Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Allelic variation of Avr genes in highly virulent strains explains severe wheat stem rust epidemics
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Allelic variation of Avr genes in highly virulent strains explains severe wheat stem rust epidemics

  • Rebecca E. Spanner  ORCID: orcid.org/0000-0002-4735-96491 na1,
  • Eva C. Henningsen2 na1,
  • Camilla Langlands-Perry  ORCID: orcid.org/0000-0003-2635-69052 na1,
  • Jian Chen  ORCID: orcid.org/0000-0001-8670-69842,
  • Jibril Lubega3,
  • Oadi Matny  ORCID: orcid.org/0000-0002-8447-28861,
  • David Lewis2,
  • Li Chen Cheah2,
  • Zhouyang Su2,
  • Alexis Feist1,
  • Eric S. Nazareno  ORCID: orcid.org/0000-0001-5192-26441,
  • Feng Li  ORCID: orcid.org/0000-0001-8528-42491,
  • Megan A. Outram  ORCID: orcid.org/0000-0003-4510-35752,
  • Taj Arndell  ORCID: orcid.org/0000-0002-6540-20062,
  • Thomas Vanhercke2,
  • Nino Virzì4,
  • Ming Luo  ORCID: orcid.org/0000-0002-8816-31832,
  • Michael Ayliffe2,
  • Eric Stone  ORCID: orcid.org/0000-0002-2725-42095,
  • Kostya Kanyuka  ORCID: orcid.org/0000-0001-6324-41233,
  • Jana Sperschneider  ORCID: orcid.org/0000-0002-9385-85882,
  • Peter N. Dodds  ORCID: orcid.org/0000-0003-0620-59232,
  • Brian J. Steffenson  ORCID: orcid.org/0000-0001-7961-53631 &
  • …
  • Melania Figueroa  ORCID: orcid.org/0000-0003-2636-661X2 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biotic
  • Fungal pathogenesis
  • Haplotypes
  • Molecular evolution

Abstract

Wheat stem rust is a disease of global importance caused by the fungal pathogen Puccinia graminis f. sp. tritici (Pgt). Here we generate chromosome-level, nuclear-phased genome references for Pgt isolates ETH2013-1 and ITA2018-1, representing races TKTTF and TTRTF respectively, that have caused major epidemics in Africa and Europe. The nuclear haplotypes of ETH2013-1 and ITA2018-1 are unique and unrelated to those of Ug99 and Pgt21. Pgt nuclear haplotypes show extensive variation in sequence and copy number of six known Avr genes and AvrSr33, which we identify through an effector gene library screen. Recognition properties of 22 novel Avr gene variants explain the race virulence phenotypes and the outbreak of TTRTF on durum cultivars containing Sr13b, since ITA2018-1 carries a homozygous deletion of AvrSr13. This work establishes an Avr gene atlas for Pgt that can inform wheat breeding and enable development of sequence-based virulence diagnostic tools for pathogen surveillance.

Data availability

All raw sequence data are available under NCBI BioProject PRJNA1267768. Assembly and annotation files are deposited in the CSIRO data access portal (https://data.csiro.au/collection/csiro:65828). Source data are provided with this paper.

Code availability

Scripts are available at https://github.com/henni164/epidemic_pgt (Zenodo https://doi.org/10.5281/zenodo.18322261).

References

  1. Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).

    Google Scholar 

  2. Olivera, P. D. et al. Presence of a sexual population of Puccinia graminis f. sp. tritici in Georgia provides a hotspot for genotypic and phenotypic diversity. Phytopathology 109, 2152–2160 (2019).

    Google Scholar 

  3. Meyer, M. et al. Wheat rust epidemics damage Ethiopian wheat production: A decade of field disease surveillance reveals national-scale trends in past outbreaks. PLoS One 16, e0245697 (2021).

    Google Scholar 

  4. Bhavani, S., Singh, R. P., Hodson, D. P., Huerta-Espino, J. & Randhawa, M. S. Wheat Rusts: Current Status, Prospects of Genetic Control and Integrated Approaches to Enhance Resistance Durability. in Wheat Improvement 125–141 (Springer International Publishing, Cham, 2022). https://doi.org/10.1007/978-3-030-90673-3_8.

  5. Pretorius, Z. A., Singh, R. P., Wagoire, W. W. & Payne, T. S. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 84, 203–203 (2000).

    Google Scholar 

  6. Dean, R. et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).

    Google Scholar 

  7. Patpour, M. et al. First report of Ug99 wheat stem rust caused by Puccinia graminis f. sp. tritici in South Asia. Plant Dis. 108, 2253–2588 (2024).

    Google Scholar 

  8. Olivera, P. D. et al. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013–14. Phytopathology 105, 917–928 (2015).

    Google Scholar 

  9. Bhattacharya, S. Deadly new wheat disease threatens Europe’s crops. Nature 542, 145–146 (2017).

    Google Scholar 

  10. Flor, H. H. Current status of the gene-for-gene concept. Annu Rev. Phytopathol. 9, 275–296 (1971).

    Google Scholar 

  11. Dodds, P. N. From gene-for-gene to resistosomes: Flor’s enduring legacy. Mol. Plant Microbe 36, 461–467 (2023).

    Google Scholar 

  12. Figueroa, M. et al. Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici. Front. Plant Sci. 7, 205 (2016).

  13. Figueroa, M., Dodds, P. N. & Henningsen, E. C. Evolution of virulence in rust fungi — multiple solutions to one problem. Curr. Opin. Plant Biol. 56, 20–27 (2020).

    Google Scholar 

  14. Dracatos, P. M., Lu, J., Sánchez-Martín, J. & Wulff, B. B. H. Resistance that stacks up: engineering rust and mildew disease control in the cereal crops wheat and barley. Plant Biotechnol. J. 21, 1938–1951 (2023).

    Google Scholar 

  15. Arndell, T. et al. Pooled effector library screening in protoplasts rapidly identifies novel Avr genes. Nat. Plants 10, 572–580 (2024).

    Google Scholar 

  16. Lubega, J., Figueroa, M., Dodds, P. N. & Kanyuka, K. Comparative analysis of the avirulence effectors produced by the fungal stem rust pathogen of wheat. Mol. Plant-Microbe Interact. 37, 171–178 (2024).

    Google Scholar 

  17. Upadhyaya, N. M. et al. Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair. Nat. Plants 7, 1220–1228 (2021).

    Google Scholar 

  18. Salcedo, A. et al. Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 358, 1604–1606 (2017).

    Google Scholar 

  19. Chen, J. et al. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358, 1607–1610 (2017).

    Google Scholar 

  20. Chen, R. et al. A wheat tandem kinase activates an NLR to trigger immunity. Science 387, 1402–1408 (2025).

    Google Scholar 

  21. Ortiz, D. et al. The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface-exposed residue. N. Phytol. 234, 592–606 (2022).

    Google Scholar 

  22. Li, F. et al. Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation. Nat. Commun. 10, 5068 (2019).

    Google Scholar 

  23. Duan, H. et al. Physical separation of haplotypes in dikaryons allows benchmarking of phasing accuracy in Nanopore and HiFi assemblies with Hi-C data. Genome Biol. 23, 84 (2022).

    Google Scholar 

  24. Henningsen, E. C. et al. A chromosome-level, fully phased genome assembly of the oat crown rust fungus Puccinia coronata f. sp. avenae: a resource to enable comparative genomics in the cereal rusts. G3-Genes Genom. Genet 12, jkac149 (2022).

    Google Scholar 

  25. Sperschneider, J. et al. A Chromosome-Scale Genome Assembly of the Flax Rust Fungus Reveals the Two Unusually Large Effector Proteins, AvrM3 and AvrN. Mol. Plant-Microbe Interact. 38, 677–688 (2025).

    Google Scholar 

  26. Tam, R. et al. Long-read genomics reveal extensive nuclear-specific evolution and allele-specific expression in a dikaryotic fungus. Genome Res 35, 1364–1376 (2025).

    Google Scholar 

  27. Guo, Y. et al. Population genomics of Puccinia graminis f. sp. tritici highlights the role of admixture in the origin of virulent wheat rust races. Nat. Commun. 13, 6287 (2022).

    Google Scholar 

  28. Mert, Z., Karakaya, A., Duşunceli, F., Akan, K. & Çetin, L. Determination of Puccinia graminis f. sp. tritici races of wheat in Turkey. Turkish J. Agriculture Forestry 36, 107–120 (2012).

    Google Scholar 

  29. Patpour, M. et al. Wheat stem rust back in Europe: Diversity, prevalence and impact on host resistance. Front Plant Sci 13, 882440 (2022).

  30. Lewis, C. M. et al. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun. Biol. 1, 13 (2018).

    Google Scholar 

  31. Olivera Firpo, P. D. et al. Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathol. 66, 1258–1266 (2017).

    Google Scholar 

  32. Patpour, M. et al. First report of race TTRTF of wheat stem rust (Puccinia graminis f. sp. tritici) in Eritrea. Plant Dis. 104, 973 (2020).

    Google Scholar 

  33. Omrani, A. & Roohparvar, R. First report of TTRTF race of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici from Iran (Northwest, Cold Zone). J. Appl. Res. Plant Prot. 9, 101–103 (2021).

    Google Scholar 

  34. Tesfaye, T., Chala, A., Shikur, E., Hodson, D. & Szabo, L. J. First report of TTRTF race of wheat stem rust, Puccinia graminis f. sp. tritici, in Ethiopia. Plant Dis. 104, 293–293 (2020).

    Google Scholar 

  35. Tsushima, A., Lewis, C. M., Flath, K., Kildea, S. & Saunders, D. G. O. Wheat stem rust recorded for the first time in decades in Ireland. Plant Pathol. 71, 890–900 (2022).

    Google Scholar 

  36. Henningsen, E. C. et al. A high-resolution haplotype collection uncovers somatic hybridization, recombination and intercontinental movement in oat crown rust. PLoS Genet 20, e1011493 (2024).

    Google Scholar 

  37. Henningsen, E. C. et al. Haplotype-resolved genomes of diverse oat crown rust isolates reveals both global dispersion of long-lived clonal haplotypes and limited recombination between haplotypes. bioRxiv (2025).

  38. Sperschneider, J. et al. Nuclear exchange generates population diversity in the wheat leaf rust pathogen Puccinia triticina. Nat. Microbiol 8, 2130–2141 (2023).

    Google Scholar 

  39. Wang, J. et al. A fully haplotype-resolved and nearly gap-free genome assembly of wheat stripe rust fungus. Sci. Data 11, 508 (2024).

    Google Scholar 

  40. Cuomo, C. A. et al. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. G3-Genes Genom. Genet 7, 361–376 (2017).

    Google Scholar 

  41. Förderer, A. et al. A wheat resistosome defines common principles of immune receptor channels. Nature 610, 532–539 (2022).

    Google Scholar 

  42. Zhao, Y.-B. et al. Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism. Sci Adv 8, eabq5108 (2022).

  43. Periyannan, S. et al. The Gene Sr33, an Ortholog of Barley Mla Genes, Encodes Resistance to Wheat Stem Rust Race Ug99. Science 341, 786–788 (2013).

    Google Scholar 

  44. Henningsen, E. C. et al. Genome Biology of Rust Fungi. Annu Rev. Phytopathol. 63, 529–552 (2025).

    Google Scholar 

  45. Holden, S. et al. Uncovering the history of recombination and population structure in western Canadian stripe rust populations through mating type alleles. BMC Biol. 21, 233 (2023).

    Google Scholar 

  46. Radhakrishnan, G. V. et al. MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. BMC Biol. 17, 65 (2019).

    Google Scholar 

  47. Savva, L. et al. A portable, nanopore-based genotyping platform for near real-time detection of Puccinia graminis f. sp. tritici lineages and fungicide sensitivity. BMC Genomics 26, 327 (2025).

    Google Scholar 

  48. Jin, Y. et al. Detection of Virulence to Resistance Gene Sr24 Within Race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 92, 923–926 (2008).

    Google Scholar 

  49. Stakman, E. C. & Levine, M. N. The determination of biologic forms of Puccinia graminis on Triticum spp. in Bulletin No. 8 (University of Minnesota Agricultural Experiment Station, St. Paul, 1922).

  50. Luo, M. et al. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat. Biotechnol. 39, 561–566 (2021).

    Google Scholar 

  51. Richardson, T., Thistleton, J., Higgins, T. J., Howitt, C. & Ayliffe, M. Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tissue Organ Cult. (PCTOC 119, 647–659 (2014).

    Google Scholar 

  52. Barnes, C. W. & Szabo, L. J. Detection and identification of four common rust pathogens of cereals and grasses using real-time polymerase chain reaction. Phytopathology 97, 717–727 (2007).

    Google Scholar 

  53. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Google Scholar 

  54. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Google Scholar 

  55. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421 (2009).

    Google Scholar 

  56. Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C.-S. Scaffolding of long read assemblies using long range contact information. BMC Genomics 18, 527 (2017).

    Google Scholar 

  57. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    Google Scholar 

  58. Ramírez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).

    Google Scholar 

  59. Cabanettes, F. & Klopp, C. D.-G. E. N. I. E. S. dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).

    Google Scholar 

  60. Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).

    Google Scholar 

  61. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Google Scholar 

  62. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Google Scholar 

  63. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Google Scholar 

  64. Testa, A. C., Hane, J. K., Ellwood, S. R. & Oliver, R. P. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts. BMC Genomics 16, 170 (2015).

    Google Scholar 

  65. Palmer, J. M. & Stajich, J. Funannotate v1.8.1: eukaryotic genome annotation. Preprint at https://doi.org/10.5281/zenodo.4054262 (2020).

  66. Nielsen, H. Predicting Secretory Proteins with SignalP. in Protein Function Prediction (ed. Kihara, D.) vol. 1611 59–73 (Humana Press, New York, NY, 2017).

  67. Möller, S., Croning, M. D. R. & Apweiler, R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646–653 (2001).

    Google Scholar 

  68. Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol. 14, e1005944 (2018).

    Google Scholar 

  69. Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).

    Google Scholar 

  70. Goel, M. & Schneeberger, K. plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics 38, 2922–2926 (2022).

    Google Scholar 

  71. Hickey, G. et al. Pangenome graph construction from genome alignments with Minigraph-Cactus. Nat. Biotechnol. 42, 663–673 (2024).

    Google Scholar 

  72. Ondov, B. D. et al. Mash Screen: high-throughput sequence containment estimation for genome discovery. Genome Biol. 20, 232 (2019).

    Google Scholar 

  73. Duplessis, S. et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. P Natl. Acad. Sci. USA 108, 9166–9171 (2011).

    Google Scholar 

  74. Upadhyaya, N. M. et al. Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes. Front Plant Sci. 5, 759 (2015).

    Google Scholar 

  75. Kangara, N. et al. Mutagenesis of Puccinia graminis f. sp. tritici and selection of gain-of-virulence mutants. Front. Plant Sci. 11, 570180 (2020).

  76. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Google Scholar 

  77. Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314–324 https://doi.org/10.1109/IPDPS.2019.00041 (2019).

  78. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Google Scholar 

  79. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

  80. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv, 1207.3907v2 (2012).

  81. Garrison, E., Kronenberg, Z. N., Dawson, E. T., Pedersen, B. S. & Prins, P. A spectrum of free software tools for processing the VCF variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput Biol. 18, e1009123 (2022).

    Google Scholar 

  82. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Google Scholar 

  83. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Google Scholar 

  84. Kües, U., James, T. Y. & Heitman, J. 6 Mating Type in Basidiomycetes: Unipolar, Bipolar, and Tetrapolar Patterns of Sexuality. in Evolution of Fungi and Fungal-Like Organisms 97–160 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011). https://doi.org/10.1007/978-3-642-19974-5_6.

  85. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Google Scholar 

  86. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Google Scholar 

  87. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49, W293–W296 (2021).

    Google Scholar 

  88. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 

  89. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Google Scholar 

  90. Hackl, T., Ankenbrand, M., van Adrichem, B., Wilkins, D. & Haslinger, K. gggenomes: effective and versatile visualizations for comparative genomics. ArXiv (2024) https://doi.org/10.48550/arXiv.2411.13556.

  91. Kanyuka, K. Virus-mediated Protein Overexpression (VOX) in monocots to identify and functionally characterize fungal effectors. in Effector-Triggered Immunity (eds. Kufer, T. A. & Kaparakis-Liaskos, M.) vol. 2523 93–112 (Humana, New York, 2022).

  92. Chapman, S. et al. The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc. Natl. Acad. Sci. USA 105, 20038–20043 (2008).

    Google Scholar 

  93. Franco-Orozco, B. et al. A new proteinaceous pathogen-associated molecular pattern (PAMP) identified in Ascomycete fungi induces cell death in Solanaceae. N. Phytologist 214, 1657–1672 (2017).

    Google Scholar 

  94. Zhang, W. et al. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl. Acad. Sci. USA 114, E9483–E9492 (2017).

Download references

Acknowledgements

This project was supported by USDA-NIFA award 2022-67013-36505 to BJS and BBSRC grant BB/W018403/1 to KK as part of the NSF/BBSRC Lead Agency Agreement, the CSIRO Research Office to JS, PND and MF (OD-227545, OD-235285), the CSIRO Synthetic Biology Future Science Platform to TV (OD-213047), the Grains Research and Development Corporation project CSP2403-014RTX to PND, the Lieberman-Okinow Endowment at the University of Minnesota to BJS, the 2Blades Foundation to MF and the Gatsby Foundation to PND, MA, MF. ECH was supported by an ANU University Research Scholarship and an ANU/CSIRO Digital Agriculture PhD Supplementary Scholarship. We acknowledge Dr David Hodson at CIMMYT for providing the rust isolate ETH2013-1, as well as Dr Matthew J Moscou and Kim-Phuong Nguyen for discussions and feedback as well as technical support. We truly appreciate their unwavering support. We thank Stephanie Dahl and Aubree Kees for their assistance at the University of Minnesota Biosafety Level-3 containment facility, the Minnesota Supercomputing Institute, and CSIRO High Performance Computing Services for computational resources, and Peter Tyson and Joel Hansen for providing computational support. We thank Biagio Randazzo (AS.A.R. - Società Semplice Agricola Randazzo, Baucina (PA), Italy) and Massimo Palumbo (CREA - Council for Agricultural Research and Economics, Research Center for Cereal and Industrial Crops, Acireale (CT), Italy) for their involvement in processing the rust isolate ITA2018-1.

Funding

Open access funding provided by CSIRO Library Services.

Author information

Author notes
  1. These authors contributed equally: Rebecca E. Spanner, Eva C. Henningsen, Camilla Langlands-Perry.

Authors and Affiliations

  1. Department of Plant Pathology, University of Minnesota (UMN), St. Paul, MN, USA

    Rebecca E. Spanner, Oadi Matny, Alexis Feist, Eric S. Nazareno, Feng Li & Brian J. Steffenson

  2. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT, Australia

    Eva C. Henningsen, Camilla Langlands-Perry, Jian Chen, David Lewis, Li Chen Cheah, Zhouyang Su, Megan A. Outram, Taj Arndell, Thomas Vanhercke, Ming Luo, Michael Ayliffe, Jana Sperschneider, Peter N. Dodds & Melania Figueroa

  3. Niab, Park Farm, Villa Rd, Impington, Histon, Cambridge, UK

    Jibril Lubega & Kostya Kanyuka

  4. Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, Acireale, CT, Italy

    Nino Virzì

  5. Research School of Biology, The Australian National University (ANU), Canberra, ACT, Australia

    Eric Stone

Authors
  1. Rebecca E. Spanner
    View author publications

    Search author on:PubMed Google Scholar

  2. Eva C. Henningsen
    View author publications

    Search author on:PubMed Google Scholar

  3. Camilla Langlands-Perry
    View author publications

    Search author on:PubMed Google Scholar

  4. Jian Chen
    View author publications

    Search author on:PubMed Google Scholar

  5. Jibril Lubega
    View author publications

    Search author on:PubMed Google Scholar

  6. Oadi Matny
    View author publications

    Search author on:PubMed Google Scholar

  7. David Lewis
    View author publications

    Search author on:PubMed Google Scholar

  8. Li Chen Cheah
    View author publications

    Search author on:PubMed Google Scholar

  9. Zhouyang Su
    View author publications

    Search author on:PubMed Google Scholar

  10. Alexis Feist
    View author publications

    Search author on:PubMed Google Scholar

  11. Eric S. Nazareno
    View author publications

    Search author on:PubMed Google Scholar

  12. Feng Li
    View author publications

    Search author on:PubMed Google Scholar

  13. Megan A. Outram
    View author publications

    Search author on:PubMed Google Scholar

  14. Taj Arndell
    View author publications

    Search author on:PubMed Google Scholar

  15. Thomas Vanhercke
    View author publications

    Search author on:PubMed Google Scholar

  16. Nino Virzì
    View author publications

    Search author on:PubMed Google Scholar

  17. Ming Luo
    View author publications

    Search author on:PubMed Google Scholar

  18. Michael Ayliffe
    View author publications

    Search author on:PubMed Google Scholar

  19. Eric Stone
    View author publications

    Search author on:PubMed Google Scholar

  20. Kostya Kanyuka
    View author publications

    Search author on:PubMed Google Scholar

  21. Jana Sperschneider
    View author publications

    Search author on:PubMed Google Scholar

  22. Peter N. Dodds
    View author publications

    Search author on:PubMed Google Scholar

  23. Brian J. Steffenson
    View author publications

    Search author on:PubMed Google Scholar

  24. Melania Figueroa
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: K.K., P.N.D., B.J.S., M.F.; Data curation: R.S., E.C.H., C.L.P., J.S.; Formal analysis: R.S., E.C.H., C.L.P., J.C., J.L., O.M., J.S.; Investigation: R.S., E.C.H., C.L.P., J.C., J.L., O.M., D.L., L.C.C., Z.S., A.F., E.S.N., F.L., M.A.O.; Project Administration: R.S., C.L.P., P.N.D., B.J.S., M.F.; Software: R.S., E.C.H., J.S.; Methodology: E.C.H., C.L.P., J.L., M.A.O., T.A., T.V., K.K., J.S., P.N.D., B.J.S., M.F.; Visualization: R.S., E.C.H., C.L.P., J.C., J.L., O.M.; Validation: C.L.P., J.C.; Writing – original draft: R.S., E.C.H., C.L.P., J.S., P.N.D., M.F.; Writing – review & editing: R.S., E.C.H., C.L.P., J.C., J.L., O.M., D.L., L.C.C., Z.S., A.F., E.S.N., F.L., M.A.O., T.A., T.V., N.V., M.L., M.A., E.S., K.K., J.S., P.N.D., B.J.S., M.F.; Resources: T.A., T.V., N.V., M.L., M.A., B.J.S.; Supervision: C.L.P., J.C., M.A.O., T.V., E.S., K.K., J.S., P.N.D., B.J.S., M.F.; Funding Acquisition: E.S., K.K., P.N.D., B.J.S., M.F.

Corresponding authors

Correspondence to Peter N. Dodds, Brian J. Steffenson or Melania Figueroa.

Ethics declarations

Competing interests

T.A, T.V., P.N.D., M.F., and J.S. are inventors on patent application WO2024103117 filed by CSIRO and relating to the identification of protein-protein interactions by protoplast screening. The remaining authors declare that they have no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1−16

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spanner, R.E., Henningsen, E.C., Langlands-Perry, C. et al. Allelic variation of Avr genes in highly virulent strains explains severe wheat stem rust epidemics. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69508-8

Download citation

  • Received: 22 August 2025

  • Accepted: 03 February 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69508-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing