    Google Scholar 

  49. Hillel, D. Introduction to Environmental Soil Physics. (Elsevier Science & Technology, San Diego, CA, 2003).

  50. Penna, D., Tromp-van Meerveld, H. J., Gobbi, A., Borga, M. & Dalla Fontana, G. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 15, 689–702 (2011).

    Google Scholar 

  51. McKee, T. B., Doesken, N. J. & Kleist, J. The relationship of drought frequency and duration to time scales. in 179–184 (American Meteorological Society, Anaheim, California, 1993).

  52. Yuan, S., Quiring, S. M. & Zhao, C. Evaluating the Utility of Drought Indices as Soil Moisture Proxies for Drought Monitoring and Land–Atmosphere Interactions. J. Hydrometeorol. 21, 2157–2175 (2020).

    Google Scholar 

  53. Cammalleri, C., McCormick, N., Spinoni, J. & Nielsen-Gammon, J. W. An Analysis of the Lagged Relationship between Anomalies of Precipitation and Soil Moisture and Its Potential Role in Agricultural Drought Early Warning. J. Appl. Meteorol. Climatol. 63, 339–350 (2024).

    Google Scholar 

  54. Sumargo, E. et al. A soil moisture monitoring network to assess controls on runoff generation during atmospheric river events. Hydrol. Process. 35, e13998 (2021).

    Google Scholar 

  55. Bowers, C., Serafin, K. A., Tseng, K.-C. & Baker, J. W. Atmospheric River Sequences as Indicators of Hydrologic Hazard in Historical Reanalysis and GFDL SPEAR Future Climate Projections. Earths Future 11, e2023EF003536 (2023).

    Google Scholar 

  56. Fish, M. A., Wilson, A. M. & Ralph, F. M. Atmospheric River Families: Definition and Associated Synoptic Conditions. J. Hydrometeorol. 20, 2091–2108 (2019).

    Google Scholar 

  57. Payne, A. E. et al. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 1, 143–157 (2020).

    Google Scholar 

  58. Falcone, J. A. G. A. G. E. S.-I. I.: Geospatial Attributes of Gages for Evaluating Streamflow. GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow http://pubs.er.usgs.gov/publication/70046617, https://doi.org/10.3133/70046617 (2011).

  59. Alvarez-Garreton, C. et al. The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset. Hydrol. Earth Syst. Sci. 22, 5817–5846 (2018).

    Google Scholar 

  60. FAO. Digital Soil Map of the World and Derived Soil Properties. (FAO, Rome, Italy, 2003).

  61. Ladson, A. R., Brown, R., Neal, B. & Nathan, R. A standard approach to baseflow separation using the Lyne and Hollick filter. Aust. J. Water Resour. 17, 25–35 (2013).

    Google Scholar 

  62. Samsonov, T. grwat: River Hydrograph Separation and Analysis. 0.0.4 https://doi.org/10.32614/CRAN.package.grwat (2022).

  63. Barth, N. A., Villarini, G., Nayak, M. A. & White, K. Mixed populations and annual flood frequency estimates in the western United States: The role of atmospheric rivers. Water Resour. Res. 53, 257–269 (2017).

    Google Scholar 

  64. Kruskal, W. H. & Wallis, W. A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).

    Google Scholar 

  65. Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1, 80–83 (1945).

    Google Scholar 

  66. Hodges, J. L. & Lehmann, E. L. Estimates of Location Based on Rank Tests. Ann. Math. Stat. 34, 598–611 (1963).

    Google Scholar 

  67. Groemping, U. relaimpo: Relative Importance of Regressors in Linear Models. 2.2-7 https://doi.org/10.32614/CRAN.package.relaimpo (2005).

  68. Dorigo, W. et al. The International Soil Moisture Network: serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 25, 5749–5804 (2021).

    Google Scholar 

  69. Allen, S. & Otero, N. Calculating Standardised Indices Using SEI. (2023).

  70. Rutz, J. J. et al. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology. J. Geophys. Res. Atmospheres 124, 13777–13802 (2019).

    Google Scholar 

  71. Webb, M. J. A Modified Atmospheric River Scale for Flood Hazards. CUAHSI HydroShare https://doi.org/10.4211/hs.cee30237618d48e8bb0d09ecff9a4a7c (2026).

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation (NSF) through the Graduate Research Fellowship Program (Grant No. 1937966, M.J.W.) and the International Research Experience for Students (IRES) program (Grant No. 1954140, M.J.W.). Additional funding for M.J.W. was provided by the Desert Research Institute (DRI) Maki Student Award. Funding for C.M.A. and G.Y. was provided by the USACE Engineer Research and Development Center Urban Flood Demonstration Program (Agreement No. W912HZ1920011).

Author information

Authors and Affiliations

  1. Division of Hydrologic Sciences, Desert Research Institute, Reno, Nevada, USA

    Mariana J. Webb, Christine M. Albano & Guo Yu

  2. Department of Meteorology, University of Valparaíso, Valparaíso, Chile

    Deniz Bozkurt

  3. Center for Climate and Resilience Research, Santiago, Chile

    Deniz Bozkurt & René D. Garreaud

  4. Center for Oceanographic Research COPAS COASTAL, University of Concepción, Concepción, Chile

    Deniz Bozkurt

  5. Department of Geophysics, University of Chile, Santiago, Chile

    René D. Garreaud

  6. Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA

    Anna M. Wilson & F. Martin Ralph

  7. California Department of Water Resources, Sacramento, California, USA

    Michael L. Anderson

Authors
  1. Mariana J. Webb
    View author publications

    Search author on:PubMed Google Scholar

  2. Christine M. Albano
    View author publications

    Search author on:PubMed Google Scholar

  3. Deniz Bozkurt
    View author publications

    Search author on:PubMed Google Scholar

  4. René D. Garreaud
    View author publications

    Search author on:PubMed Google Scholar

  5. Anna M. Wilson
    View author publications

    Search author on:PubMed Google Scholar

  6. Guo Yu
    View author publications

    Search author on:PubMed Google Scholar

  7. Michael L. Anderson
    View author publications

    Search author on:PubMed Google Scholar

  8. F. Martin Ralph
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.J.W., C.M.A., D.B., and R.D.G. conceptualized the study and designed the methodology. M.J.W. performed the data acquisition and formal analysis with support from A.M.W., C.M.A., D.B., G.Y., and R.D.G. M.J.W. wrote the original draft. A.M.W., C.M.A., D.B., F.M.R., G.Y., M.J.W., M.L.A., and R.D.G. contributed to the review and editing of the manuscript. C.M.A. and M.J.W. acquired funding for this research.

Corresponding author

Correspondence to Mariana J. Webb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Larisa Tarasova and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Dataset 1

Supplementary Dataset 2

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, M.J., Albano, C.M., Bozkurt, D. et al. Antecedent moisture enhances early warning of atmospheric river flood hazards. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69286-3

Download citation

  • Received: 14 May 2025

  • Accepted: 26 January 2026

  • Published: 12 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69286-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene