Abstract
The global transition to a circular economy hinges on the development of sustainable recycling processes for end-of-life vehicles. Ongoing electrification and material choices over the recent decades hinder their integration in existing recycling pathways. This results in a large surplus of low-grade aluminium scraps and forfeits substantial energy, emissions, and cost savings, making the need for novel recycling approaches an urgent problem. This study presents a process for directly upcycling mixed end-of-life vehicles scrap into a high-performance aluminium alloy under realistic industrial conditions. It is compatible with existing infrastructure and dispenses the need for sorting, dilution or downcycling. By leveraging metallurgical principles and accelerated precipitation, the produced alloys achieve yield strengths that even surpass the commercial automotive alloy spectrum. This approach establishes a circular, low-emissions route to high-value aluminium recovery and offers a strategic model for transforming today´s and future´s critical raw material streams into next-generation structural alloys.
Similar content being viewed by others
Data availability
The raw data generated in this study have been deposited in the Zenodo repository under the accession code Doi: 10.5281/zenodo.1719276670.
Code availability
The python script for evaluating the diffusion enhancement upon pre-straining is also deposited in the Zenodo repository under the accession code Doi: 10.5281/zenodo.17192766 70.
References
Ortego, A., Valero, A., Valero, A. & Iglesias, M. Downcycling in automobile recycling process: A thermodynamic assessment. Resour. Conserv. Recycling 136, 24–32 (2018).
Reuter, M. A., van Schaik, A., Ignatenko, O., Haan, G. J. & de Fundamental limits for the recycling of end-of-life vehicles. Miner. Eng. 19, 433–449 (2006).
Nakajima, K. et al. Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Environ. Sci. Technol. 44, 5594–5600 (2010).
Graedel, T. E. et al. What do we know about metal recycling rates? J. Ind. Ecol. 15, 355–366 (2011).
Lu, X. et al. A solid-state electrolysis process for upcycling aluminium scrap. Nature 606, 511–515 (2022).
Liu, G., Bangs, C. E. & Müller, D. B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Change 3, 338–342 (2013).
Friedrich, B. Mapping Study on Aluminium Melt Purification from Post-Consumer Scrap. Available at https://international-aluminium.org/wp-content/uploads/2024/04/Mapping-Study_Full-Report_Final.pdf (2023).
Gaustad, G., Olivetti, E. & Kirchain, R. Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resour., Conserv. Recycling 58, 79–87 (2012).
Ostermann, F. Anwendungstechnologie Aluminium. 3rd ed. Berlin: Springer Vieweg.
European Aluminium Association. Aluminium Content in European Passenger Cars. Available at https://european-aluminium.eu/wp-content/uploads/2022/10/aluminum-content-in-european-cars_european-aluminium_public-summary_101019-1.pdf (2019).
Løvik, A. N., Modaresi, R. & Müller, D. B. Long-term strategies for increased recycling of automotive aluminium and its alloying elements. Supplementary information. Environ. Sci. Tech. https://doi.org/10.1021/es405604g (2014).
van Schaik, A. & Reuter, M. A. The use of fuzzy rule models to link automotive design to recycling rate calculation. Miner. Eng. 20, 875–890 (2007).
Raabe, D., Tasan, C. C. & Olivetti, E. A. Strategies for improving the sustainability of structural metals. Nature 575, 64–74 (2019).
Modaresi, R., Løvik, A. N. & Müller, D. B. Component- and alloy-specific modeling for evaluating aluminum recycling strategies for vehicles. JOM 66, 2262–2271 (2014).
Hatayama, H., Daigo, I., Matsuno, Y. & Adachi, Y. Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology. Resour., Conserv. Recycling 66, 8–14 (2012).
Verband der Aluminiumrecyclingindustrie e.V. Aluminium-Gusslegierungen. Available at https://www.gutterundsohn.de/index_htm_files/VAR%20Aluminiumgusslegierungen.pdfpdf/legierungen.pdf.
Ansys. Ansys Granta Research Selector, Release 2025 R2. Level 3 Aero database. Cambridge, UK: Ansys, Inc. (2025).
Raabe, D. et al. Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Prog. Mater. Sci. 128, 100947 (2022).
Shanghai Metal Market. LME Aluminium 3-Month price today | Historical price charts of LME Aluminium 3-Month - Shanghai Metal Market. Available at https://www.metal.com/en/prices/LME_AH_3M (2025).
International Aluminium Institute. Aluminium Sector Greenhouse Gas Emissions - International Aluminium Institute. Available at https://international-aluminium.org/statistics/greenhouse-gas-emissions-aluminium-sector/ (2024).
Desing, H. et al. Climate stability hinges on energy-material feedback dynamics: aluminum perspectives(https://pure.unileoben.ac.at/de/publications/climate-stability-hinges-on-energy-material-feedback-dynamics-alu/).
Stemper, L., Tunes, M. A., Tosone, R., Uggowitzer, P. J. & Pogatscher, S. On the potential of aluminum crossover alloys. Prog. Mater. Sci. 124, 100873 (2022).
Gaustad, G., Olivetti, E. & Kirchain, R. Design for recycling. J. Ind. Ecol. 14, 286–308 (2010).
Krall, P., Weißensteiner, I. & Pogatscher, S. Recycling aluminum alloys for the automotive industry: Breaking the source-sink paradigm. Resour., Conserv. Recycling 202, 107370 (2024).
Aster, P. et al. Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloys. Materialia 36, 102188 (2024).
Trink, B. et al. Processing and microstructure–property relations of Al-Mg-Si-Fe crossover alloys. Acta Materialia 257. https://doi.org/10.1016/j.actamat.2023.119160 (2023).
Trink, B., Weißensteiner, I., Uggowitzer, P. J., Strobel, K. & Pogatscher, S. High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical properties. Scripta Materialia 215. https://doi.org/10.1016/j.scriptamat.2022.114701 (2022).
Kim, S.-H., Kim, H. & Kim, N. J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77–79 (2015).
Zhu, Y. & Wu, X. Heterostructured materials. Prog. Mater. Sci. 131, 101019 (2023).
Stemper, L. et al. Giant hardening response in AlMgZn(Cu) alloys. Acta Materialia 206, 116617 (2021).
Wang, T. et al. Upcycled high-strength aluminum alloys from scrap through solid-phase alloying. Nat. Commun. 15, 10664 (2024).
Humphreys, F. J. The nucleation of recrystallization at second phase particles in deformed aluminium. Acta Metall. 25, 1323–1344 (1977).
Chappuis, L. B. Material Specifications & Recycling for the 2015 Ford F-150. Available at https://www.lbcg.com/media/downloads/events/471/day-3-1-10-laurent-b-chappuis-ford.8193.pdf (2019).
Zhu, Y. et al. The coming wave of aluminum sheet scrap from vehicle recycling in the United States. Resour., Conserv. Recycling 164, 105208 (2021).
Tesla Inc. Body Repair Tech Note: Model 3 Body Structure Materials and Allowed Operations. Available at https://tffdiscourseupload.s3.dualstack.eu-central-1.amazonaws.com/original/3X/1/7/17f61c809590b97b80b15715ae0f76da91e4bb37.pdf (2017).
Schmid, F., Stemper, L., Ebner, T., Leitner, W., & Pogatscher, S. Industry-oriented sample preparation of 6xxx and 5xxx aluminium alloys in laboratory scale. In Proceedings of the EMC, pp. 1–13.
Yin, S., Howells, A., Lloyd, D. J., Gallerneault, M. & Fallah, V. Thin strip vs direct chill casting: the effects of casting cooling rate on the as-cast microstructure of AA6005 Al–Si–Mg Alloy. MTA 53, 1928–1933 (2022).
Liu, X. et al. Fe-bearing phase formation, microstructure evolution, and mechanical properties of Al-Mg-Si-Fe alloy fabricated by the twin-roll casting process. J. Alloy. Compd. 886, 161202 (2021).
Granger, D. A. Microstructure control in ingots of aluminium alloys with an emphasis on grain refinement. In Essential Readings in Light Metals, edited by J. F. Grandfield & D. G. Eskin (Springer International Publishing, Cham, 2016), 354–365.
Allen, C. M., O’Reilly, K., Cantor, B. & Evans, P. V. Intermetallic phase selection in 1XXX Al alloys. Prog. Mater. Sci. 43, 89–170 (1998).
Seifeddine, S., Sjölander, E. & Bogdanoff, T. On the role of copper and cooling rates on the microstructure, defect formations and mechanical properties of Al-Si-Mg alloys. MSA 04, 171–178 (2013).
Lee, E. & Mishra, B. Effect of solidification cooling rate on mechanical properties and microstructure of Al-Si-Mn-Mg alloy. Mater. Trans. 58, 1624–1627 (2017).
Cinkilic, E., Ridgeway, C. D., Yan, X. & Luo, A. A. A formation map of iron-containing intermetallic phases in recycled cast aluminum alloys. MTA 50, 5945–5956 (2019).
Wang, J., Zhu, J., Liu, Y., Peng, H. & Su, X. Effect of spheroidization of eutectic Si on mechanical properties of eutectic Al–Si alloys. J. Mater. Res. 33, 1773–1781 (2018).
Ogris, E., Wahlen, A., Lüchinger, H. & Uggowitzer, P. On the silicon spheroidization in Al–Si alloys. J. Light Met. 2, 263–269 (2002).
Kuijpers, N. et al. The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements. Mater. Sci. Eng.: A 394, 9–19 (2005).
Embury, J. D., Poole, W. J. & Lloyd, D. J. The work hardening of single phase and multi-phase aluminium alloys. MSF 519-521, 71–78 (2006).
Bahrami, A., Miroux, A. & Sietsma, J. Modeling of strain hardening in the aluminum alloy AA6061. MTA 44, 2409–2417 (2013).
Nie, J. F., Muddle, B. C. & Polmear, I. J. The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys. MSF 217-222, 1257–1262 (1996).
Bjurenstedt, A., Ghassemali, E., Seifeddine, S. & Dahle, A. K. The effect of Fe-rich intermetallics on crack initiation in cast aluminium: An in-situ tensile study. Mater. Sci. Eng.: A 756, 502–507 (2019).
Dieter, G. E. Mechanical metallurgy. 2nd ed. New York: McGraw-Hill.
Marioara, C. D. et al. The effect of Cu on precipitation in Al–Mg–Si alloys. Philos. Mag. 87, 3385–3413 (2007).
Ortner, P., Schiffl, A. & Höppel, H. W. Influence of a preageing treatment on the cluster formation and the further ageing route in al–mg–si extrusion alloys. Adv Eng Mater. https://doi.org/10.1002/adem.202400623 (2024).
Deschamps, A., Livet, F. & Bréchet, Y. Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Materialia 47, 281–292 (1998).
Arnberg, L. et al. The crystal structure of Al(x)Cu2Mg(12-x)Si7, (h-AlCuMgSi). Acta Chem. Scand. 34a, 1–5 (1980).
Sander, S., Schubert, G. & Jäckel, H.-G. The fundamentals of the comminution of metals in shredders of the swing-hammer type. Int. J. Miner. Process. 74, S385–S393 (2004).
Krone, K. Aluminiumrecycling. Vom Vorstoff bis zur fertigen Legierung. Düsseldorf: Vereinigung Deutscher Schmelzhütten.
Hanel, M., Filzwieser, A. & Ruhs, S. ILTEC Technology – New Pathways Towards Safe and Effective Cooling. World of Metallurgy-Erzmetall, 275–281 (2016).
Humphreys, F. J. Review Grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci. 36, 3833–3854 (2001).
Gault, B. et al. Advances in the calibration of atom probe tomographic reconstruction. J. Appl. Phys. 105. https://doi.org/10.1063/1.3068197 (2009).
Gault, B., Moody, M. P., Cairney, J. M., & Ringer, S. P. Atom Probe Microscopy. New York, NY: Springer New York.
Vaumousse, D., Cerezo, A. & Warren, P. J. A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215–221 (2003).
Dhara, S. et al. Atom probe tomography data analysis procedure for precipitate and cluster identification in a Ti-Mo steel. Data brief. 18, 968–982 (2018).
Gardiner, J. D., Behnsen, J. & Brassey, C. Alpha shapes MATLAB code. https://doi.org/10.6084/m9.figshare.5558557 (2018).
Ceguerra, A. V., Moody, M. P., Stephenson, L. T., Marceau, R. K. & Ringer, S. P. A three-dimensional Markov field approach for the analysis of atomic clustering in atom probe data. Philos. Mag. 90, 1657–1683 (2010).
Miller, M. K. & Forbes, R. G. Atom-Probe Tomography. Boston, MA: Springer US.
Spierings, A. B., Dawson, K., Dumitraschkewitz, P., Pogatscher, S. & Wegener, K. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition. Addit. Manuf. 20, 173–181 (2018).
Dumitraschkewitz, P., Gerstl, S. S. A., Uggowitzer, P. J., Löffler, J. F. & Pogatscher, S. Atom Probe Tomography Study of As-Quenched Al–Mg–Si Alloys. Adv. Eng. Mater 19. https://doi.org/10.1002/adem.201600668 (2017).
Dumitraschkewitz, P., Uggowitzer, P. J., Gerstl, S. S. A., Löffler, J. F. & Pogatscher, S. Size-dependent diffusion controls natural aging in aluminium alloys. Nat. Commun. 10, 4746 (2019).
Krall, P. et al. Direct aluminium-alloy upcycling from entire end-of-life vehicles. https://doi.org/10.5281/zenodo.17192766 (2025).
Acknowledgements
The work of P.K., P.D., M.A.T., T.K., S.S. and S.P. was funded/co-funded by the European Union (ERC, HETEROCIRCAL, 101124514, S.P.). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. The work of I.W., P.A. and B.T. was funded by the Christian Doppler Research Association within the framework of the Christian Doppler Laboratory for Deformation-Precipitation Interactions in Aluminium Alloys (I.W.) and the Christian Doppler Laboratory for Advanced Aluminium Alloys (S.P.). The financial support by the Austrian Federal Ministry of Labour and Economy, the National Foundation for Research, Technology and Development and the Christian Doppler Research Association is gratefully acknowledged. The research reported on here was supported by the Austrian Research Promotion Agency (FFG) in the context of projects 3DnanoAnalytics (FFG-No. 858040, S.P.) and Future Matter by APT (FFG-No. 884644, S.P.).
Author information
Authors and Affiliations
Contributions
P.K., P.A., I.W. and S.P. conceptualised the paper. P.K. was the leading research scientist, conducting material preparation, material processing, mechanical testing, sample preparation and writing the original draft. B.T. (EDX) and I.W. (EBSD and KAM) performed the SEM investigations. P.A. contributed to APT sample preparation, APT measurements and the interpretation of results. M.A.T. and T.K. performed the TEM measurements and interpreted the TEM results. P.D. wrote the Python script for the modelling of the yield strength. S.S. and P.K. illustrated the figures. S.P. supervised the research. All authors discussed and deliberated on the findings. All authors reviewed and approved the final version of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Xiao Li, Tetsuya Nagasaka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Krall, P., Weißensteiner, I., Aster, P. et al. Direct aluminium-alloy upcycling from entire end-of life vehicles. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69492-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69492-z


