Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Direct aluminium-alloy upcycling from entire end-of life vehicles
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Direct aluminium-alloy upcycling from entire end-of life vehicles

  • Patrick Krall  ORCID: orcid.org/0009-0002-3302-77981,
  • Irmgard Weißensteiner  ORCID: orcid.org/0000-0002-8917-52312,
  • Philip Aster  ORCID: orcid.org/0009-0005-3679-082X2,
  • Phillip Dumitraschkewitz  ORCID: orcid.org/0000-0001-8269-96091,
  • Matheus A. Tunes  ORCID: orcid.org/0000-0002-5988-53631,
  • Thomas Kremmer  ORCID: orcid.org/0000-0002-0489-81671,
  • Sebastian Samberger  ORCID: orcid.org/0009-0000-2559-01721,
  • Bernhard Trink3 &
  • …
  • Stefan Pogatscher  ORCID: orcid.org/0000-0002-6500-95701 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Metals and alloys

Abstract

The global transition to a circular economy hinges on the development of sustainable recycling processes for end-of-life vehicles. Ongoing electrification and material choices over the recent decades hinder their integration in existing recycling pathways. This results in a large surplus of low-grade aluminium scraps and forfeits substantial energy, emissions, and cost savings, making the need for novel recycling approaches an urgent problem. This study presents a process for directly upcycling mixed end-of-life vehicles scrap into a high-performance aluminium alloy under realistic industrial conditions. It is compatible with existing infrastructure and dispenses the need for sorting, dilution or downcycling. By leveraging metallurgical principles and accelerated precipitation, the produced alloys achieve yield strengths that even surpass the commercial automotive alloy spectrum. This approach establishes a circular, low-emissions route to high-value aluminium recovery and offers a strategic model for transforming today´s and future´s critical raw material streams into next-generation structural alloys.

Similar content being viewed by others

A solid-state electrolysis process for upcycling aluminium scrap

Article 13 April 2022

Upcycled high-strength aluminum alloys from scrap through solid-phase alloying

Article Open access 10 December 2024

Comparative study of AA6061 and AA6063 aluminum alloy coating on mild steel using friction surfacing

Article Open access 21 May 2025

Data availability

The raw data generated in this study have been deposited in the Zenodo repository under the accession code Doi: 10.5281/zenodo.1719276670.

Code availability

The python script for evaluating the diffusion enhancement upon pre-straining is also deposited in the Zenodo repository under the accession code Doi: 10.5281/zenodo.17192766 70.

References

  1. Ortego, A., Valero, A., Valero, A. & Iglesias, M. Downcycling in automobile recycling process: A thermodynamic assessment. Resour. Conserv. Recycling 136, 24–32 (2018).

    Google Scholar 

  2. Reuter, M. A., van Schaik, A., Ignatenko, O., Haan, G. J. & de Fundamental limits for the recycling of end-of-life vehicles. Miner. Eng. 19, 433–449 (2006).

    Google Scholar 

  3. Nakajima, K. et al. Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Environ. Sci. Technol. 44, 5594–5600 (2010).

    Google Scholar 

  4. Graedel, T. E. et al. What do we know about metal recycling rates? J. Ind. Ecol. 15, 355–366 (2011).

    Google Scholar 

  5. Lu, X. et al. A solid-state electrolysis process for upcycling aluminium scrap. Nature 606, 511–515 (2022).

    Google Scholar 

  6. Liu, G., Bangs, C. E. & Müller, D. B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Change 3, 338–342 (2013).

    Google Scholar 

  7. Friedrich, B. Mapping Study on Aluminium Melt Purification from Post-Consumer Scrap. Available at https://international-aluminium.org/wp-content/uploads/2024/04/Mapping-Study_Full-Report_Final.pdf (2023).

  8. Gaustad, G., Olivetti, E. & Kirchain, R. Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resour., Conserv. Recycling 58, 79–87 (2012).

    Google Scholar 

  9. Ostermann, F. Anwendungstechnologie Aluminium. 3rd ed. Berlin: Springer Vieweg.

  10. European Aluminium Association. Aluminium Content in European Passenger Cars. Available at https://european-aluminium.eu/wp-content/uploads/2022/10/aluminum-content-in-european-cars_european-aluminium_public-summary_101019-1.pdf (2019).

  11. Løvik, A. N., Modaresi, R. & Müller, D. B. Long-term strategies for increased recycling of automotive aluminium and its alloying elements. Supplementary information. Environ. Sci. Tech. https://doi.org/10.1021/es405604g (2014).

  12. van Schaik, A. & Reuter, M. A. The use of fuzzy rule models to link automotive design to recycling rate calculation. Miner. Eng. 20, 875–890 (2007).

    Google Scholar 

  13. Raabe, D., Tasan, C. C. & Olivetti, E. A. Strategies for improving the sustainability of structural metals. Nature 575, 64–74 (2019).

    Google Scholar 

  14. Modaresi, R., Løvik, A. N. & Müller, D. B. Component- and alloy-specific modeling for evaluating aluminum recycling strategies for vehicles. JOM 66, 2262–2271 (2014).

    Google Scholar 

  15. Hatayama, H., Daigo, I., Matsuno, Y. & Adachi, Y. Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology. Resour., Conserv. Recycling 66, 8–14 (2012).

    Google Scholar 

  16. Verband der Aluminiumrecyclingindustrie e.V. Aluminium-Gusslegierungen. Available at https://www.gutterundsohn.de/index_htm_files/VAR%20Aluminiumgusslegierungen.pdfpdf/legierungen.pdf.

  17. Ansys. Ansys Granta Research Selector, Release 2025 R2. Level 3 Aero database. Cambridge, UK: Ansys, Inc. (2025).

  18. Raabe, D. et al. Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Prog. Mater. Sci. 128, 100947 (2022).

    Google Scholar 

  19. Shanghai Metal Market. LME Aluminium 3-Month price today | Historical price charts of LME Aluminium 3-Month - Shanghai Metal Market. Available at https://www.metal.com/en/prices/LME_AH_3M (2025).

  20. International Aluminium Institute. Aluminium Sector Greenhouse Gas Emissions - International Aluminium Institute. Available at https://international-aluminium.org/statistics/greenhouse-gas-emissions-aluminium-sector/ (2024).

  21. Desing, H. et al. Climate stability hinges on energy-material feedback dynamics: aluminum perspectives(https://pure.unileoben.ac.at/de/publications/climate-stability-hinges-on-energy-material-feedback-dynamics-alu/).

  22. Stemper, L., Tunes, M. A., Tosone, R., Uggowitzer, P. J. & Pogatscher, S. On the potential of aluminum crossover alloys. Prog. Mater. Sci. 124, 100873 (2022).

    Google Scholar 

  23. Gaustad, G., Olivetti, E. & Kirchain, R. Design for recycling. J. Ind. Ecol. 14, 286–308 (2010).

    Google Scholar 

  24. Krall, P., Weißensteiner, I. & Pogatscher, S. Recycling aluminum alloys for the automotive industry: Breaking the source-sink paradigm. Resour., Conserv. Recycling 202, 107370 (2024).

    Google Scholar 

  25. Aster, P. et al. Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloys. Materialia 36, 102188 (2024).

    Google Scholar 

  26. Trink, B. et al. Processing and microstructure–property relations of Al-Mg-Si-Fe crossover alloys. Acta Materialia 257. https://doi.org/10.1016/j.actamat.2023.119160 (2023).

  27. Trink, B., Weißensteiner, I., Uggowitzer, P. J., Strobel, K. & Pogatscher, S. High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical properties. Scripta Materialia 215. https://doi.org/10.1016/j.scriptamat.2022.114701 (2022).

  28. Kim, S.-H., Kim, H. & Kim, N. J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77–79 (2015).

    Google Scholar 

  29. Zhu, Y. & Wu, X. Heterostructured materials. Prog. Mater. Sci. 131, 101019 (2023).

    Google Scholar 

  30. Stemper, L. et al. Giant hardening response in AlMgZn(Cu) alloys. Acta Materialia 206, 116617 (2021).

    Google Scholar 

  31. Wang, T. et al. Upcycled high-strength aluminum alloys from scrap through solid-phase alloying. Nat. Commun. 15, 10664 (2024).

    Google Scholar 

  32. Humphreys, F. J. The nucleation of recrystallization at second phase particles in deformed aluminium. Acta Metall. 25, 1323–1344 (1977).

    Google Scholar 

  33. Chappuis, L. B. Material Specifications & Recycling for the 2015 Ford F-150. Available at https://www.lbcg.com/media/downloads/events/471/day-3-1-10-laurent-b-chappuis-ford.8193.pdf (2019).

  34. Zhu, Y. et al. The coming wave of aluminum sheet scrap from vehicle recycling in the United States. Resour., Conserv. Recycling 164, 105208 (2021).

    Google Scholar 

  35. Tesla Inc. Body Repair Tech Note: Model 3 Body Structure Materials and Allowed Operations. Available at https://tffdiscourseupload.s3.dualstack.eu-central-1.amazonaws.com/original/3X/1/7/17f61c809590b97b80b15715ae0f76da91e4bb37.pdf (2017).

  36. Schmid, F., Stemper, L., Ebner, T., Leitner, W., & Pogatscher, S. Industry-oriented sample preparation of 6xxx and 5xxx aluminium alloys in laboratory scale. In Proceedings of the EMC, pp. 1–13.

  37. Yin, S., Howells, A., Lloyd, D. J., Gallerneault, M. & Fallah, V. Thin strip vs direct chill casting: the effects of casting cooling rate on the as-cast microstructure of AA6005 Al–Si–Mg Alloy. MTA 53, 1928–1933 (2022).

    Google Scholar 

  38. Liu, X. et al. Fe-bearing phase formation, microstructure evolution, and mechanical properties of Al-Mg-Si-Fe alloy fabricated by the twin-roll casting process. J. Alloy. Compd. 886, 161202 (2021).

    Google Scholar 

  39. Granger, D. A. Microstructure control in ingots of aluminium alloys with an emphasis on grain refinement. In Essential Readings in Light Metals, edited by J. F. Grandfield & D. G. Eskin (Springer International Publishing, Cham, 2016), 354–365.

  40. Allen, C. M., O’Reilly, K., Cantor, B. & Evans, P. V. Intermetallic phase selection in 1XXX Al alloys. Prog. Mater. Sci. 43, 89–170 (1998).

    Google Scholar 

  41. Seifeddine, S., Sjölander, E. & Bogdanoff, T. On the role of copper and cooling rates on the microstructure, defect formations and mechanical properties of Al-Si-Mg alloys. MSA 04, 171–178 (2013).

    Google Scholar 

  42. Lee, E. & Mishra, B. Effect of solidification cooling rate on mechanical properties and microstructure of Al-Si-Mn-Mg alloy. Mater. Trans. 58, 1624–1627 (2017).

    Google Scholar 

  43. Cinkilic, E., Ridgeway, C. D., Yan, X. & Luo, A. A. A formation map of iron-containing intermetallic phases in recycled cast aluminum alloys. MTA 50, 5945–5956 (2019).

    Google Scholar 

  44. Wang, J., Zhu, J., Liu, Y., Peng, H. & Su, X. Effect of spheroidization of eutectic Si on mechanical properties of eutectic Al–Si alloys. J. Mater. Res. 33, 1773–1781 (2018).

    Google Scholar 

  45. Ogris, E., Wahlen, A., Lüchinger, H. & Uggowitzer, P. On the silicon spheroidization in Al–Si alloys. J. Light Met. 2, 263–269 (2002).

    Google Scholar 

  46. Kuijpers, N. et al. The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements. Mater. Sci. Eng.: A 394, 9–19 (2005).

    Google Scholar 

  47. Embury, J. D., Poole, W. J. & Lloyd, D. J. The work hardening of single phase and multi-phase aluminium alloys. MSF 519-521, 71–78 (2006).

    Google Scholar 

  48. Bahrami, A., Miroux, A. & Sietsma, J. Modeling of strain hardening in the aluminum alloy AA6061. MTA 44, 2409–2417 (2013).

    Google Scholar 

  49. Nie, J. F., Muddle, B. C. & Polmear, I. J. The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys. MSF 217-222, 1257–1262 (1996).

    Google Scholar 

  50. Bjurenstedt, A., Ghassemali, E., Seifeddine, S. & Dahle, A. K. The effect of Fe-rich intermetallics on crack initiation in cast aluminium: An in-situ tensile study. Mater. Sci. Eng.: A 756, 502–507 (2019).

    Google Scholar 

  51. Dieter, G. E. Mechanical metallurgy. 2nd ed. New York: McGraw-Hill.

  52. Marioara, C. D. et al. The effect of Cu on precipitation in Al–Mg–Si alloys. Philos. Mag. 87, 3385–3413 (2007).

    Google Scholar 

  53. Ortner, P., Schiffl, A. & Höppel, H. W. Influence of a preageing treatment on the cluster formation and the further ageing route in al–mg–si extrusion alloys. Adv Eng Mater. https://doi.org/10.1002/adem.202400623 (2024).

  54. Deschamps, A., Livet, F. & Bréchet, Y. Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Materialia 47, 281–292 (1998).

    Google Scholar 

  55. Arnberg, L. et al. The crystal structure of Al(x)Cu2Mg(12-x)Si7, (h-AlCuMgSi). Acta Chem. Scand. 34a, 1–5 (1980).

    Google Scholar 

  56. Sander, S., Schubert, G. & Jäckel, H.-G. The fundamentals of the comminution of metals in shredders of the swing-hammer type. Int. J. Miner. Process. 74, S385–S393 (2004).

    Google Scholar 

  57. Krone, K. Aluminiumrecycling. Vom Vorstoff bis zur fertigen Legierung. Düsseldorf: Vereinigung Deutscher Schmelzhütten.

  58. Hanel, M., Filzwieser, A. & Ruhs, S. ILTEC Technology – New Pathways Towards Safe and Effective Cooling. World of Metallurgy-Erzmetall, 275–281 (2016).

  59. Humphreys, F. J. Review Grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci. 36, 3833–3854 (2001).

    Google Scholar 

  60. Gault, B. et al. Advances in the calibration of atom probe tomographic reconstruction. J. Appl. Phys. 105. https://doi.org/10.1063/1.3068197 (2009).

  61. Gault, B., Moody, M. P., Cairney, J. M., & Ringer, S. P. Atom Probe Microscopy. New York, NY: Springer New York.

  62. Vaumousse, D., Cerezo, A. & Warren, P. J. A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215–221 (2003).

    Google Scholar 

  63. Dhara, S. et al. Atom probe tomography data analysis procedure for precipitate and cluster identification in a Ti-Mo steel. Data brief. 18, 968–982 (2018).

    Google Scholar 

  64. Gardiner, J. D., Behnsen, J. & Brassey, C. Alpha shapes MATLAB code. https://doi.org/10.6084/m9.figshare.5558557 (2018).

  65. Ceguerra, A. V., Moody, M. P., Stephenson, L. T., Marceau, R. K. & Ringer, S. P. A three-dimensional Markov field approach for the analysis of atomic clustering in atom probe data. Philos. Mag. 90, 1657–1683 (2010).

    Google Scholar 

  66. Miller, M. K. & Forbes, R. G. Atom-Probe Tomography. Boston, MA: Springer US.

  67. Spierings, A. B., Dawson, K., Dumitraschkewitz, P., Pogatscher, S. & Wegener, K. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition. Addit. Manuf. 20, 173–181 (2018).

    Google Scholar 

  68. Dumitraschkewitz, P., Gerstl, S. S. A., Uggowitzer, P. J., Löffler, J. F. & Pogatscher, S. Atom Probe Tomography Study of As-Quenched Al–Mg–Si Alloys. Adv. Eng. Mater 19. https://doi.org/10.1002/adem.201600668 (2017).

  69. Dumitraschkewitz, P., Uggowitzer, P. J., Gerstl, S. S. A., Löffler, J. F. & Pogatscher, S. Size-dependent diffusion controls natural aging in aluminium alloys. Nat. Commun. 10, 4746 (2019).

    Google Scholar 

  70. Krall, P. et al. Direct aluminium-alloy upcycling from entire end-of-life vehicles. https://doi.org/10.5281/zenodo.17192766 (2025).

Download references

Acknowledgements

The work of P.K., P.D., M.A.T., T.K., S.S. and S.P. was funded/co-funded by the European Union (ERC, HETEROCIRCAL, 101124514, S.P.). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. The work of I.W., P.A. and B.T. was funded by the Christian Doppler Research Association within the framework of the Christian Doppler Laboratory for Deformation-Precipitation Interactions in Aluminium Alloys (I.W.) and the Christian Doppler Laboratory for Advanced Aluminium Alloys (S.P.). The financial support by the Austrian Federal Ministry of Labour and Economy, the National Foundation for Research, Technology and Development and the Christian Doppler Research Association is gratefully acknowledged. The research reported on here was supported by the Austrian Research Promotion Agency (FFG) in the context of projects 3DnanoAnalytics (FFG-No. 858040, S.P.) and Future Matter by APT (FFG-No. 884644, S.P.).

Author information

Authors and Affiliations

  1. Chair of Nonferrous Metallurgy, Montanuniversität Leoben, Franz-Josef Straße 18, 8700, Leoben, Austria

    Patrick Krall, Phillip Dumitraschkewitz, Matheus A. Tunes, Thomas Kremmer, Sebastian Samberger & Stefan Pogatscher

  2. Christian Doppler Laboratory for Deformation-Precipitation Interactions in Aluminum Alloys, Montanuniversität Leoben, Franz-Josef Straße 18, 8700, Leoben, Austria

    Irmgard Weißensteiner & Philip Aster

  3. Christian Doppler Laboratory for Advanced Aluminum Alloys, Montanuniversität Leoben, Franz-Josef Straße 18, 8700, Leoben, Austria

    Bernhard Trink

Authors
  1. Patrick Krall
    View author publications

    Search author on:PubMed Google Scholar

  2. Irmgard Weißensteiner
    View author publications

    Search author on:PubMed Google Scholar

  3. Philip Aster
    View author publications

    Search author on:PubMed Google Scholar

  4. Phillip Dumitraschkewitz
    View author publications

    Search author on:PubMed Google Scholar

  5. Matheus A. Tunes
    View author publications

    Search author on:PubMed Google Scholar

  6. Thomas Kremmer
    View author publications

    Search author on:PubMed Google Scholar

  7. Sebastian Samberger
    View author publications

    Search author on:PubMed Google Scholar

  8. Bernhard Trink
    View author publications

    Search author on:PubMed Google Scholar

  9. Stefan Pogatscher
    View author publications

    Search author on:PubMed Google Scholar

Contributions

P.K., P.A., I.W. and S.P. conceptualised the paper. P.K. was the leading research scientist, conducting material preparation, material processing, mechanical testing, sample preparation and writing the original draft. B.T. (EDX) and I.W. (EBSD and KAM) performed the SEM investigations. P.A. contributed to APT sample preparation, APT measurements and the interpretation of results. M.A.T. and T.K. performed the TEM measurements and interpreted the TEM results. P.D. wrote the Python script for the modelling of the yield strength. S.S. and P.K. illustrated the figures. S.P. supervised the research. All authors discussed and deliberated on the findings. All authors reviewed and approved the final version of the paper.

Corresponding author

Correspondence to Stefan Pogatscher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Xiao Li, Tetsuya Nagasaka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krall, P., Weißensteiner, I., Aster, P. et al. Direct aluminium-alloy upcycling from entire end-of life vehicles. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69492-z

Download citation

  • Received: 31 July 2025

  • Accepted: 30 January 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69492-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing