Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
A Stellar magnesium to silicon ratio in the atmosphere of an exoplanet
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 18 February 2026

A Stellar magnesium to silicon ratio in the atmosphere of an exoplanet

  • Jorge A. Sanchez  ORCID: orcid.org/0000-0002-9142-63781,
  • Peter C. B. Smith1,
  • Krishna Kanumalla1,
  • Luis Welbanks  ORCID: orcid.org/0000-0003-0156-45641,
  • Michael R. Line  ORCID: orcid.org/0000-0001-6247-83231 na1,
  • Stefan Pelletier  ORCID: orcid.org/0000-0002-8573-805X2,
  • Steven Desch1,
  • Patrick Young  ORCID: orcid.org/0000-0003-1705-59911,
  • Jennifer Patience1,
  • Jacob Bean3,
  • Matteo Brogi4,5,
  • Dan Jaffe6,
  • Gregory N. Mace  ORCID: orcid.org/0000-0001-7875-63916,
  • Megan Weiner Mansfield  ORCID: orcid.org/0000-0003-4241-74137,
  • Vatsal Panwar8,9,10,
  • Vivien Parmentier  ORCID: orcid.org/0000-0001-9521-625811,
  • Lorenzo Pino  ORCID: orcid.org/0000-0002-1321-885612,
  • Arjun Baliga Savel  ORCID: orcid.org/0000-0002-2454-768X7,
  • Lennart van Sluijs13 &
  • …
  • Joost P. Wardenier14,15 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atmospheric chemistry
  • Exoplanets

Abstract

The elemental compositions of exoplanets encode information about their formation environments and internal structures. While volatile ratios such as carbon-to-oxygen (C/O) are used to trace formation location, the rock-forming elements–magnesium (Mg), silicon (Si), and iron (Fe)–govern interior mineralogy and are commonly assumed to reflect the host star’s abundances. Yet this assumption remains largely untested. Ultra-hot Jupiters, gas-giant exoplanets with dayside temperatures above 3000 K, provide rare access to refractory elements that remain gaseous. Here we present high-resolution thermal emission spectroscopy of the exoplanet WASP-189b (\({T}_{eq}=335{4}_{-34}^{+27}\) K) obtained with the Immersion Grating Infrared Spectrometer (IGRINS) on Gemini South. We detect neutral iron (Fe i), magnesium (Mg i), silicon (Si i), water (H2O), carbon monoxide (CO), and hydroxyl (OH) at signal-to-noise ratios exceeding 4, and retrieve their elemental abundances. We show that the Mg/Si, Fe/Mg, and Si/Fe ratios are consistent with stellar values, while the refractory-to-volatile ratio is enhanced by roughly a factor of 2. These findings demonstrate that giant-planet atmospheres can preserve stellar-like rock-forming ratios, providing an empirical validation of the stellar-proxy assumption that underpins planetary composition and formation models across exoplanet systems.

Data availability

This work is based on observations made with the Gemini South Telescope. The raw data products are available within the Gemini Observatory Archive [https://archive.gemini.edu/searchform] under program IDs GS-2021B-Q-113 and GS-2023A-Q-231. The data generated and analyzed in this study, including reduced data cubes, model spectra, files used to generate cross correlation maps, and the main retrieval outputs have been deposited in following Zenodo repository via https://doi.org/10.5281/zenodo.18462071. Stellar abundances quoted in this analysis are from refs. 18, 41 and 68. Solar abundances quoted in this analysis are from40. Source data are provided with this paper.

Code availability

The CHIMERA code used in this analysis is based upon that presented in ref. 21, and can be obtained as described in ref. 21. The data products used in the analysis were reduced using the cubify package: https://zenodo.org/records/14194202. The code also made use of the publicly available fastchem tool59: https://github.com/NewStrangeWorlds/FastChem. This analysis also made use of the nested-sampling package pymultinest: https://johannesbuchner.github.io/PyMultiNest/, joblib loop parallelization package: https://joblib.readthedocs.io/en/latest/, and corner.py: https://corner.readthedocs.io/en/latest/.

References

  1. Guillot, T. et al. Giant Planets from the Inside-Out. In Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K. & Tamura, M. (eds.) Protostars and Planets VII, vol. 534 of Astronomical Society of the Pacific Conference Series, 947 (2023).

  2. Venturini, J. & Helled, R. Jupiter’s heavy-element enrichment expected from formation models. Astron. Astrophys. (AA) 634, A31 (2020).

    Google Scholar 

  3. Madhusudhan, N. Exoplanetary Atmospheres: Key Insights, Challenges, and Prospects. ARAA 57, 617–663 (2019).

    Google Scholar 

  4. Öberg, K. I., Murray-Clay, R. & Bergin, E. A. The Effects of Snowlines on C/O in Planetary Atmospheres. ApJL 743, L16 (2011).

    Google Scholar 

  5. Madhusudhan, N. C/O Ratio as a Dimension for Characterizing Exoplanetary Atmospheres. Astrophysical J. 758, 36 (2012).

    Google Scholar 

  6. Cridland, A. J., Pudritz, R. E. & Alessi, M. Composition of early planetary atmospheres - I. Connecting disc astrochemistry to the formation of planetary atmospheres. MNRAS 461, 3274–3295 (2016).

    Google Scholar 

  7. Mordasini, C., van Boekel, R., Mollière, P., Henning, T. & Benneke, B. The Imprint of Exoplanet Formation History on Observable Present-day Spectra of Hot Jupiters. Astrophysical J. 832, 41 (2016).

    Google Scholar 

  8. Kempton, E. M. R. & Knutson, H. A. Transiting Exoplanet Atmospheres in the Era of JWST. Rev. Mineral. Geochem. 90, 411–464 (2024).

    Google Scholar 

  9. Lichtenberg, T. & Krijt, S. System-level Fractionation of Carbon from Disk and Planetesimal Processing. ApJL 913, L20 (2021).

    Google Scholar 

  10. Lothringer, J. D. et al. A New Window into Planet Formation and Migration: Refractory-to-Volatile Elemental Ratios in Ultra-hot Jupiters. Astrophysical J. 914, 12 (2021).

    Google Scholar 

  11. Chachan, Y., Knutson, H. A., Lothringer, J. & Blake, G. A. Breaking Degeneracies in Formation Histories by Measuring Refractory Content in Gas Giants. Astrophysical J. 943, 112 (2023).

    Google Scholar 

  12. Thiabaud, A., Marboeuf, U., Alibert, Y., Leya, I. & Mezger, K. Elemental ratios in stars vs planets. AA 580, A30 (2015).

    Google Scholar 

  13. Pelletier, S. et al. CRIRES+ and ESPRESSO Reveal an Atmosphere Enriched in Volatiles Relative to Refractories on the Ultrahot Jupiter WASP-121b. AJ 169, 10 (2025).

    Google Scholar 

  14. Smith, P. C. B. et al. The Roasting Marshmallows Program with IGRINS on Gemini South. II. WASP-121 b has Superstellar C/O and Refractory-to-volatile Ratios. Astronomical J. 168, 293 (2024).

    Google Scholar 

  15. Dorn, C., Hinkel, N. R. & Venturini, J. Bayesian analysis of interiors of HD 219134b, Kepler-10b, Kepler-93b, CoRoT-7b, 55 Cnc e, and HD 97658b using stellar abundance proxies. Astron. Astrophys. (AA) 597, A38 (2017).

    Google Scholar 

  16. Unterborn, C. T. & Panero, W. R. The Effects of Mg/Si on the Exoplanetary Refractory Oxygen Budget. Astrophysical J. 845, 61 (2017).

    Google Scholar 

  17. Spaargaren, R. J., Ballmer, M. D., Bower, D. J., Dorn, C. & Tackley, P. J. The influence of bulk composition on the long-term interior-atmosphere evolution of terrestrial exoplanets. Astron. Astrophys. (AA) 643, A44 (2020).

    Google Scholar 

  18. Lendl, M. et al. The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS. Astron. Astrophys. (AA) 643, A94 (2020).

    Google Scholar 

  19. Deline, A. et al. The atmosphere and architecture of WASP-189 b probed by its CHEOPS phase curve. Astron. Astrophys. (AA) 659, A74 (2022).

    Google Scholar 

  20. Park, C. et al. Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer). In Ramsay, S. K., McLean, I. S. & Takami, H. (eds.) Ground-based and Airborne Instrumentation for Astronomy V, vol. 9147 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 91471D (2014).

  21. Line, M. R. et al. A solar c/o and sub-solar metallicity in a hot jupiter atmosphere. Nature 598, 580–584 (2021).

    Google Scholar 

  22. Brogi, M. et al. The Roasting Marshmallows Program with IGRINS on Gemini South I: Composition and Climate of the Ultrahot Jupiter WASP-18 b. AJ 165, 91 (2023).

    Google Scholar 

  23. Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010).

    Google Scholar 

  24. Birkby, J. L. Exoplanet Atmospheres at High Spectral Resolution. arXiv e-prints arXiv:1806.04617 (2018). 1806.04617.

  25. Smith, P. C. B. et al. A Combined Ground-based and JWST Atmospheric Retrieval Analysis: Both IGRINS and NIRSpec Agree that the Atmosphere of WASP-77A b Is Metal-poor. Astronomical J. 167, 110 (2024).

    Google Scholar 

  26. Ramkumar, S., Gibson, N. P., Nugroho, S. K., Maguire, C. & Fortune, M. High-resolution emission spectroscopy retrievals of MASCARA-1b with CRIRES+: strong detections of CO, H2O, and Fe emission lines and a C/O consistent with solar. MNRAS 525, 2985–3005 (2023).

    Google Scholar 

  27. Cont, D. et al. Silicon in the dayside atmospheres of two ultra-hot Jupiters. AA 657, L2 (2022).

    Google Scholar 

  28. Prinoth, B. et al. Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b. Nat. Astron. 6, 449–457 (2022).

    Google Scholar 

  29. Gandhi, S. et al. Retrieval Survey of Metals in Six Ultrahot Jupiters: Trends in Chemistry, Rain-out, Ionization, and Atmospheric Dynamics. Astronomical J. 165, 242 (2023).

    Google Scholar 

  30. Yan, F. et al. Detection of CO emission lines in the dayside atmospheres of WASP-33b and WASP-189b with GIANO. AA 661, L6 (2022).

    Google Scholar 

  31. Lesjak, F. et al. Retrieving wind properties from the ultra-hot dayside of WASP-189b with CRIRES+. arXiv e-prints arXiv:2411.19662 (2024). 2411.19662.

  32. van Sluijs, L. et al. First Results from WINERED: Detection of Emission Lines from Neutral Iron and a Combined Set of Trace Species on the Dayside of WASP-189 b. Astronomical J. 170, 217 (2025).

    Google Scholar 

  33. Brogi, M. & Line, M. R. Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. Astronomical J. 157, 114 (2019).

    Google Scholar 

  34. Gibson, N. P. et al. Detection of Fe I in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. MNRAS 493, 2215–2228 (2020).

    Google Scholar 

  35. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the mcmc hammer. Publ. Astronomical Soc. Pac. 125, 306 (2013).

    Google Scholar 

  36. Stock, J. W., Kitzmann, D., Patzer, A. B. C. & Sedlmayr, E. FastChem: A computer program for efficient complex chemical equilibrium calculations in the neutral/ionized gas phase with applications to stellar and planetary atmospheres. MNRAS 479, 865–874 (2018).

    Google Scholar 

  37. Kopparapu, R. K., Kasting, J. F. & Zahnle, K. J. A Photochemical Model for the Carbon-rich Planet WASP-12b. ApJ 745, 77 (2012).

    Google Scholar 

  38. Moses, J. I., Madhusudhan, N., Visscher, C. & Freedman, R. S. Chemical Consequences of the C/O Ratio on Hot Jupiters: Examples from WASP-12b, CoRoT-2b, XO-1b, and HD 189733b. ApJ 763, 25 (2013).

    Google Scholar 

  39. Lothringer, J. D., Barman, T. & Koskinen, T. Extremely Irradiated Hot Jupiters: Non-Oxide Inversions, H- Opacity, and Thermal Dissociation of Molecules. ArXiv e-prints: 1805.00038 (2018). 1805.00038.

  40. Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: A 2020 vision. Astron. Astrophys. (AA) 653, A141 (2021).

    Google Scholar 

  41. Saffe, C. et al. Chemical analysis of early-type stars with planets. Astron. Astrophys. (AA) 647, A49 (2021).

    Google Scholar 

  42. Pelletier, S. et al. Vanadium oxide and a sharp onset of cold-trapping on a giant exoplanet. Nature 619, 491–494 (2023).

    Google Scholar 

  43. Dorn, C. et al. Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron. Astrophys. (AA) 577, A83 (2015).

    Google Scholar 

  44. Brewer, J. M. & Fischer, D. A. C/O and Mg/Si Ratios of Stars in the Solar Neighborhood. ApJ 831, 20 (2016).

    Google Scholar 

  45. Zuckerman, B. & Young, E. Characterizing the chemistry of planetary materials around white dwarf stars. In Handbook of Exoplanets, 1–22 (Springer, 2017).

  46. Xu, S. et al. Compositions of Planetary Debris around Dusty White Dwarfs. AJ 158, 242 (2019).

    Google Scholar 

  47. Johnson, T. M. et al. Unusual Abundances from Planetary System Material Polluting the White Dwarf G238-44. ApJ 941, 113 (2022).

    Google Scholar 

  48. Rogers, L. K. et al. Seven white dwarfs with circumstellar gas discs II: tracing the composition of exoplanetary building blocks. MNRAS 532, 3866–3880 (2024).

    Google Scholar 

  49. Bonsor, A. et al. Host-star and exoplanet compositions: a pilot study using a wide binary with a polluted white dwarf. MNRAS 503, 1877–1883 (2021).

    Google Scholar 

  50. Lodders, K. Solar System Abundances and Condensation Temperatures of the Elements. ApJ 591, 1220–1247 (2003).

    Google Scholar 

  51. Adibekyan, V. et al. A compositional link between rocky exoplanets and their host stars. Science 374, 330–332 (2021).

    Google Scholar 

  52. Mace, G. et al. IGRINS at the Discovery Channel Telescope and Gemini South. In Evans, C. J., Simard, L. & Takami, H. (eds.) Ground-based and Airborne Instrumentation for Astronomy VII, vol. 10702 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 107020Q (2018).

  53. Lee, J.-J. & Gullikson, K. Plp: V2.1 Alpha 3 (2016).

  54. Kanumalla, K. et al. IGRINS Observations of WASP-127 b: H2O, CO, and Super-solar Atmospheric Metallicity in the Inflated Sub-Saturn. AJ 168, 201 (2024).

    Google Scholar 

  55. de Kok, R. J. et al. Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b. Astron. Astrophys. (AA) 554, A82 (2013).

    Google Scholar 

  56. Gibson, N. P., Nugroho, S. K., Lothringer, J., Maguire, C. & Sing, D. K. Relative abundance constraints from high-resolution optical transmission spectroscopy of WASP-121b, and a fast model-filtering technique for accelerating retrievals. MNRAS 512, 4618–4638 (2022).

    Google Scholar 

  57. Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres. ApJ 678, 1419–1435 (2008).

    Google Scholar 

  58. Arcangeli, J. et al. Climate of an ultra hot Jupiter. Spectroscopic phase curve of WASP-18b with HST/WFC3. Astron. Astrophys. (AA) 625, A136 (2019).

    Google Scholar 

  59. Stock, J. W., Kitzmann, D. & Patzer, A. B. C. FASTCHEM 2: an improved computer program to determine the gas-phase chemical equilibrium composition for arbitrary element distributions. MNRAS 517, 4070–4080 (2022).

    Google Scholar 

  60. Borsato, N. W. et al. The Mantis Network. III. Expanding the limits of chemical searches within ultra-hot Jupiters: New detections of Ca I, V I, Ti I, Cr I, Ni I, Sr II, Ba II, and Tb II in KELT-9 b. Astron. Astrophys. (AA) 673, A158 (2023).

    Google Scholar 

  61. Prinoth, B. et al. An atlas of resolved spectral features in the transmission spectrum of WASP-189 b with MAROON-X. Astron. Astrophys. (AA) 685, A60 (2024).

    Google Scholar 

  62. Bell, T. J. et al. Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b. Nat. Astron. 8, 879–898 (2024).

    Google Scholar 

  63. Grimm, S. L. et al. HELIOS-K 2.0 Opacity Calculator and Open-source Opacity Database for Exoplanetary Atmospheres. ApJS 253, 30 (2021).

    Google Scholar 

  64. Husser, T. O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. AA 553, A6 (2013).

    Google Scholar 

  65. Cont, D. et al. Atmospheric characterization of the ultra-hot Jupiter WASP-33b. Detection of Ti and V emission lines and retrieval of a broadened line profile. Astron. Astrophys. (AA) 668, A53 (2022).

    Google Scholar 

  66. Anderson, D. R. et al. WASP-189b: an ultra-hot Jupiter transiting the bright A star HR 5599 in a polar orbit. arXiv e-prints arXiv:1809.04897 (2018). 1809.04897.

  67. Yan, F. et al. A temperature inversion with atomic iron in the ultra-hot dayside atmosphere of WASP-189b. Astron. Astrophys. 640, L5 (2020).

  68. Lam, M. B., Hoeijmakers, H. J., Prinoth, B. & Thorsbro, B. Secrets in the shadow: High precision stellar abundances of fast-rotating A-type exoplanet host stars through transit spectroscopy. AA 691, A141 (2024).

    Google Scholar 

  69. Bergin, E. A., Blake, G. A., Ciesla, F., Hirschmann, M. M. & Li, J. Tracing the ingredients for a habitable earth from interstellar space through planet formation. Proc. Natl. Acad. Sci. 112, 8965–8970 (2015).

    Google Scholar 

  70. Allègre, C. J., Poirier, J.-P., Humler, E. & Hofmann, A. W. The chemical composition of the Earth. Earth Planet. Sci. Lett. 134, 515–526 (1995).

    Google Scholar 

Download references

Acknowledgements

J.A.S., M.R.L., S.K.K., and J.L.B. acknowledge support from NSF grant AST-2307177/8. P.C.B.S. acknowledges support provided by NASA through the NASA FINESST grant 80NSSC22K1598. L.W. and M.W.M. acknowledge support through the 51 Pegasi b Fellowship awarded by the Heising-Simons Foundation. The results reported herein benefited from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate, grant 80NSSC23K1356, PI Steve Desch. This material is based upon work supported by the National Science Foundation under grant MSIP-1836008. We acknowledge Research Computing at Arizona State University for providing high-performance computing and storage resources that have significantly contributed to the research results reported within this manuscript. This work used the Immersion Grating Infrared Spectrometer (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the Mount Cuba Astronomical Foundation, of the US National Science Foundation under grants AST-1229522 and AST-1702267, of the McDonald Observatory of the University of Texas at Austin, of the Korean GMT Project of KASI, and Gemini Observatory. This program is based on observations obtained at the international Gemini Observatory, a program of NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation on behalf of the Gemini Observatory partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovaç μes e Comunicaç μes (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). J.A.S. and M.R.L. would especially like to thank the anonymous queue observers who successfully completed the observing programs this work is based on. We would like to thank Monika Lendl for useful discussion on stellar abundance analyses.

Author information

Author notes
  1. These authors jointly supervised this work: Michael R. Line.

Authors and Affiliations

  1. School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA

    Jorge A. Sanchez, Peter C. B. Smith, Krishna Kanumalla, Luis Welbanks, Michael R. Line, Steven Desch, Patrick Young & Jennifer Patience

  2. Observatoire astronomique de l’Université de Genève, Versoix, Switzerland

    Stefan Pelletier

  3. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, USA

    Jacob Bean

  4. Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy

    Matteo Brogi

  5. INAF – Osservatorio Astrofisico di Torino, Pino Torinese, Italy

    Matteo Brogi

  6. Department of Astronomy, The University of Texas at Austin, Austin, TX, USA

    Dan Jaffe & Gregory N. Mace

  7. Department of Astronomy, University of Maryland, College Park, MD, USA

    Megan Weiner Mansfield & Arjun Baliga Savel

  8. Department of Physics, University of Warwick, Coventry, UK

    Vatsal Panwar

  9. Center for Exoplanets and Habitability, University of Warwick, Coventry, UK

    Vatsal Panwar

  10. School of Physics and Astronomy, University of Birmingham, Birmingham, UK

    Vatsal Panwar

  11. Laboratoire Lagrange, Observatoire de la Côte d’Azur, CNRS, Université Côte d’Azur, Nice, France

    Vivien Parmentier

  12. INAF – Osservatorio Astrofisico di Arcetri, Florence, Italy

    Lorenzo Pino

  13. Department of Astronomy, University of Michigan, Ann Arbor, MI, USA

    Lennart van Sluijs

  14. Trottier Institute for Research on Exoplanets (iREx), Université de Montréal, Montréal, QC, Canada

    Joost P. Wardenier

  15. Physics Institute, Space Research and Planetary Sciences, University of Bern, Bern, Switzerland

    Joost P. Wardenier

Authors
  1. Jorge A. Sanchez
    View author publications

    Search author on:PubMed Google Scholar

  2. Peter C. B. Smith
    View author publications

    Search author on:PubMed Google Scholar

  3. Krishna Kanumalla
    View author publications

    Search author on:PubMed Google Scholar

  4. Luis Welbanks
    View author publications

    Search author on:PubMed Google Scholar

  5. Michael R. Line
    View author publications

    Search author on:PubMed Google Scholar

  6. Stefan Pelletier
    View author publications

    Search author on:PubMed Google Scholar

  7. Steven Desch
    View author publications

    Search author on:PubMed Google Scholar

  8. Patrick Young
    View author publications

    Search author on:PubMed Google Scholar

  9. Jennifer Patience
    View author publications

    Search author on:PubMed Google Scholar

  10. Jacob Bean
    View author publications

    Search author on:PubMed Google Scholar

  11. Matteo Brogi
    View author publications

    Search author on:PubMed Google Scholar

  12. Dan Jaffe
    View author publications

    Search author on:PubMed Google Scholar

  13. Gregory N. Mace
    View author publications

    Search author on:PubMed Google Scholar

  14. Megan Weiner Mansfield
    View author publications

    Search author on:PubMed Google Scholar

  15. Vatsal Panwar
    View author publications

    Search author on:PubMed Google Scholar

  16. Vivien Parmentier
    View author publications

    Search author on:PubMed Google Scholar

  17. Lorenzo Pino
    View author publications

    Search author on:PubMed Google Scholar

  18. Arjun Baliga Savel
    View author publications

    Search author on:PubMed Google Scholar

  19. Lennart van Sluijs
    View author publications

    Search author on:PubMed Google Scholar

  20. Joost P. Wardenier
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.A.S. performed the analysis, wrote the manuscript, and prepared one of the proposals that resulted in the post-eclipse dataset. P.C.B.S. developed code, contributed text to the manuscript, provided scientific guidance, and reviewed the paper. K.K. performed additional retrieval analyses and integrated the FastChem code into the CHIMERA retrieval pipeline. L.W. provided scientific input, guided J.A.S. throughout the writing process, and advised on manuscript focus. M.R.L. conceived the paper, wrote the original Gemini L.L.P. proposal from which the pre-eclipse dataset originates, edited and revised the manuscript, and supervised J.A.S. throughout the project. S.P. provided code and spectral comparisons that helped identify a bug in the atomic opacities. S.D., P.Y., and J.P. provided comments on multiple drafts and scientific guidance on planetary formation and composition. J.B., M.B., D.J., and G.N.M. contributed to the development and operation of IGRINS and its associated data pipeline. M.W.M. and A.B.S. contributed to data analysis, retrieval tests, and manuscript comments. V.P., L.P., L.v.S., and J.P.W. provided theoretical context on atmospheric chemistry and manuscript feedback. All authors read and approved the final version of the manuscript and contributed to the discussion of results.

Corresponding authors

Correspondence to Jorge A. Sanchez or Michael R. Line.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41467_2026_69610_MOESM1_ESM.pdf

SI

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez, J.A., Smith, P.C.B., Kanumalla, K. et al. A Stellar magnesium to silicon ratio in the atmosphere of an exoplanet. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69610-x

Download citation

  • Received: 08 September 2025

  • Accepted: 03 February 2026

  • Published: 18 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69610-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing