Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Proprioceptive limit detectors contribute to sensorimotor control of the Drosophila leg
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 February 2026

Proprioceptive limit detectors contribute to sensorimotor control of the Drosophila leg

  • Brandon G. Pratt1 nAff3,
  • Chris J. Dallmann  ORCID: orcid.org/0000-0002-4944-920X1,
  • Grant M. Chou1,
  • Igor Siwanowicz2,
  • Sarah Walling-Bell1,
  • Andrew Cook1,
  • Anne Sustar1,
  • Anthony Azevedo  ORCID: orcid.org/0000-0001-8318-96781 &
  • …
  • John C. Tuthill  ORCID: orcid.org/0000-0002-5689-58061 

Nature Communications , Article number:  (2026) Cite this article

  • 463 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cellular neuroscience
  • Motor control
  • Sensory processing

Abstract

Many animals possess mechanosensory neurons that fire when a limb nears the limit of its physical range, but the function of these proprioceptive limit detectors remains poorly understood. Here, we investigate a class of proprioceptors on the Drosophila leg called hair plates. Using calcium imaging in behaving flies, we find that a hair plate on the fly coxa (CxHP8) detects the limits of anterior leg movement. By reconstructing CxHP8 axons in an electron microscopy dataset, we found that they are wired to excite posterior leg movement and inhibit anterior leg movement. Consistent with this connectivity, optogenetic activation of CxHP8 neurons elicited posterior postural reflexes, while silencing altered the swing-to-stance transition during walking. Finally, we use comprehensive reconstruction of peripheral morphology and downstream connectivity to predict the function of other hair plates distributed across the fly leg. Our results suggest that each hair plate is specialized to control specific sensorimotor reflexes that are matched to the joint limit it detects. They also illustrate the feasibility of predicting sensorimotor reflexes from a connectome with identified proprioceptive inputs and motor outputs.

Similar content being viewed by others

Selective presynaptic inhibition of leg proprioception in behaving Drosophila

Article 17 September 2025

Online learning for orientation estimation during translation in an insect ring attractor network

Article Open access 25 February 2022

NeuroMechFly v2: simulating embodied sensorimotor control in adult Drosophila

Article 12 November 2024

Data availability

The calcium imaging, optogenetic, and treadmill kinematic silencing datasets generated in this study have been deposited in the Dryad database under https://doi.org/10.5061/dryad.fxpnvx153. All datasets are publicly available. FANC connectome data were analyzed from the CAVE materialization version 840, timestamp 2024-01-17T08:10:01.179472. FlyWire connectome data were analyzed from the public release version 783. Any additional information required to reanalyze the data is available from the lead contact upon request.

Code availability

Code for analyzing and visualizing hair plate connectivity in the EM dataset, calcium activity of CxHP8 neurons, kinematics during optogenetic experiments, and walking kinematics and posture during treadmill experiments is located on GitHub (https://github.com/Prattbuw/Hair_Plate_Paper/releases/tag/v1.0.0).

References

  1. Burgess, P. R. & Clark, F. J. Characteristics of knee joint receptors in the cat. J. Physiol. 203, 317–335 (1969).

    Google Scholar 

  2. Pringle, J. W. S. Proprioception in Insects: III. The Function of the Hair Sensilla at the Joints. J. Exp. Biol. 15, 467–473 (1938).

    Google Scholar 

  3. Tuthill, J. C. & Azim, E. Proprioception. Curr. Biol. 28, R194–R203 (2018).

    Google Scholar 

  4. Proske, U. & Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012).

    Google Scholar 

  5. Grigg, P., Finerman, G. A. & Riley, L. H. Joint-position sense after total hip replacement. J. Bone Joint Surg. Am. 55, 1016–1025 (1973).

  6. Clark, F. J., Horch, K. W., Bach, S. M. & Larson, G. F. Contributions of cutaneous and joint receptors to static knee-position sense in man. J. Neurophysiol. 42, 877–888 (1979).

    Google Scholar 

  7. Bässler, U. Sensory control of leg movement in the stick insect Carausius morosus. Biol. Cybernetics 25, 61–72 (1977).

    Google Scholar 

  8. Wong, R. K. & Pearson, K. G. Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. J. Exp. Biol. 64, 233–249 (1976).

    Google Scholar 

  9. Pearson, K. G., Wong, R. K. & Fourtner, C. R. Connexions between hair-plate afferents and motoneurones in the cockroach leg. J. Exp. Biol. 64, 251–266 (1976).

    Google Scholar 

  10. Azevedo, A. et al. Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature 631, 360–368 (2024).

    Google Scholar 

  11. Takemura, S. et al. A connectome of the male Drosophila ventral nerve cord. ELife 13, https://doi.org/10.7554/eLife.97769.1.sa2 (2024).

  12. Winding, M. et al. The connectome of an insect brain. Science 379, eadd9330 (2023).

    Google Scholar 

  13. Dorkenwald, S. et al. Neuronal wiring diagram of an adult brain. Nature 634, 124–138 (2024).

    Google Scholar 

  14. Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759–774 (2021).

    Google Scholar 

  15. Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743.e22 (2018).

    Google Scholar 

  16. Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature 634, 139–152 (2024).

    Google Scholar 

  17. Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. Elife 9, e57443 (2020).

    Google Scholar 

  18. Eckstein, N. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 187, 2574–2594 (2024).

    Google Scholar 

  19. Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001 (2012).

    Google Scholar 

  20. Meissner, G. W. et al. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. ELife 12, e80660 (2023).

    Google Scholar 

  21. Lee, S.-Y. J., Dallmann, C. J., Cook, A., Tuthill, J. C. & Agrawal, S. Divergent neural circuits for proprioceptive and exteroceptive sensing of the Drosophila leg. Nat. Commun. 16, 4105 (2025).

    Google Scholar 

  22. Marin, E. C. et al. Systematic annotation of a complete adult male Drosophila nerve cord connectome reveals principles of functional organisation. ELife 13, https://doi.org/10.7554/eLife.97766.1.sa3 (2024).

  23. Agrawal, S. et al. Central processing of leg proprioception in Drosophila. Elife 9, e60299 (2020).

    Google Scholar 

  24. Chen, C. et al. Functional architecture of neural circuits for leg proprioception in Drosophila. Curr. Biol. 31, 5163–5175 (2021).

    Google Scholar 

  25. Dallmann, C. J. et al. Selective presynaptic inhibition of leg proprioception in behaving Drosophila. Nature 647, 445–453 (2025).

    Google Scholar 

  26. Mamiya, A. et al. Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg. Neuron 111, 3230–3243 (2023).

    Google Scholar 

  27. Mamiya, A., Gurung, P. & Tuthill, J. C. Neural coding of leg proprioception in Drosophila. Neuron 100, 636–650 (2018).

    Google Scholar 

  28. Cheng, L. E., Song, W., Looger, L. L., Jan, L. Y. & Jan, Y. N. The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67, 373–380 (2010).

    Google Scholar 

  29. Phillis, R., Statton, D., Caruccio, P. & Murphey, R. K. Mutations in the 8 kDa dynein light chain gene disrupt sensory axon projections in the Drosophila imaginal CNS. Development 122, 2955–2963 (1996).

    Google Scholar 

  30. Smith, S. A. & Shepherd, D. Central afferent projections of proprioceptive sensory neurons in Drosophila revealed with the enhancer-trap technique. J. Comp. Neurol. 364, 311–323 (1996).

    Google Scholar 

  31. Akitake, B. et al. Coordination and fine motor control depend on Drosophila TRPγ. Nat. Commun. 6, 7288 (2015).

  32. Chockley, A. S. et al. Subsets of leg proprioceptors influence leg kinematics but not interleg coordination in Drosophila melanogaster walking. J. Exp. Biol. 225, jeb244245 (2022).

    Google Scholar 

  33. Isakov, A. et al. Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception. J. Exp. Biol. 219, 1760–1771 (2016).

    Google Scholar 

  34. Mendes, C. S., Bartos, I., Akay, T., Márka, S. & Mann, R. S. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. ELife Sci. 2, e00231 (2013).

    Google Scholar 

  35. Pratt, B. G., Lee, S.-Y. J., Chou, G. M. & Tuthill, J. C. Miniature linear and split-belt treadmills reveal mechanisms of adaptive motor control in walking Drosophila. Curr. Biol. 34, 4368–4381 (2024).

    Google Scholar 

  36. McKelvey, E. G. Z. et al. Drosophila females receive male substrate-borne signals through specific leg neurons during courtship. Curr. Biol. 31, 3894–3904 (2021).

    Google Scholar 

  37. Mendes, C. S., Rajendren, S. V., Bartos, I., Márka, S. & Mann, R. S. Kinematic responses to changes in walking orientation and gravitational load in Drosophila melanogaster. PLOS ONE 9, e109204 (2014).

    Google Scholar 

  38. Godesberg, V., Bockemühl, T. & Büschges, A. Natural variability and individuality of walking behavior in Drosophila. J. Exp. Biol. 227, jeb247878 (2024).

    Google Scholar 

  39. Shanbhag, S. R., Singh, K. & Naresh Singh, R. Ultrastructure of the femoral chordotonal organs and their novel synaptic organization in the legs of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int. J. Insect Morphol. Embryol. 21, 311–322 (1992).

    Google Scholar 

  40. Schubiger, G. Anlageplan, Determinationszustand und Transdeterminationsleistungen der männlichen Vorderbeinscheibe vonDrosophila melanogaster. Wilhelm Roux’ Arch. für Entwickl. der Org. 160, 9–40 (1968).

    Google Scholar 

  41. Hodgkin, H. M. & Bryant, P. J. Scanning electron microscopy of the adult of Drosophila melanogaster. Genet. Biol. Drosophila 2 (1979).

  42. Kuan, A. T. et al. Dense neuronal reconstruction through X-ray holographic nano-tomography. Nat. Neurosci. 1–7 https://doi.org/10.1038/s41593-020-0704-9 (2020).

  43. Oh, S. M., Jeong, K., Seo, J. T. & Moon, S. J. Multisensory interactions regulate feeding behavior in Drosophila. Proc. Natl. Acad. Sci. USA 118, e2004523118 (2021).

    Google Scholar 

  44. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281 (2018).

    Google Scholar 

  45. Karashchuk, P. et al. Anipose: A toolkit for robust markerless 3D pose estimation. Cell Rep. 36, 109730 (2021).

    Google Scholar 

  46. Lesser, E. et al. Synaptic architecture of leg and wing premotor control networks in Drosophila. Nature 631, 369–377 (2024).

    Google Scholar 

  47. Azevedo, A. W. et al. A size principle for recruitment of Drosophila leg motor neurons. ELife 9, e56754 (2020).

    Google Scholar 

  48. Wendler, G. Körperhaltung bei der Stabheuschrecke: Ihre Beziehung zur Schwereorientierung und Mechanismen ihrer Regelung. Verhandlungen der Deutschen Zoologischen Gesellschaft 214, 219 (1972).

    Google Scholar 

  49. Theunissen, L. M., Vikram, S. & Dürr, V. Spatial co-ordination of foot contacts in unrestrained climbing insects. J. Exp. Biol. 217, 3242–3253 (2014).

    Google Scholar 

  50. Newland, P. L., Watkins, B., Emptage, N. J. & Nagayama, T. The structure, response properties and development of a hair plate on the mesothoracic leg of the locust. J. Exp. Biol. 198, 2397–2404 (1995).

    Google Scholar 

  51. Kuenzi, F. & Burrows, M. Central connections of sensory neurones from a hair plate proprioceptor in the thoraco-coxal joint of the locust. J. Exp. Biol. 198, 1589–1601 (1995).

    Google Scholar 

  52. BrÄunig, P. & Hustert, R. Actions and interactions of proprioceptors of the locust hind leg coxo-trochanteral joint. J. Comp. Physiol. A 157, 83–89 (1985).

    Google Scholar 

  53. BrÄunig, P. & Hustert, R. Actions and interactions of proprioceptors of the locust hind leg coxo-trochanteral joint. J.Comp. Physiol. A 157, 73–82 (1985).

    Google Scholar 

  54. Haskell, P. T. Hair receptors in locusts: function of certain prothoracic hair receptors in the desert locust. Nature 183, 1107–1107 (1959).

    Google Scholar 

  55. French, A. S. & Wong, R. K. S. The responses of trochanteral hair plate sensilla in the cockroach to periodic and random displacements. Biol. Cybernet. 22, 33–38 (1976).

    Google Scholar 

  56. French, A. S. & Sanders, E. J. The mechanism of sensory transduction in the sensilla of the trochanteral hair plate of the cockroach, Periplaneta americana. Cell and Tissue Res. 198, 159–174 (1979).

    Google Scholar 

  57. Gebehart, C., Schmidt, J. & Büschges, A. Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint. J. Neurophysiol. 125, 1800–1813 (2021).

    Google Scholar 

  58. Cruse, H., Dean, J. & Suilmann, M. The contributions of diverse sense organs to the control of leg movement by a walking insect. J.Comp. Physiol. A 154, 695–705 (1984).

    Google Scholar 

  59. Wang-Chen, S. et al. NeuroMechFly v2: simulating embodied sensorimotor control in adult Drosophila. Nat. Methods 21, 2353–2362 (2024).

    Google Scholar 

  60. Vaxenburg, R. et al. Whole-body physics simulation of fruit fly locomotion. Nature 643, 1312–1320 (2025).

    Google Scholar 

  61. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  62. Maitin-Shepard, J. et al. google/neuroglancer: Zenodo https://doi.org/10.5281/zenodo.5573294 (2021).

  63. Dorkenwald, S. et al. CAVE: Connectome Annotation Versioning Engine. Nat. Methods 22, 1112–1120 (2025).

    Google Scholar 

  64. Harris, R. M., Pfeiffer, B. D., Rubin, G. M. & Truman, J. W. Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. ELife 4, e04493 (2015).

    Google Scholar 

  65. Lacin, H. et al. Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS. Elife 8, https://doi.org/10.7554/elife.43701 (2019).

  66. Liu, W. W. & Wilson, R. I. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. PNAS https://doi.org/10.1073/pnas.1220560110 (2013)

  67. Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Efficient subpixel image registration algorithms. Opt. Lett. 33, 156–158 (2008).

    Google Scholar 

  68. Moore, R. J. D. et al. FicTrac: A visual method for tracking spherical motion and generating fictive animal paths. J. Neurosci. Methods 225, 106–119 (2014).

    Google Scholar 

  69. DeAngelis, B. D., Zavatone-Veth, J. A. & Clark, D. A. The manifold structure of limb coordination in walking Drosophila. ELife 8, e46409 (2019).

    Google Scholar 

  70. Wosnitza, A., Bockemühl, T., Dübbert, M., Scholz, H. & Büschges, A. Inter-leg coordination in the control of walking speed in Drosophila. J. Exp. Biol. 216, 480–491 (2013).

    Google Scholar 

  71. Strauss, R. & Heisenberg, M. Coordination of legs during straight walking and turning in Drosophila melanogaster. J. Comp. Physiol. A 167, 403–412 (1990).

    Google Scholar 

Download references

Acknowledgements

We thank members of the Tuthill and Brunton Labs for technical assistance and feedback on the manuscript. We thank Seok Jun Moon for sharing the CxHP8 split-GAL4 driver line (R48A07 AD: R20C06 DBD). B.G.P. was supported by an NSF Graduate Research Fellowship (Fellow ID: 2018261272). C.J.D. was supported from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project 432196121. Other support was provided by National Institutes of Health grants R01NS102333, R01NS128785, and U19NS104655, a Searle Scholar Award, a Klingenstein-Simons Fellowship, a Pew Biomedical Scholar Award, a McKnight Scholar Award, a Sloan Research Fellowship, the New York Stem Cell Foundation, and a UW Innovation Award to J.C.T. J.C.T. is a New York Stem Cell Foundation – Robertson Investigator.

Author information

Author notes
  1. Brandon G. Pratt

    Present address: Allen Institute for Neural Dynamics, Seattle, WA, USA

Authors and Affiliations

  1. Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA

    Brandon G. Pratt, Chris J. Dallmann, Grant M. Chou, Sarah Walling-Bell, Andrew Cook, Anne Sustar, Anthony Azevedo & John C. Tuthill

  2. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA

    Igor Siwanowicz

Authors
  1. Brandon G. Pratt
    View author publications

    Search author on:PubMed Google Scholar

  2. Chris J. Dallmann
    View author publications

    Search author on:PubMed Google Scholar

  3. Grant M. Chou
    View author publications

    Search author on:PubMed Google Scholar

  4. Igor Siwanowicz
    View author publications

    Search author on:PubMed Google Scholar

  5. Sarah Walling-Bell
    View author publications

    Search author on:PubMed Google Scholar

  6. Andrew Cook
    View author publications

    Search author on:PubMed Google Scholar

  7. Anne Sustar
    View author publications

    Search author on:PubMed Google Scholar

  8. Anthony Azevedo
    View author publications

    Search author on:PubMed Google Scholar

  9. John C. Tuthill
    View author publications

    Search author on:PubMed Google Scholar

Contributions

B.G.P. and J.C.T. conceived the study and wrote the manuscript. I.S. created the gorgeous Blender model of a fruit fly with hair plates, as well as Supplementary Video 2 B.G.P. and A.S. performed confocal imaging of hair plates. B.G.P. and A.C. proofread the hair plate axons and their downstream and upstream partners in FANC. C.J.D. collected and processed the calcium imaging data for CxHP8. G.M.C. and S.W.B. collected optogenetic activation and silencing datasets for CxHP8. B.G.P. analyzed the connectivity, calcium imaging, and optogenetic datasets. B.G.P. collected and analyzed the kinematics and posture of flies walking in the treadmill setup. A.A. provided valuable feedback about the connectivity of hair plates onto motor circuits.

Corresponding author

Correspondence to John C. Tuthill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Video 1

Supplementary Video 2

Supplementary Video 3

Supplementary Video 4

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratt, B.G., Dallmann, C.J., Chou, G.M. et al. Proprioceptive limit detectors contribute to sensorimotor control of the Drosophila leg. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69333-z

Download citation

  • Received: 25 July 2025

  • Accepted: 28 January 2026

  • Published: 12 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69333-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing