Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Reverse hydrogen spillover accelerates electrocatalytic nitrate reduction to ammonia on Ru/WO3-x in acidic media
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 February 2026

Reverse hydrogen spillover accelerates electrocatalytic nitrate reduction to ammonia on Ru/WO3-x in acidic media

  • Weijie Zhu1,2,3 na1,
  • Yu-Chang Lin  ORCID: orcid.org/0000-0001-7531-95914 na1,
  • Jianlong Cong5 na1,
  • Mengting Zhao2 na1,
  • Jiahao Li2,
  • Cong Hao2,
  • Jun Jia  ORCID: orcid.org/0000-0001-6632-59062,
  • Xinlu Wang6,
  • Yunhui Huang  ORCID: orcid.org/0000-0003-1687-19385,
  • Yan-Gu Lin  ORCID: orcid.org/0000-0002-4210-77094,7,
  • Gang Yang  ORCID: orcid.org/0000-0001-7706-72361,
  • Fen Yao  ORCID: orcid.org/0009-0001-6760-67743 &
  • …
  • Hanfeng Liang  ORCID: orcid.org/0000-0002-1778-39752 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Catalytic mechanisms
  • Electrocatalysis
  • Nanoparticles

Abstract

The electrocatalytic nitrate reduction reaction (NO3-RR) offers a promising route to sustainable ammonia synthesis, potentially replacing the energy-intensive Haber-Bosch process. While often studied in neutral or alkaline media, NO3-RR in acidic conditions is particularly relevant due to widespread industrial acidic nitrate wastewater, yet it remains challenging due to corrosion and dominant hydrogen evolution. To address this, we designed a corrosion-resistant Ru/WO3-x heterostructure that spatially separates proton and nitrate adsorption sites. Here, we show that a reverse hydrogen spillover effect, where the WO3-x support stores and transports protons to surface Ru active sites, dramatically enhances hydrogenation kinetics and suppresses parasitic hydrogen evolution. This catalyst achieves an ammonia Faradaic efficiency of 94.09% at a high current density of 500 mA cm−2 and a working potential of 0.026 V vs. reversible hydrogen electrode. Furthermore, we demonstrate a sulfide-nitrate “batterolyzer” with a discharge power density of 43.4 mW cm−2. This work reveals an effective proton-management strategy for efficient acidic NO3-RR, advancing its potential for coupled ammonia synthesis and wastewater treatment.

Data availability

Source data are provided with this paper.

References

  1. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Google Scholar 

  2. Wang, Y., Wang, C., Li, M., Yu, Y. & Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 50, 6720–6733 (2021).

    Google Scholar 

  3. Xiang, S. et al. New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World J. Microbiol. Biotechnol. 36, 144 (2020).

    Google Scholar 

  4. Chen, G.-F. et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 5, 605–613 (2020).

    Google Scholar 

  5. Wu, Q. et al. Screening of transition metal oxides for electrocatalytic nitrate reduction to ammonia at large currents. Nano Res 17, 3902–3910 (2024).

    Google Scholar 

  6. Ye, S. et al. Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 15, 760–770 (2022).

    Google Scholar 

  7. Dima, G. E., de Vooys, A. C. A. & Koper, M. T. M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J. Electroanal. Chem. 554, 15–23 (2003).

    Google Scholar 

  8. Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

    Google Scholar 

  9. Khoobiar, S. Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles. J. Phys. Chem. 68, 411–412 (1964).

    Google Scholar 

  10. Boudart, M., Vannice, M. A. & Benson, J. E. Adlineation, portholes and spillover. Z. Phys. Chem. 64, 171–177 (1969).

    Google Scholar 

  11. Xu, T. et al. Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide. Nat. Commun. 14, 5490 (2023).

    Google Scholar 

  12. Tang, Z. et al. Interfacial hydrogen spillover on Pd-TiO2 with oxygen vacancies promotes formate electrooxidation. ACS Energy Lett. 8, 3945–3954 (2023).

    Google Scholar 

  13. Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    Google Scholar 

  14. Chen, Z. et al. Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage. Nano Lett. 15, 6802–6808 (2015).

    Google Scholar 

  15. Park, J. et al. Investigation of the support effect in atomically dispersed Pt on WO3-x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 16038–16042 (2019).

    Google Scholar 

  16. Shao, W. et al. Bioinspired proton pump on ferroelectric HfO2-coupled Ir catalysts with bidirectional hydrogen spillover for pH-universal and superior hydrogen production. J. Am. Chem. Soc. 146, 27486–27498 (2024).

    Google Scholar 

  17. Chen, J. et al. Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting. Nat. Commun. 13, 5382 (2022).

    Google Scholar 

  18. Dai, J. et al. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nat. Commun. 13, 1189 (2022).

    Google Scholar 

  19. Jiang, G. et al. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis. ACS Appl. Mater. Interfaces 13, 15073–15082 (2021).

    Google Scholar 

  20. Jiang, H. et al. Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 140, 11556–11559 (2018).

    Google Scholar 

  21. Khyzhun, O. Y., Solonin, Y. M. & Dobrovolsky, V. D. Electronic structure of hexagonal tungsten trioxide: XPS, XES, and XAS studies. J. Alloy. Compd. 320, 1–6 (2001).

    Google Scholar 

  22. Khyzhun, O. Y. XPS, XES and XAS studies of the electronic structure of tungsten oxides. J. Alloy. Compd. 305, 1–6 (2000).

    Google Scholar 

  23. Shpak, A. P., Korduban, A. M., Medvedskij, M. M. & Kandyba, V. O. XPS studies of active elements surface of gas sensors based on WO3-x nanoparticles. J. Electron Spectrosc. Relat. Phenom. 156, 172–175 (2007).

    Google Scholar 

  24. Daniel, M. F., Desbat, B., Lassegues, J. C., Gerand, B. & Figlarz, M. Infrared and raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J. Solid State Chem. 67, 235–247 (1987).

    Google Scholar 

  25. Li, P. P., Jin, Z. Y., Fang, Z. W. & Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 14, 3522–3531 (2021).

    Google Scholar 

  26. Green, C. L. & Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J. Phys. Chem. B 106, 1036–1047 (2002).

    Google Scholar 

  27. Ji, K. et al. Steering selectivity in electrocatalytic furfural reduction via electrode-electrolyte interface modification. J. Am. Chem. Soc. 146, 11876–11886 (2024).

    Google Scholar 

  28. Zheng, X. et al. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution. Nat. Commun. 14, 4209 (2023).

    Google Scholar 

  29. Cazzanelli, E., Vinegoni, C., Mariotto, G., Kuzmin, A. & Purans, J. Raman study of the phase transitions sequence in pure WO3 at high temperature and in HxWO3 with variable hydrogen content. Solid State Ion. 123, 67–74 (1999).

    Google Scholar 

  30. Mitchell, J. B., Lo, W. C., Genc, A., LeBeau, J. & Augustyn, V. Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide. Chem. Mater. 29, 3928–3937 (2017).

    Google Scholar 

  31. Wei, C. et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296 (2019).

    Google Scholar 

  32. Feng, C. et al. Triple synergy engineering via metal-free dual-atom incorporation for self-sustaining acidic ammonia electrosynthesis. Angew. Chem. Int. Ed. 64, e202505211 (2025).

    Google Scholar 

  33. Ba, J. et al. Red carbon mediated formation of Cu2O clusters dispersed on the oxocarbon framework by Fehling’s route and their use for the nitrate electroreduction in acidic conditions. Adv. Mater. 36, 2400396 (2024).

    Google Scholar 

  34. Cheng, Q. et al. Multivariate covalent organic frameworks with tailored electrostatic potential promote nitrate electroreduction to ammonia in acid. Nat. Commun. 16, 3717 (2025).

    Google Scholar 

  35. Chen, H. et al. Conductive polymer protection strategy to promote electrochemical nitrate reduction to ammonia in highly acidic condition over Cu-based catalyst. Chem. Eng. J. 481, 148596 (2024).

    Google Scholar 

  36. Zhang, R. et al. Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells. Nat. Commun. 14, 8036 (2023).

    Google Scholar 

  37. Lv, Y. et al. Highly efficient electrochemical nitrate reduction to ammonia in strong acid conditions with Fe2M-trinuclear-cluster metal-organic frameworks. Angew. Chem. Int. Ed. 62, e202305246 (2023).

    Google Scholar 

  38. Jia, R. R. et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 10, 3533–3540 (2020).

    Google Scholar 

  39. Xiao, Z. et al. Bifunctional Co3S4 nanowires for robust sulfion oxidation and hydrogen generation with low power consumption. Adv. Funct. Mater. 33, 2212183 (2022).

    Google Scholar 

  40. Yu, W. et al. Laser-controlled tandem catalytic sites of CuNi alloys with ampere-level electrocatalytic nitrate-to-ammonia reduction activities for Zn-nitrate batteries. Energy Environ. Sci. 16, 2991–3001 (2023).

    Google Scholar 

  41. Zhu, W. et al. Weakened d-p orbital hybridization in in situ reconstructed Ru/β-Co(OH)2 heterointerfaces for accelerated ammonia electrosynthesis from nitrates. Energy Environ. Sci. 16, 2483–2493 (2023).

    Google Scholar 

  42. Lin, W., Zhou, E., Xie, J. F., Lin, J. & Wang, Y. A high power density Zn-nitrate electrochemical cell based on theoretically screened catalysts. Adv. Funct. Mater. 32, 2209464 (2022).

    Google Scholar 

  43. Jiang, H. et al. Enabled efficient ammonia synthesis and energy supply in a zinc-nitrate battery system by separating nitrate reduction process into two stages. Angew. Chem. Int. Ed. 62, e202218717 (2023).

    Google Scholar 

  44. Nangan, S., Ding, Y., Alhakemy, A. Z., Liu, Y. & Wen, Z. Hybrid alkali-acid urea-nitrate fuel cell for degrading nitrogen-rich wastewater. Appl. Catal. B: Environ. 286, 121291 (2021).

    Google Scholar 

  45. Zhu, W. et al. A hydrazine-nitrate flow battery catalyzed by a bimetallic RuCo precatalyst for wastewater purification along with simultaneous generation of ammonia and electricity. Angew. Chem. Int. Ed. 62, e202300390 (2023).

    Google Scholar 

  46. Wang, D. et al. Hexagonal cobalt nanosheets for high-performance electrocatalytic NO reduction to NH3. J. Am. Chem. Soc. 145, 6899–6904 (2023).

    Google Scholar 

  47. Liang, J. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem. Int. Ed. 61, e202202087 (2022).

    Google Scholar 

  48. Zhang, L. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem. Int. Ed. 60, 25263–25268 (2021).

    Google Scholar 

  49. Qi, D. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 1, 9120022 (2022).

    Google Scholar 

  50. An, S. et al. Multi-functional formaldehyde-nitrate batteries for wastewater refining, electricity generation, and production of ammonia and formate. Angew. Chem. Int. Ed. 63, e202318989 (2024).

    Google Scholar 

  51. Pei, Y. et al. High-entropy sulfide catalyst boosts energy-saving electrochemical sulfion upgrading to thiosulfate coupled with hydrogen production. Angew. Chem. Int. Ed. 136, e202411977 (2024).

    Google Scholar 

  52. Liang, H. et al. Tungsten blue oxide as a reusable electrocatalyst for acidic water oxidation by plasma-induced vacancy engineering. CCS Chem. 3, 1553–1561 (2021).

    Google Scholar 

  53. Gao, L. N. et al. High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 1, 7167–7173 (2013).

    Google Scholar 

  54. Frear, D. S. & Burrell, R. C. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants. Anal. Chem. 27, 1664–1665 (1955).

    Google Scholar 

  55. Watt, G. W. & Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 24, 2006–2008 (1952).

    Google Scholar 

  56. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  58. Tang, W., Sanville, E. & Henkelman, G. A grid-based bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Google Scholar 

  59. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. Vaspkit: A user-friendly interface facilitating high-throughput computing and analysis using vasp code. Comput. Phys. Commun. 267, 108033 (2021).

    Google Scholar 

  60. Liu, J.-X., Richards, D., Singh, N. & Goldsmith, B. R. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal. 9, 7052–7064 (2019).

    Google Scholar 

  61. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  62. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. Cp2k: Atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 15–25 (2014).

    Google Scholar 

  63. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Google Scholar 

  64. Hartwigsen, C., Goedecker, S. & Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998).

    Google Scholar 

  65. Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. Gromacs: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

    Google Scholar 

  66. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Google Scholar 

Download references

Acknowledgements

This work was funded by National Key Research and Development Program of China (Grant No.: 2023YFB4004700, H. L.), Natural Science Foundation of Xiamen, China (Grant No.: 3502Z202473021, H. L.), Fundamental Research Funds for the Central Universities of China (Grant No.: 20720240066, H. L.), Basic Research Program of Jiangsu (Grant No.: BK20251079, W. Z.), Natural Science Research Project of Higher Education Institutions in Jiangsu Province (Grant No.: 25KJB150032, W. Z.), National Science and Technology Council in Taiwan (Grant No.: NSTC 114-2112-M-213-026-MY3; 114-2221-E-213-001-MY3, Y-G. L.), National Synchrotron Radiation Research Center in Taiwan(Y-G. L.), National Natural Science Foundation of China (Grant No.: 52501281, F. Y.), Natural Science Foundation of Jilin Province (Grant No.: YDZJ202301ZYTS296, F. Y.) and the Research Program on Science and Technology from the Education Department of Jilin Province (Grant No.: JJKH20240558KJ, F. Y.).

Author information

Author notes
  1. These authors contributed equally: Weijie Zhu, Yu-Chang Lin, Jianlong Cong, Mengting Zhao.

Authors and Affiliations

  1. Electrocatalysis and New Energy Materials Research Center, School of Materials Engineering, Suzhou University of Technology, Suzhou, 215500, China

    Weijie Zhu & Gang Yang

  2. State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China

    Weijie Zhu, Mengting Zhao, Jiahao Li, Cong Hao, Jun Jia & Hanfeng Liang

  3. Key Laboratory of Preparation and Applications of Environmentally Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun, 130103, China

    Weijie Zhu & Fen Yao

  4. National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan

    Yu-Chang Lin & Yan-Gu Lin

  5. State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

    Jianlong Cong & Yunhui Huang

  6. School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China

    Xinlu Wang

  7. Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan

    Yan-Gu Lin

Authors
  1. Weijie Zhu
    View author publications

    Search author on:PubMed Google Scholar

  2. Yu-Chang Lin
    View author publications

    Search author on:PubMed Google Scholar

  3. Jianlong Cong
    View author publications

    Search author on:PubMed Google Scholar

  4. Mengting Zhao
    View author publications

    Search author on:PubMed Google Scholar

  5. Jiahao Li
    View author publications

    Search author on:PubMed Google Scholar

  6. Cong Hao
    View author publications

    Search author on:PubMed Google Scholar

  7. Jun Jia
    View author publications

    Search author on:PubMed Google Scholar

  8. Xinlu Wang
    View author publications

    Search author on:PubMed Google Scholar

  9. Yunhui Huang
    View author publications

    Search author on:PubMed Google Scholar

  10. Yan-Gu Lin
    View author publications

    Search author on:PubMed Google Scholar

  11. Gang Yang
    View author publications

    Search author on:PubMed Google Scholar

  12. Fen Yao
    View author publications

    Search author on:PubMed Google Scholar

  13. Hanfeng Liang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

W. Z. and H. L. conceived the project and wrote the paper. W. Z. and J. L. conducted the physical characterizations and electrochemical tests. Y-C. L. and Y.-G. L. conducted and analyzed the XAS experiments. M. Z. synthesized the catalysts. J. C., C. H., J. J. and F. Y. conducted and analyzed the AIMD and DFT calculations. X. W., Y. H., and G. Y. helped the material characterization and analysis. All authors contributed to the general discussion. W. Z., Y.-C. L., J. C., and M. Z. contributed equally to this work.

Corresponding authors

Correspondence to Yan-Gu Lin, Gang Yang, Fen Yao or Hanfeng Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Wenhui He and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Lin, YC., Cong, J. et al. Reverse hydrogen spillover accelerates electrocatalytic nitrate reduction to ammonia on Ru/WO3-x in acidic media. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69335-x

Download citation

  • Received: 18 January 2025

  • Accepted: 29 January 2026

  • Published: 16 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69335-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing