Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Assessing conformation validity and rationality of deep learning-generated 3D molecules
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 07 February 2026

Assessing conformation validity and rationality of deep learning-generated 3D molecules

  • Fan Fan  ORCID: orcid.org/0009-0001-2137-51061 na1,
  • Bin Xi  ORCID: orcid.org/0000-0003-0141-21571,2 na1,
  • Xianghu Meng1 na1,
  • Han Wang  ORCID: orcid.org/0000-0001-9282-21051,2 na1,
  • Bowen Zhang1,
  • Qingbo Xu1,
  • Wei Feng  ORCID: orcid.org/0009-0007-1220-14581,
  • Wenfeng Gao1,
  • Xiaoman Wang1,
  • Yuji Wang3,
  • Hongbo Zhang  ORCID: orcid.org/0009-0005-1780-19681,
  • Feng Zhou  ORCID: orcid.org/0000-0001-9040-17961,
  • Zhenming Liu  ORCID: orcid.org/0000-0002-8993-40152,4,
  • Wenbiao Zhou  ORCID: orcid.org/0000-0002-7168-36761 &
  • …
  • Bo Huang  ORCID: orcid.org/0000-0003-3822-91101,3 

Nature Communications , Article number:  (2026) Cite this article

  • 1662 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computational chemistry
  • Machine learning
  • Software

Abstract

Recent advancements in artificial intelligence (AI) have revolutionized the field of 3D molecule generation. However, the lack of effective evaluation methods for 3D conformations limits further improvements. Current techniques, in order to achieve the necessary speed for evaluating large number of AI-generated molecules, often rely on empirical geometric metrics that do not adequately capture various conformational anomalies, or on molecular mechanics energy metrics that exhibit low accuracy and lack atomic or torsional details. To address this gap, we propose a two-stage approach that achieves both high speed and quantum mechanical level accuracy. The first stage, termed the validity test, employs an AI-derived force field to identify atoms with elevated energy resulting from implausible neighboring environments. The second stage, known as the rationality test, utilizes a deep learning network trained on data with density functional theory accuracy to detect rotatable bonds with high torsional energies. To demonstrate the functionality of our evaluation system, we applied our approach to five recently reported 3D molecule generation AI models across 102 targets in Directory of Useful Decoys-Enhanced dataset. To facilitate accessibility for the academic community, our method is available as an open-source package.

Similar content being viewed by others

Transition1x - a dataset for building generalizable reactive machine learning potentials

Article Open access 24 December 2022

Single-step retrosynthesis prediction by leveraging commonly preserved substructures

Article Open access 28 April 2023

A geometric deep learning approach to predict binding conformations of bioactive molecules

Article 02 December 2021

Data availability

The GM-5K, GM-1K, and DFT-5K datasets generated in this study have been deposited in the Figshare database74 under accession link https://doi.org/10.6084/m9.figshare.27826488.v6. Source data for figures are provided with this paper. Source data are provided with this paper.

Code availability

Our source code for the HEAD and TED models is publicly available on our GitHub repository at https://github.com/stonewiseAIDrugDesign/HEAD_TED. (The code is also included in the Code Ocean capsule21). The code is distributed under MIT license. We obtained the models for Pocket2Mol, TargetDiff, PocketFlow, and PMDM from their official GitHub repositories and used them for molecule generation. For Lingo3DMolv2, we utilized the online service available at https://sw3dmg.stonewise.cn to generate molecules. The service is freely accessible to academic users, and an academic email address is required to receive the generated results.

References

  1. Zeng, X. et al. Deep generative molecular design reshapes drug discovery. Cell Rep. Med. 3, 100794 (2022).

    Google Scholar 

  2. Jiang, Y. et al. PocketFlow is a data-and-knowledge-driven structure-based molecular generative model. Nat. Mach. Intell. 6, 326–337 (2024).

    Google Scholar 

  3. Feng, W. et al. Generation of 3D molecules in pockets via a language model. Nat. Mach. Intell. 6, 62–73 (2024).

    Google Scholar 

  4. Huang, L. et al. A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets. Nat. Commun. 15, 2657 (2024).

    Google Scholar 

  5. Peng, X. et al. Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets. arXiv:2205.07249 https://ui.adsabs.harvard.edu/abs/2022arXiv220507249P (2022).

  6. Guan, J. et al. 3D Equivariant Diffusion for Target-Aware Molecule Generation and Affinity Prediction. arXiv:2303.03543 https://ui.adsabs.harvard.edu/abs/2023arXiv230303543G (2023).

  7. Wang, L. et al. A pocket-based 3D molecule generative model fueled by experimental electron density. Sci. Rep. 12, 15100 (2022).

    Google Scholar 

  8. Buttenschoen, M., Morris, G. M. & Deane, C. M. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chem. Sci. 15, 3130–3139 (2024).

    Google Scholar 

  9. Harris, C. et al. Benchmarking Generated Poses: How Rational is Structure-based Drug Design with Generative Models? https://ui.adsabs.harvard.edu/abs/2023arXiv230807413H (2023). arXiv:2308.07413.

  10. Hekkelman, M. L., de Vries, I., Joosten, R. P. & Perrakis, A. J. N. M. AlphaFill. enriching AlphaFold models ligands cofactors. 20, 205–213 (2023).

    Google Scholar 

  11. Ramachandran, S., Kota, P., Ding, F., Dokholyan, N. V. J. P. S., Function, & Bioinformatics. Automated minimization of steric clashes in protein structures. 79, 261-270 (2011).

  12. Kohn, W. & Sham, L. J. J. P. r. Self-consistent equations including exchange and correlation effects. A 140, 1133 (1965).

    Google Scholar 

  13. Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).

    Google Scholar 

  14. Allinger, N. L., Yuh, Y. H. & Lii, J. H. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551–8566 (1989).

  15. Halgren, T. A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17, 490–519 (1996).

  16. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

  17. Brooks, B. R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

  18. Sellers, B. D., James, N. C. & Gobbi, A. A comparison of quantum and molecular mechanical methods to estimate strain energy in druglike fragments. J. Chem. Inf. Model 57, 1265–1275 (2017).

    Google Scholar 

  19. Wang, Y., Walker, B. D., Liu, C. & Ren, P. An efficient approach to large-scale ab initio conformational energy profiles of small molecules. Molecules https://doi.org/10.3390/molecules27238567 (2022).

    Google Scholar 

  20. Mysinger, M. M., Carchia, M., Irwin, J. J. & Shoichet, B. K. Directory of useful decoys, enhanced (dud-e): better ligands and decoys for better benchmarking. J. Medicinal Chem. 55, 6582–6594 (2012).

    Google Scholar 

  21. Fan, F. et al. Assessing conformation validity and rationality of deep learning-generated 3d molecules [source code]. Code Ocean https://doi.org/10.24433/CO.3893415.v2 (2025).

    Google Scholar 

  22. Devereux, C. et al. Extending the applicability of the ani deep learning molecular potential to sulfur and halogens. J. Chem. Theory Comput. 16, 4192–4202 (2020).

    Google Scholar 

  23. Landrum, G. e. a. RDKit: open-source cheminformatics software. GitHub https://github.com/rdkit/rdkit (2016).

  24. Tong, J. & Zhao, S. Large-scale analysis of bioactive ligand conformational strain energy by ab initio calculation. J. Chem. Inf. Model 61, 1180–1192 (2021).

    Google Scholar 

  25. Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    Google Scholar 

  26. Roos, K. et al. OPLS3e: extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 15, 1863–1874 (2019).

    Google Scholar 

  27. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The cambridge structural database. Acta Crystallogr B Struct. Sci. Cryst. Eng. Mater. 72, 171–179 (2016).

    Google Scholar 

  28. Santra, G., Sylvetsky, N. & Martin, J. M. J. T. J. o. P. C. A. Minimally empirical double-hybrid functionals trained against the GMTKN55 database: revDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4. 123, 5129–5143 (2019).

  29. Hellweg, A. & Rappoport, D. J. P. C. C. P. Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations. 17, 1010–1017 (2015).

  30. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Computational Chem. 32, 1456–1465 (2011).

    Google Scholar 

  31. Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10, 449–461 (2015).

    Google Scholar 

  32. Miller, B. R. et al. MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput 8, 3314–3321 (2012).

    Google Scholar 

  33. Cieplinski, T., Danel, T., Podlewska, S. & Jastrzebski, S. Generative models should at least be able to design molecules that dock well: a new benchmark. J. Chem. Inf. Model 63, 3238–3247 (2023).

    Google Scholar 

  34. Jocys, Z., Grundy, J. & Farrahi, K. DrugPose: benchmarking 3D generative methods for early stage drug discovery. Digital Discov. 3, 1308–1318 (2024).

    Google Scholar 

  35. Koes, D. R., Baumgartner, M. P. & Camacho, C. J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model 53, 1893–1904 (2013).

    Google Scholar 

  36. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying the chemical beauty of drugs. Nat. Chem. 4, 90–98 (2012).

    Google Scholar 

  37. Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform 1, 8 (2009).

    Google Scholar 

  38. Rai, B. K. et al. TorsionNet: a deep neural network to rapidly predict small-molecule torsional energy profiles with the accuracy of quantum mechanics. J. Chem. Inf. Modeling 62, 785–800 (2022).

    Google Scholar 

  39. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46, D1074–D1082 (2018).

    Google Scholar 

  40. Clark, C. G. et al. Structure based design of macrocyclic factor XIa inhibitors: Discovery of cyclic P1 linker moieties with improved oral bioavailability. Bioorg. Med Chem. Lett. 29, 126604 (2019).

    Google Scholar 

  41. Kovács, D. P. et al. MACE-OFF: short-range transferable machine learning force fields for organic molecules. J. Am. Chem. Soc. 147, 17598–17611 (2025).

    Google Scholar 

  42. Eastman, P. et al. SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials. Sci. Data 10, 11 (2023).

    Google Scholar 

  43. Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput Aided Mol. Des. 27, 221–234 (2013).

    Google Scholar 

  44. Wallace, E. R. S., Frey, N. C. & Rackers, J. A. Strain problems got you in a twist? try strainrelief: a quantum-accurate tool for ligand strain calculations. J. Chem. Inf. Model 65, 6613–6620 (2025).

    Google Scholar 

  45. Watts, K. S. et al. ConfGen: a conformational search method for efficient generation of bioactive conformers. J. Chem. Inf. Modeling 50, 534–546 (2010).

    Google Scholar 

  46. Peach, M. L., Cachau, R. E. & Nicklaus, M. C. Conformational energy range of ligands in protein crystal structures: The difficult quest for accurate understanding. J. Mol. Recognit. https://doi.org/10.1002/jmr.2618 (2017).

    Google Scholar 

  47. Brameld, K. A., Kuhn, B., Reuter, D. C. & Stahl, M. Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis. J. Chem. Inf. Model 48, 1–24 (2008).

    Google Scholar 

  48. Zhao, L., Pu, M., Wang, H., Ma, X. & Zhang, Y. J. Modified electrostatic complementary score function and its application boundary exploration in drug design. J. Chem. Inf. Model 62, 4420–4426 (2022).

    Google Scholar 

  49. Ding, K. et al. Observing noncovalent interactions in experimental electron density for macromolecular systems: a novel perspective for protein-ligand interaction research. J. Chem. Inf. Model 62, 1734–1743 (2022).

    Google Scholar 

  50. Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).

    Google Scholar 

  51. Kocer, E., Ko, T. W. & Behler, J. Neural network potentials: a concise overview of methods. Annu Rev. Phys. Chem. 73, 163–186 (2022).

    Google Scholar 

  52. Wu, S. et al. Applications and advances in machine learning force fields. J. Chem. Inf. Model 63, 6972–6985 (2023).

    Google Scholar 

  53. Zhang, L. et al. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    Google Scholar 

  54. Schutt, K. T., Sauceda, H. E., Kindermans, P. J., Tkatchenko, A. & Muller, K. R. SchNet - A deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).

    Google Scholar 

  55. Fu, W. et al. Enhancing molecular energy predictions with physically constrained modifications to the neural network potential. J. Chem. Theory Comput 20, 4533–4544 (2024).

    Google Scholar 

  56. Smith, J. S. et al. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nat. Commun. 10, 2903 (2019).

    Google Scholar 

  57. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Google Scholar 

  58. Behler, J. Representing potential energy surfaces by high-dimensional neural network potentials. J. Phys. Condens Matter 26, 183001 (2014).

    Google Scholar 

  59. Zubatyuk, R., Smith, J. S., Leszczynski, J. & Isayev, O. Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network. Sci. Adv. 5, eaav6490 (2019).

    Google Scholar 

  60. Gasteiger, J., Groß, J. & Günnemann, S. J. a. e.-p. Directional Message Passing for Molecular Graphs. arXiv:2003.03123. https://ui.adsabs.harvard.edu/abs/2020arXiv200303123G (2020).

  61. Batatia, I. et al. The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials. arXiv:2205.06643. https://ui.adsabs.harvard.edu/abs/2022arXiv220506643B (2022).

  62. Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).

    Google Scholar 

  63. Qiao, Z., Welborn, M., Anandkumar, A., Manby, F. R. & Miller, T. F. 3rd. OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features. J. Chem. Phys. 153, 124111 (2020).

    Google Scholar 

  64. Isert, C., Atz, K., Jimenez-Luna, J. & Schneider, G. QMugs, quantum mechanical properties of drug-like molecules. Sci. Data 9, 273 (2022).

    Google Scholar 

  65. Rai, B. K. et al. Comprehensive assessment of torsional strain in crystal structures of small molecules and protein-ligand complexes using ab initio calculations. J. Chem. Inf. Model 59, 4195–4208 (2019).

    Google Scholar 

  66. Gale, J. D., LeBlanc, L. M., Spackman, P. R., Silvestri, A. & Raiteri, P. A universal force field for materials, periodic gfn-ff: implementation and examination. J. Chem. Theory Comput. 17, 7827–7849 (2021).

    Google Scholar 

  67. Spicher, S. & Grimme, S. Robust atomistic modeling of materials, organometallic, and biochemical systems. Angew. Chem. Int Ed. Engl. 59, 15665–15673 (2020).

    Google Scholar 

  68. Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    Google Scholar 

  69. Bajusz, D., Racz, A. & Heberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform 7, 20 (2015).

    Google Scholar 

  70. Vaswani, A. et al. Attention Is All You Need. arXiv:1706.03762. https://ui.adsabs.harvard.edu/abs/2017arXiv170603762V (2017).

  71. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Google Scholar 

  72. Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput 11, 3696–3713 (2015).

    Google Scholar 

  73. Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph Model 25, 247–260 (2006).

    Google Scholar 

  74. Fan, F. et al. Data for HEAD_TED. Figshare https://doi.org/10.6084/m9.figshare.27826488.v6 (2024).

    Google Scholar 

Download references

Acknowledgements

This study was funded by the National Key R&D Program of China (grant no. 2022YFF1203004 received by B.H.). This work was also supported by the Beijing Municipal Science and Technology Commission (grant no. Z241100007724005 received by B.H.).

Author information

Author notes
  1. These authors contributed equally: Fan Fan, Bin Xi, Xianghu Meng, Han Wang.

Authors and Affiliations

  1. Beijing StoneWise Technology Co Ltd., Haidian Street #15, Beijing, China

    Fan Fan, Bin Xi, Xianghu Meng, Han Wang, Bowen Zhang, Qingbo Xu, Wei Feng, Wenfeng Gao, Xiaoman Wang, Hongbo Zhang, Feng Zhou, Wenbiao Zhou & Bo Huang

  2. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China

    Bin Xi, Han Wang & Zhenming Liu

  3. School of Pharmaceutical Sciences, Capital Medical University, Beijing, China

    Yuji Wang & Bo Huang

  4. Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education; School of Pharmacy, Shihezi University, Shihezi, Xinjiang, China

    Zhenming Liu

Authors
  1. Fan Fan
    View author publications

    Search author on:PubMed Google Scholar

  2. Bin Xi
    View author publications

    Search author on:PubMed Google Scholar

  3. Xianghu Meng
    View author publications

    Search author on:PubMed Google Scholar

  4. Han Wang
    View author publications

    Search author on:PubMed Google Scholar

  5. Bowen Zhang
    View author publications

    Search author on:PubMed Google Scholar

  6. Qingbo Xu
    View author publications

    Search author on:PubMed Google Scholar

  7. Wei Feng
    View author publications

    Search author on:PubMed Google Scholar

  8. Wenfeng Gao
    View author publications

    Search author on:PubMed Google Scholar

  9. Xiaoman Wang
    View author publications

    Search author on:PubMed Google Scholar

  10. Yuji Wang
    View author publications

    Search author on:PubMed Google Scholar

  11. Hongbo Zhang
    View author publications

    Search author on:PubMed Google Scholar

  12. Feng Zhou
    View author publications

    Search author on:PubMed Google Scholar

  13. Zhenming Liu
    View author publications

    Search author on:PubMed Google Scholar

  14. Wenbiao Zhou
    View author publications

    Search author on:PubMed Google Scholar

  15. Bo Huang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

B.H. conceived the study and supervised the design of all the experiments. B.X. developed HEAD. F.F. and X.M. developed TED. W.Z. provided instructions for artificial intelligence modeling. F.Z. provided instructions on QM calculations. H.Z. provided instructions for the construction of the torsion fragment. H.W., B.Z., Q.X., W.F., X.W., and W.G. supported the evaluation of AI models. Z.L. and Y.W. supported forced field-based optimization.

Corresponding authors

Correspondence to Hongbo Zhang, Feng Zhou, Zhenming Liu, Wenbiao Zhou or Bo Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Charlotte Deane and the other anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, F., Xi, B., Meng, X. et al. Assessing conformation validity and rationality of deep learning-generated 3D molecules. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69303-5

Download citation

  • Received: 24 December 2024

  • Accepted: 23 January 2026

  • Published: 07 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69303-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics