Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Spectroscopic limits of diamond anvils to 520 GPa and projected bandgap closure
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 February 2026

Spectroscopic limits of diamond anvils to 520 GPa and projected bandgap closure

  • A. Hilberer  ORCID: orcid.org/0000-0002-5743-45261,2,
  • P. Loubeyre  ORCID: orcid.org/0000-0002-1778-35101,2,
  • C. Pépin  ORCID: orcid.org/0000-0002-9638-33031,2,
  • F. Occelli1,2,
  • G. Weck  ORCID: orcid.org/0009-0008-7215-40051,2,
  • R. André1,2 &
  • …
  • P. Dumas  ORCID: orcid.org/0000-0002-9878-80481,3 

Nature Communications , Article number:  (2026) Cite this article

  • 1138 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electronic properties and materials
  • Optical spectroscopy

Abstract

Diamond anvils serve as optical windows in static ultrahigh-pressure experiments, now reaching the terapascal regime. However, they exhibit poorly understood changes in their optical properties under multimegabar pressure. Here, we present broadband absorption measurements (ultraviolet to infrared wavelengths) up to 520 GPa, revealing a pronounced loss of transparency with pressure. Diamond Raman scattering is used to infer the stress profile along the anvils’ axis under the assumption of tetragonal distortion, and crucially at the sample interface. This enables a quantitative analysis of absorption spectra, showing an indirect bandgap narrowing towards the infrared, with metallization projected near 560 GPa sample pressure within our stress model. A universal optical behavior is observed across different anvil geometries, which is consistent with the universality of the Raman edge pressure scale, here refined. These findings help define the spectroscopic operational limits of diamond anvil cells under extreme pressure with important implications for recent claims of hydrogen metallization.

Similar content being viewed by others

Universal diamond edge Raman scale to 0.5 terapascal and implications for the metallization of hydrogen

Article Open access 17 February 2023

Probing stress and magnetism at high pressures with two-dimensional quantum sensors

Article Open access 01 September 2025

Advancing neutron diffraction for accurate structural measurement of light elements at megabar pressures

Article Open access 23 March 2023

Data availability

Source data for all figures are provided with this paper. Raw data and code for this study have been deposited to Zenodo and are accessible with https://doi.org/10.5281/zenodo.18350936 (see ref. 39). Source data are provided with this paper.

References

  1. Bassett, W. A. Diamond anvil cell, 50th birthday. High. Press. Res. 29, 163–186 (2009).

    Google Scholar 

  2. Hilberer, A. et al. Enabling quantum sensing under extreme pressure: nitrogen-vacancy magnetometry up to 130 GPa. Phys. Rev. B 107, L220102 (2023).

    Google Scholar 

  3. Li, B. et al. Diamond anvil cell behavior up to 4 Mbar. Proc. Natl. Acad. Sci. 115, 1713–1717 (2018).

    Google Scholar 

  4. Fratanduono, D. E. et al. Establishing gold and platinum standards to 1 terapascal using shockless compression. Science 372, 1063–1068 (2021).

    Google Scholar 

  5. Lazicki, A. et al. Metastability of diamond ramp-compressed to 2 terapascals. Nature 589, 532–535 (2021).

    Google Scholar 

  6. Dewaele, A., Loubeyre, P., Occelli, F., Marie, O. & Mezouar, M. Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat. Commun. 9, 2913 (2018).

    Google Scholar 

  7. Dubrovinskaia, N. et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2, e1600341 (2016).

    Google Scholar 

  8. Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968).

    Google Scholar 

  9. Myung, C. W., Hirshberg, B. & Parrinello, M. Prediction of a supersolid phase in high-pressure deuterium. Phys. Rev. Lett. 128, 045301 (2022).

  10. Babaev, E., Sudbø, A. & Ashcroft, N. W. Observability of a projected new state of matter: a metallic superfluid. Phys. Rev. Lett. 95, 105301 (2005).

  11. Eremets, M. I., Drozdov, A. P., Kong, P. P. & Wang, H. Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys. 15, 1246–1249 (2019).

    Google Scholar 

  12. Loubeyre, P., Occelli, F. & Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631–635 (2020).

    Google Scholar 

  13. Loubeyre, P., Occelli, F. & Dumas, P. Compression of D 2 to 460 GPa and isotopic effects in the path to metal hydrogen. Phys. Rev. Lett. 129, 035501 (2022).

    Google Scholar 

  14. Dias, R. P. & Silvera, I. F. Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355, 715–718 (2017).

    Google Scholar 

  15. Geng, H. Y. Public debate on metallic hydrogen to boost high pressure research. Matter Radiat. Extrem. 2, 275–277 (2017).

    Google Scholar 

  16. Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 310GPa. J. Appl. Phys. 100, 043516 (2006).

    Google Scholar 

  17. Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 410 GPa. J. Phys. Conf. Ser. 215, 012195 (2010).

    Google Scholar 

  18. Eremets, M. I. et al. Universal diamond edge Raman scale to 0.5 terapascal and implications for the metallization of hydrogen. Nat. Commun. 14, 907 (2023).

    Google Scholar 

  19. Mao, H. K. & Hemley, R. J. Optical transitions in diamond at ultrahigh pressures. Nature 351, 721–724 (1991).

    Google Scholar 

  20. Ruoff, A. L., Luo, H. & Vohra, Y. K. The closing diamond anvil optical window in multimegabar research. J. Appl. Phys. 69, 6413–6416 (1991).

    Google Scholar 

  21. Surh, M. P., Louie, S. G. & Cohen, M. L. Band gaps of diamond under anisotropic stress. Phys. Rev. B 45, 8239–8247 (1992).

    Google Scholar 

  22. Onodera, A. et al. Pressure dependence of the optical-absorption edge of diamond. Phys. Rev. B 44, 12176–12179 (1991).

    Google Scholar 

  23. Trojan, I. A., Eremets, M. I., Korolik, M. Y. U., Struzhkin, V. V. & Utjuzh, A. N. Fundamental gap of diamond under hydrostatic pressure. Jpn. J. Appl. Phys. 32, 282 (1993).

    Google Scholar 

  24. Tang, J. et al. Metallization and positive pressure dependency of bandgap in solid neon. J. Chem. Phys. 150, 111103 (2019).

    Google Scholar 

  25. Shen, G. et al. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge (IPPS-Ruby2020). High. Press. Res. 40, 299–314 (2020).

    Google Scholar 

  26. Mohammed Idris Bakhit, A., Mutisya, S. & Scandolo, S. Raman frequencies of diamond under non-hydrostatic pressure. Appl. Phys. Lett. 119, 211902 (2021).

    Google Scholar 

  27. Ruoff, A. L. & Luo, H. Pressure strengthening: a possible route to obtaining 9 Mbar and metallic diamonds. J. Appl. Phys. 70, 2066–2070 (1991).

    Google Scholar 

  28. Akahama, Y. & Kawamura, H. Raman study on the stress state of [111] diamond anvils at multimegabar pressure. J. Appl. Phys. 98, 083523 (2005).

    Google Scholar 

  29. Timoshenko, S. P. & Goodier, J. N. Theory of Elasticity (McGraw-Hill Book Company Inc., 1951).

  30. Lee, S. K. et al. Imaging of the electronic bonding of diamond at pressures up to 2 million atmospheres. Sci. Adv. 9, eadg4159 (2023).

    Google Scholar 

  31. Clark, C., Dean, P. J. & Harris, P. V. Intrinsic edge absorption in diamond. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 277, 312–329 (1964).

    Google Scholar 

  32. Cheng, L., Zhu, S., Ouyang, X. & Zheng, W. Bandgap evolution of diamond. Diam. Relat. Mater. 132, 109638 (2023).

    Google Scholar 

  33. Asaumi, K., Mori, T. & Kondo, Y. Effect of very high pressure on the optical absorption edge in solid Xe and its implication for metallization. Phys. Rev. Lett. 49, 837–840 (1982).

    Google Scholar 

  34. Pascarelli, S. et al. Materials under extreme conditions using large X-ray facilities. Nat. Rev. Methods Prim. 3, 82 (2023).

    Google Scholar 

  35. Ji, C. et al. Ultrahigh-pressure crystallographic passage towards metallic hydrogen. Nature 641, 904–909 (2025).

    Google Scholar 

  36. Goncharov, A. F. & Struzhkin, V. V. Comment on “Observation of the Wigner-Huntington transition to metallic hydrogen”. Science 357, eaam9736 (2017).

    Google Scholar 

  37. Liu, X. D., Dalladay-Simpson, P., Howie, R. T., Li, B. & Gregoryanz, E. Comment on “Observation of the Wigner-Huntington transition to metallic hydrogen”. Science 357, eaan2286 (2017).

  38. Monacelli, L., Casula, M., Nakano, K., Sorella, S. & Mauri, F. Quantum phase diagram of high-pressure hydrogen. Nat. Phys. 19, 845–850 (2023).

    Google Scholar 

  39. Hilberer, A. et al. Source data for: Spectroscopic limits of diamond anvils to 520 GPa and projected bandgap closure. Zenodo https://doi.org/10.5281/zenodo.18350936 (2026).

Download references

Acknowledgements

We acknowledge European Synchrotron Radiation Facility (ESRF) access under proposal HC-4884 for X-ray diffraction data on gold and Ne, and we thank M. Mezouar for assistance on the ID27 beamline and for helpful discussions. We acknowledge SOLEIL Synchrotron access under proposal 20241170 and thank F. Jamme for providing access and help with the DISCO UV beamline. We thank G. Geneste for valuable discussions.

Author information

Authors and Affiliations

  1. CEA DAM DIF, Arpajon, France

    A. Hilberer, P. Loubeyre, C. Pépin, F. Occelli, G. Weck, R. André & P. Dumas

  2. Laboratoire Matière en Conditions Extrêmes, Université Paris-Saclay, CEA, Bruyères-le-Châtel, France

    A. Hilberer, P. Loubeyre, C. Pépin, F. Occelli, G. Weck & R. André

  3. Synchrotron SOLEIL, Gif-sur-Yvette, France

    P. Dumas

Authors
  1. A. Hilberer
    View author publications

    Search author on:PubMed Google Scholar

  2. P. Loubeyre
    View author publications

    Search author on:PubMed Google Scholar

  3. C. Pépin
    View author publications

    Search author on:PubMed Google Scholar

  4. F. Occelli
    View author publications

    Search author on:PubMed Google Scholar

  5. G. Weck
    View author publications

    Search author on:PubMed Google Scholar

  6. R. André
    View author publications

    Search author on:PubMed Google Scholar

  7. P. Dumas
    View author publications

    Search author on:PubMed Google Scholar

Contributions

P.L. and P.D. designed the project. P.L. and F.O. prepared the DACs. R.A. FIB-machined the toroidal anvils and gasket holes. P.D. and C.P. performed the UV absorption measurements. P.D. and A.H. performed the visible-IR absorption measurements. G.W., F.O., A.H., and P.L. performed the XRD measurements. A.H. and F.O. performed the Raman measurements. A.H., C.P., P.D., and P.L. analyzed the absorption data. G.W. and A.H. analyzed the XRD data. A.H. and P.L. wrote the draft. All authors discussed the data and revised the manuscript.

Corresponding authors

Correspondence to A. Hilberer or P. Loubeyre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilberer, A., Loubeyre, P., Pépin, C. et al. Spectroscopic limits of diamond anvils to 520 GPa and projected bandgap closure. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69533-7

Download citation

  • Received: 12 September 2025

  • Accepted: 30 January 2026

  • Published: 12 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69533-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing