Abstract
Wheat stem rust is a disease of global importance caused by the fungal pathogen Puccinia graminis f. sp. tritici (Pgt). Here we generate chromosome-level, nuclear-phased genome references for Pgt isolates ETH2013-1 and ITA2018-1, representing races TKTTF and TTRTF respectively, that have caused major epidemics in Africa and Europe. The nuclear haplotypes of ETH2013-1 and ITA2018-1 are unique and unrelated to those of Ug99 and Pgt21. Pgt nuclear haplotypes show extensive variation in sequence and copy number of six known Avr genes and AvrSr33, which we identify through an effector gene library screen. Recognition properties of 22 novel Avr gene variants explain the race virulence phenotypes and the outbreak of TTRTF on durum cultivars containing Sr13b, since ITA2018-1 carries a homozygous deletion of AvrSr13. This work establishes an Avr gene atlas for Pgt that can inform wheat breeding and enable development of sequence-based virulence diagnostic tools for pathogen surveillance.
Data availability
All raw sequence data are available under NCBI BioProject PRJNA1267768. Assembly and annotation files are deposited in the CSIRO data access portal (https://data.csiro.au/collection/csiro:65828). Source data are provided with this paper.
Code availability
Scripts are available at https://github.com/henni164/epidemic_pgt (Zenodo https://doi.org/10.5281/zenodo.18322261).
References
Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).
Olivera, P. D. et al. Presence of a sexual population of Puccinia graminis f. sp. tritici in Georgia provides a hotspot for genotypic and phenotypic diversity. Phytopathology 109, 2152–2160 (2019).
Meyer, M. et al. Wheat rust epidemics damage Ethiopian wheat production: A decade of field disease surveillance reveals national-scale trends in past outbreaks. PLoS One 16, e0245697 (2021).
Bhavani, S., Singh, R. P., Hodson, D. P., Huerta-Espino, J. & Randhawa, M. S. Wheat Rusts: Current Status, Prospects of Genetic Control and Integrated Approaches to Enhance Resistance Durability. in Wheat Improvement 125–141 (Springer International Publishing, Cham, 2022). https://doi.org/10.1007/978-3-030-90673-3_8.
Pretorius, Z. A., Singh, R. P., Wagoire, W. W. & Payne, T. S. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 84, 203–203 (2000).
Dean, R. et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).
Patpour, M. et al. First report of Ug99 wheat stem rust caused by Puccinia graminis f. sp. tritici in South Asia. Plant Dis. 108, 2253–2588 (2024).
Olivera, P. D. et al. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013–14. Phytopathology 105, 917–928 (2015).
Bhattacharya, S. Deadly new wheat disease threatens Europe’s crops. Nature 542, 145–146 (2017).
Flor, H. H. Current status of the gene-for-gene concept. Annu Rev. Phytopathol. 9, 275–296 (1971).
Dodds, P. N. From gene-for-gene to resistosomes: Flor’s enduring legacy. Mol. Plant Microbe 36, 461–467 (2023).
Figueroa, M. et al. Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici. Front. Plant Sci. 7, 205 (2016).
Figueroa, M., Dodds, P. N. & Henningsen, E. C. Evolution of virulence in rust fungi — multiple solutions to one problem. Curr. Opin. Plant Biol. 56, 20–27 (2020).
Dracatos, P. M., Lu, J., Sánchez-Martín, J. & Wulff, B. B. H. Resistance that stacks up: engineering rust and mildew disease control in the cereal crops wheat and barley. Plant Biotechnol. J. 21, 1938–1951 (2023).
Arndell, T. et al. Pooled effector library screening in protoplasts rapidly identifies novel Avr genes. Nat. Plants 10, 572–580 (2024).
Lubega, J., Figueroa, M., Dodds, P. N. & Kanyuka, K. Comparative analysis of the avirulence effectors produced by the fungal stem rust pathogen of wheat. Mol. Plant-Microbe Interact. 37, 171–178 (2024).
Upadhyaya, N. M. et al. Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair. Nat. Plants 7, 1220–1228 (2021).
Salcedo, A. et al. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 358, 1604–1606 (2017).
Chen, J. et al. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358, 1607–1610 (2017).
Chen, R. et al. A wheat tandem kinase activates an NLR to trigger immunity. Science 387, 1402–1408 (2025).
Ortiz, D. et al. The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface-exposed residue. N. Phytol. 234, 592–606 (2022).
Li, F. et al. Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation. Nat. Commun. 10, 5068 (2019).
Duan, H. et al. Physical separation of haplotypes in dikaryons allows benchmarking of phasing accuracy in Nanopore and HiFi assemblies with Hi-C data. Genome Biol. 23, 84 (2022).
Henningsen, E. C. et al. A chromosome-level, fully phased genome assembly of the oat crown rust fungus Puccinia coronata f. sp. avenae: a resource to enable comparative genomics in the cereal rusts. G3-Genes Genom. Genet 12, jkac149 (2022).
Sperschneider, J. et al. A Chromosome-Scale Genome Assembly of the Flax Rust Fungus Reveals the Two Unusually Large Effector Proteins, AvrM3 and AvrN. Mol. Plant-Microbe Interact. 38, 677–688 (2025).
Tam, R. et al. Long-read genomics reveal extensive nuclear-specific evolution and allele-specific expression in a dikaryotic fungus. Genome Res 35, 1364–1376 (2025).
Guo, Y. et al. Population genomics of Puccinia graminis f. sp. tritici highlights the role of admixture in the origin of virulent wheat rust races. Nat. Commun. 13, 6287 (2022).
Mert, Z., Karakaya, A., Duşunceli, F., Akan, K. & Çetin, L. Determination of Puccinia graminis f. sp. tritici races of wheat in Turkey. Turkish J. Agriculture Forestry 36, 107–120 (2012).
Patpour, M. et al. Wheat stem rust back in Europe: Diversity, prevalence and impact on host resistance. Front Plant Sci 13, 882440 (2022).
Lewis, C. M. et al. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun. Biol. 1, 13 (2018).
Olivera Firpo, P. D. et al. Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathol. 66, 1258–1266 (2017).
Patpour, M. et al. First report of race TTRTF of wheat stem rust (Puccinia graminis f. sp. tritici) in Eritrea. Plant Dis. 104, 973 (2020).
Omrani, A. & Roohparvar, R. First report of TTRTF race of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici from Iran (Northwest, Cold Zone). J. Appl. Res. Plant Prot. 9, 101–103 (2021).
Tesfaye, T., Chala, A., Shikur, E., Hodson, D. & Szabo, L. J. First report of TTRTF race of wheat stem rust, Puccinia graminis f. sp. tritici, in Ethiopia. Plant Dis. 104, 293–293 (2020).
Tsushima, A., Lewis, C. M., Flath, K., Kildea, S. & Saunders, D. G. O. Wheat stem rust recorded for the first time in decades in Ireland. Plant Pathol. 71, 890–900 (2022).
Henningsen, E. C. et al. A high-resolution haplotype collection uncovers somatic hybridization, recombination and intercontinental movement in oat crown rust. PLoS Genet 20, e1011493 (2024).
Henningsen, E. C. et al. Haplotype-resolved genomes of diverse oat crown rust isolates reveals both global dispersion of long-lived clonal haplotypes and limited recombination between haplotypes. bioRxiv (2025).
Sperschneider, J. et al. Nuclear exchange generates population diversity in the wheat leaf rust pathogen Puccinia triticina. Nat. Microbiol 8, 2130–2141 (2023).
Wang, J. et al. A fully haplotype-resolved and nearly gap-free genome assembly of wheat stripe rust fungus. Sci. Data 11, 508 (2024).
Cuomo, C. A. et al. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. G3-Genes Genom. Genet 7, 361–376 (2017).
Förderer, A. et al. A wheat resistosome defines common principles of immune receptor channels. Nature 610, 532–539 (2022).
Zhao, Y.-B. et al. Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism. Sci Adv 8, eabq5108 (2022).
Periyannan, S. et al. The Gene Sr33, an Ortholog of Barley Mla Genes, Encodes Resistance to Wheat Stem Rust Race Ug99. Science 341, 786–788 (2013).
Henningsen, E. C. et al. Genome Biology of Rust Fungi. Annu Rev. Phytopathol. 63, 529–552 (2025).
Holden, S. et al. Uncovering the history of recombination and population structure in western Canadian stripe rust populations through mating type alleles. BMC Biol. 21, 233 (2023).
Radhakrishnan, G. V. et al. MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. BMC Biol. 17, 65 (2019).
Savva, L. et al. A portable, nanopore-based genotyping platform for near real-time detection of Puccinia graminis f. sp. tritici lineages and fungicide sensitivity. BMC Genomics 26, 327 (2025).
Jin, Y. et al. Detection of Virulence to Resistance Gene Sr24 Within Race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 92, 923–926 (2008).
Stakman, E. C. & Levine, M. N. The determination of biologic forms of Puccinia graminis on Triticum spp. in Bulletin No. 8 (University of Minnesota Agricultural Experiment Station, St. Paul, 1922).
Luo, M. et al. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat. Biotechnol. 39, 561–566 (2021).
Richardson, T., Thistleton, J., Higgins, T. J., Howitt, C. & Ayliffe, M. Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tissue Organ Cult. (PCTOC 119, 647–659 (2014).
Barnes, C. W. & Szabo, L. J. Detection and identification of four common rust pathogens of cereals and grasses using real-time polymerase chain reaction. Phytopathology 97, 717–727 (2007).
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421 (2009).
Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C.-S. Scaffolding of long read assemblies using long range contact information. BMC Genomics 18, 527 (2017).
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).
Ramírez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).
Cabanettes, F. & Klopp, C. D.-G. E. N. I. E. S. dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).
Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
Testa, A. C., Hane, J. K., Ellwood, S. R. & Oliver, R. P. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts. BMC Genomics 16, 170 (2015).
Palmer, J. M. & Stajich, J. Funannotate v1.8.1: eukaryotic genome annotation. Preprint at https://doi.org/10.5281/zenodo.4054262 (2020).
Nielsen, H. Predicting Secretory Proteins with SignalP. in Protein Function Prediction (ed. Kihara, D.) vol. 1611 59–73 (Humana Press, New York, NY, 2017).
Möller, S., Croning, M. D. R. & Apweiler, R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646–653 (2001).
Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol. 14, e1005944 (2018).
Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).
Goel, M. & Schneeberger, K. plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics 38, 2922–2926 (2022).
Hickey, G. et al. Pangenome graph construction from genome alignments with Minigraph-Cactus. Nat. Biotechnol. 42, 663–673 (2024).
Ondov, B. D. et al. Mash Screen: high-throughput sequence containment estimation for genome discovery. Genome Biol. 20, 232 (2019).
Duplessis, S. et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. P Natl. Acad. Sci. USA 108, 9166–9171 (2011).
Upadhyaya, N. M. et al. Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes. Front Plant Sci. 5, 759 (2015).
Kangara, N. et al. Mutagenesis of Puccinia graminis f. sp. tritici and selection of gain-of-virulence mutants. Front. Plant Sci. 11, 570180 (2020).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314–324 https://doi.org/10.1109/IPDPS.2019.00041 (2019).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv, 1207.3907v2 (2012).
Garrison, E., Kronenberg, Z. N., Dawson, E. T., Pedersen, B. S. & Prins, P. A spectrum of free software tools for processing the VCF variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput Biol. 18, e1009123 (2022).
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Kües, U., James, T. Y. & Heitman, J. 6 Mating Type in Basidiomycetes: Unipolar, Bipolar, and Tetrapolar Patterns of Sexuality. in Evolution of Fungi and Fungal-Like Organisms 97–160 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011). https://doi.org/10.1007/978-3-642-19974-5_6.
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49, W293–W296 (2021).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
Hackl, T., Ankenbrand, M., van Adrichem, B., Wilkins, D. & Haslinger, K. gggenomes: effective and versatile visualizations for comparative genomics. ArXiv (2024) https://doi.org/10.48550/arXiv.2411.13556.
Kanyuka, K. Virus-mediated Protein Overexpression (VOX) in monocots to identify and functionally characterize fungal effectors. in Effector-Triggered Immunity (eds. Kufer, T. A. & Kaparakis-Liaskos, M.) vol. 2523 93–112 (Humana, New York, 2022).
Chapman, S. et al. The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc. Natl. Acad. Sci. USA 105, 20038–20043 (2008).
Franco-Orozco, B. et al. A new proteinaceous pathogen-associated molecular pattern (PAMP) identified in Ascomycete fungi induces cell death in Solanaceae. N. Phytologist 214, 1657–1672 (2017).
Zhang, W. et al. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl. Acad. Sci. USA 114, E9483–E9492 (2017).
Acknowledgements
This project was supported by USDA-NIFA award 2022-67013-36505 to BJS and BBSRC grant BB/W018403/1 to KK as part of the NSF/BBSRC Lead Agency Agreement, the CSIRO Research Office to JS, PND and MF (OD-227545, OD-235285), the CSIRO Synthetic Biology Future Science Platform to TV (OD-213047), the Grains Research and Development Corporation project CSP2403-014RTX to PND, the Lieberman-Okinow Endowment at the University of Minnesota to BJS, the 2Blades Foundation to MF and the Gatsby Foundation to PND, MA, MF. ECH was supported by an ANU University Research Scholarship and an ANU/CSIRO Digital Agriculture PhD Supplementary Scholarship. We acknowledge Dr David Hodson at CIMMYT for providing the rust isolate ETH2013-1, as well as Dr Matthew J Moscou and Kim-Phuong Nguyen for discussions and feedback as well as technical support. We truly appreciate their unwavering support. We thank Stephanie Dahl and Aubree Kees for their assistance at the University of Minnesota Biosafety Level-3 containment facility, the Minnesota Supercomputing Institute, and CSIRO High Performance Computing Services for computational resources, and Peter Tyson and Joel Hansen for providing computational support. We thank Biagio Randazzo (AS.A.R. - Società Semplice Agricola Randazzo, Baucina (PA), Italy) and Massimo Palumbo (CREA - Council for Agricultural Research and Economics, Research Center for Cereal and Industrial Crops, Acireale (CT), Italy) for their involvement in processing the rust isolate ITA2018-1.
Funding
Open access funding provided by CSIRO Library Services.
Author information
Authors and Affiliations
Contributions
Conceptualization: K.K., P.N.D., B.J.S., M.F.; Data curation: R.S., E.C.H., C.L.P., J.S.; Formal analysis: R.S., E.C.H., C.L.P., J.C., J.L., O.M., J.S.; Investigation: R.S., E.C.H., C.L.P., J.C., J.L., O.M., D.L., L.C.C., Z.S., A.F., E.S.N., F.L., M.A.O.; Project Administration: R.S., C.L.P., P.N.D., B.J.S., M.F.; Software: R.S., E.C.H., J.S.; Methodology: E.C.H., C.L.P., J.L., M.A.O., T.A., T.V., K.K., J.S., P.N.D., B.J.S., M.F.; Visualization: R.S., E.C.H., C.L.P., J.C., J.L., O.M.; Validation: C.L.P., J.C.; Writing – original draft: R.S., E.C.H., C.L.P., J.S., P.N.D., M.F.; Writing – review & editing: R.S., E.C.H., C.L.P., J.C., J.L., O.M., D.L., L.C.C., Z.S., A.F., E.S.N., F.L., M.A.O., T.A., T.V., N.V., M.L., M.A., E.S., K.K., J.S., P.N.D., B.J.S., M.F.; Resources: T.A., T.V., N.V., M.L., M.A., B.J.S.; Supervision: C.L.P., J.C., M.A.O., T.V., E.S., K.K., J.S., P.N.D., B.J.S., M.F.; Funding Acquisition: E.S., K.K., P.N.D., B.J.S., M.F.
Corresponding authors
Ethics declarations
Competing interests
T.A, T.V., P.N.D., M.F., and J.S. are inventors on patent application WO2024103117 filed by CSIRO and relating to the identification of protein-protein interactions by protoplast screening. The remaining authors declare that they have no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Spanner, R.E., Henningsen, E.C., Langlands-Perry, C. et al. Allelic variation of Avr genes in highly virulent strains explains severe wheat stem rust epidemics. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69508-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69508-8