Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
A reversible allosteric inhibitor of GlyT2 for neuropathic pain without on-target side effects
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 February 2026

A reversible allosteric inhibitor of GlyT2 for neuropathic pain without on-target side effects

  • Ryan P. Cantwell Chater  ORCID: orcid.org/0000-0003-2301-68411,2,
  • Julian Peiser-Oliver2 na1,
  • Tanmay K. Pati3 na1,
  • Ada S. Quinn  ORCID: orcid.org/0009-0003-1862-07504,5 na1,
  • Irina Lotsaris  ORCID: orcid.org/0000-0001-5627-98972 na1,
  • Zachary J. Frangos  ORCID: orcid.org/0000-0002-5499-40506,7,
  • Kristen E. Anderson  ORCID: orcid.org/0009-0002-4488-52028,9,
  • Anna E. Tischer  ORCID: orcid.org/0009-0001-4268-59046,
  • Billy J. Williams-Noonan4,
  • Karin R. Aubrey  ORCID: orcid.org/0000-0002-1808-40418,9,
  • Megan L. O’Mara  ORCID: orcid.org/0000-0002-8764-15854,5,
  • Michael Michaelides  ORCID: orcid.org/0000-0003-0398-49176,
  • Sarasa A. Mohammadi  ORCID: orcid.org/0000-0002-8351-86359,10,
  • Christopher L. Cioffi  ORCID: orcid.org/0000-0003-0642-79053,
  • Robert J. Vandenberg  ORCID: orcid.org/0000-0003-1523-48142 &
  • …
  • Azadeh Shahsavar  ORCID: orcid.org/0000-0001-5405-597X1 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chronic pain
  • Cryoelectron microscopy
  • Electrophysiology
  • Pharmacology
  • Transporters in the nervous system

Abstract

Chronic neuropathic pain, caused by nerve damage or disease, is increasing in prevalence, but current treatments are ineffective and over-reliant on opioids. The neuronal glycine transporter, GlyT2, regulates inhibitory glycinergic neurotransmission and represents a promising target for new analgesics. However, most GlyT2 inhibitors cause significant side effects, in part due to irreversible inhibition at analgesic doses. Here we develop a reversible inhibitor of GlyT2, RPI-GLYT2-82, and identify its binding site by determining cryo-EM structures of human GlyT2. We capture three fundamental conformational states of GlyT2 in the substrate-free state, and bound to either glycine, RPI-GLYT2-82 or the pseudo-irreversible inhibitor ORG25543. We demonstrate that RPI-GLYT2-82 dissociates from GlyT2 faster than ORG25543, providing analgesia in mouse neuropathic pain models without on-target side-effects or addiction liability. Our data provide a mechanistic understanding of allosteric inhibition of glycine transport, enabling structure-based design of non-opioid analgesics.

Data availability

Atomic coordinates of hGlyT2Δ185 bound to ORG25543, RPI-GLYT2-82, glycine, or in substrate-free state have been deposited in the Protein Data Bank (PDB) under accession codes 9HUE, 9HUF, 9R1H, and 9HUG, respectively. The corresponding cryo-EM maps have been deposited in the Electron Microscopy Data Bank (EMDB) under accession numbers EMD-52409, EMD-52410, EMDB-53509, and EMD-52411, respectively. Molecular dynamics starting conformations, mdp files and topologies are available at (https://github.com/OMaraLab/GlyT2_2024) and on Zenodo as entry 18179190 [doi.org/10.5281/zenodo.18179190]96. Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request. Source data are provided with this paper.

References

  1. Finnerup, N. B. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 14, 162–173 (2015).

    Google Scholar 

  2. Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Prim. 3, 17002 (2017).

    Google Scholar 

  3. Lu, Y. et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J. Clin. Invest 123, 4050–4062 (2013).

    Google Scholar 

  4. Aroeira, R. I., Sebastiao, A. M. & Valente, C. A. GlyT1 and GlyT2 in brain astrocytes: expression, distribution and function. Brain Struct. Funct. 219, 817–830 (2014).

    Google Scholar 

  5. Vandenberg, R. J., Ryan, R. M., Carland, J. E., Imlach, W. L. & Christie, M. J. Glycine transport inhibitors for the treatment of pain. Trends Pharm. Sci. 35, 423–430 (2014).

    Google Scholar 

  6. Cioffi, C. L. Modulation of glycine-mediated spinal neurotransmission for the treatment of chronic pain. J. Med Chem. 61, 2652–2679 (2018).

    Google Scholar 

  7. Harvey, R. J. & Yee, B. K. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat. Rev. Drug Discov. 12, 866–885 (2013).

    Google Scholar 

  8. Rousseau, F., Aubrey, K. R. & Supplisson, S. The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons. J. Neurosci. 28, 9755–9768 (2008).

    Google Scholar 

  9. Arribas-Gonzalez, E., de Juan-Sanz, J., Aragon, C. & Lopez-Corcuera, B. Molecular basis of the dominant negative effect of a glycine transporter 2 mutation associated with hyperekplexia. J. Biol. Chem. 290, 2150–2165 (2015).

    Google Scholar 

  10. Morrow, J. A. et al. Molecular cloning and functional expression of the human glycine transporter GlyT2 and chromosomal localisation of the gene in the human genome. FEBS Lett. 439, 334–340 (1998).

    Google Scholar 

  11. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    Google Scholar 

  12. Subramanian, N. et al. Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2. PLoS One 11, e0157583 (2016).

    Google Scholar 

  13. Benito-Munoz, C. et al. Modification of a putative third sodium site in the glycine transporter GlyT2 influences the chloride dependence of substrate transport. Front Mol. Neurosci. 11, 347 (2018).

    Google Scholar 

  14. Shahsavar, A. et al. Structural insights into the inhibition of glycine reuptake. Nature 591, 677–681 (2021).

    Google Scholar 

  15. Motiwala, Z. et al. Structural basis of GABA reuptake inhibition. Nature 606, 820–826 (2022).

    Google Scholar 

  16. Li, Y. et al. Dopamine reuptake and inhibitory mechanisms in human dopamine transporter. Nature 632, 686–694 (2024).

    Google Scholar 

  17. Nielsen, J. C. et al. Structure of the human dopamine transporter in complex with cocaine. Nature 632, 678–685 (2024).

    Google Scholar 

  18. Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

    Google Scholar 

  19. Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

    Google Scholar 

  20. Srivastava, D. K. et al. Structure of the human dopamine transporter and mechanisms of inhibition. Nature 632, 672–677 (2024).

    Google Scholar 

  21. Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).

    Google Scholar 

  22. Plenge, P. et al. The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter. Nat. Commun. 12, 5063 (2021).

    Google Scholar 

  23. Pedersen, C. N. et al. Cryo-EM structure of the dopamine transporter with a novel atypical non-competitive inhibitor bound to the orthosteric site. J. Neurochem 168, 2043–2055 (2024).

    Google Scholar 

  24. Hu, T. et al. Transport and inhibition mechanisms of the human noradrenaline transporter. Nature 632, 930–937 (2024).

    Google Scholar 

  25. Wei, Y. et al. Transport mechanism and pharmacology of the human GlyT1. Cell 187, 1719–1732 e1714 (2024).

    Google Scholar 

  26. Vandenberg, R. J., Shaddick, K. & Ju, P. Molecular basis for substrate discrimination by glycine transporters. J. Biol. Chem. 282, 14447–14453 (2007).

    Google Scholar 

  27. Benito-Munoz, C. et al. Structural determinants of the neuronal glycine transporter 2 for the selective inhibitors ALX1393 and ORG25543. ACS Chem. Neurosci. 12, 1860–1872 (2021).

    Google Scholar 

  28. Wilson, B. S. et al. Peripheral administration of selective glycine transporter-2 inhibitor, Oleoyl-D-Lysine, reverses chronic neuropathic pain but not acute or inflammatory pain in male mice. J. Pharm. Exp. Ther. 382, 246–255 (2022).

    Google Scholar 

  29. Mingorance-Le Meur, A. et al. Reversible inhibition of the glycine transporter GlyT2 circumvents acute toxicity while preserving efficacy in the treatment of pain. Br. J. Pharm. 170, 1053–1063 (2013).

    Google Scholar 

  30. Caulfield, W. L. et al. The first potent and selective inhibitors of the glycine transporter type 2. J. Med Chem. 44, 2679–2682 (2001).

    Google Scholar 

  31. Chater, R. C. et al. The efficacy of the analgesic GlyT2 inhibitor, ORG25543, is determined by two connected allosteric sites. J. Neurochem. https://doi.org/10.1111/jnc.16028 (2023).

  32. Bradaia, A., Schlichter, R. & Trouslard, J. Role of glial and neuronal glycine transporters in the control of glycinergic and glutamatergic synaptic transmission in lamina X of the rat spinal cord. J. Physiol. 559, 169–186 (2004).

    Google Scholar 

  33. Morita, K. et al. Spinal antiallodynia action of glycine transporter inhibitors in neuropathic pain models in mice. J. Pharm. Exp. Ther. 326, 633–645 (2008).

    Google Scholar 

  34. Mostyn, S. N. et al. Development of an N-acyl amino acid that selectively inhibits the glycine transporter 2 to produce analgesia in a rat model of chronic pain. J. Med Chem. 62, 2466–2484 (2019).

    Google Scholar 

  35. Jeong, H. J., Vandenberg, R. J. & Vaughan, C. W. N-arachidonyl-glycine modulates synaptic transmission in superficial dorsal horn. Br. J. Pharm. 161, 925–935 (2010).

    Google Scholar 

  36. Lee, H. J. et al. Reduction of postoperative pain and opioid consumption by VVZ-149, first-in-class analgesic molecule: a confirmatory phase 3 trial of laparoscopic colectomy. J. Clin. Anesth. 101, 111729 (2025).

    Google Scholar 

  37. Nedeljkovic, S. S. et al. Exploratory study of VVZ-149, a novel analgesic molecule, in the affective component of acute postoperative pain after laparoscopic colorectal surgery. J. Clin. Anesth. 76, 110576 (2022).

    Google Scholar 

  38. Pang, M. H., Kim, Y., Jung, K. W., Cho, S. & Lee, D. H. A series of case studies: practical methodology for identifying antinociceptive multi-target drugs. Drug Discov. Today 17, 425–434 (2012).

    Google Scholar 

  39. Tonge, P. J. Drug-target kinetics in drug discovery. ACS Chem. Neurosci. 9, 29–39 (2018).

    Google Scholar 

  40. Cusack, K. P. et al. Design strategies to address kinetics of drug binding and residence time. Bioorg. Med Chem. Lett. 25, 2019–2027 (2015).

    Google Scholar 

  41. Girotto, G. L. et al. The N-terminal tail of the glycine transporter: role in transporter phosphorylation. Med. Res. Arch. https://doi.org/10.18103/mra.v8i5.2085 (2020).

  42. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl−dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Google Scholar 

  43. Frangos, Z. J. et al. Membrane cholesterol regulates inhibition and substrate transport by the glycine transporter, GlyT2. Life Sci. Alliance https://doi.org/10.26508/lsa.202201708 (2023).

  44. Hong, W. C. & Amara, S. G. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J. Biol. Chem. 285, 32616–32626 (2010).

    Google Scholar 

  45. Nunez, E., Alonso-Torres, P., Fornes, A., Aragon, C. & Lopez-Corcuera, B. The neuronal glycine transporter GLYT2 associates with membrane rafts: functional modulation by lipid environment. J. Neurochem 105, 2080–2090 (2008).

    Google Scholar 

  46. Liu, X., Mitrovic, A. D. & Vandenberg, R. J. Glycine transporter 1 associates with cholesterol-rich membrane raft microdomains. Biochem Biophys. Res Commun. 384, 530–534 (2009).

    Google Scholar 

  47. Zeppelin, T., Ladefoged, L. K., Sinning, S., Periole, X. & Schiott, B. A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition. PLoS Comput Biol. 14, e1005907 (2018).

    Google Scholar 

  48. Malinauskaite, L. et al. A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. Nat. Struct. Mol. Biol. 21, 1006–1012 (2014).

    Google Scholar 

  49. Coleman, J. A. et al. Serotonin transporter-ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

    Google Scholar 

  50. Tan, J. et al. Molecular basis of human noradrenaline transporter reuptake and inhibition. Nature 632, 921–929 (2024).

    Google Scholar 

  51. Focht, D. et al. A non-helical region in transmembrane helix 6 of hydrophobic amino acid transporter MhsT mediates substrate recognition. EMBO J. 40, e105164 (2021).

    Google Scholar 

  52. Hao, M. H., Haq, O. & Muegge, I. Torsion angle preference and energetics of small-molecule ligands bound to proteins. J. Chem. Inf. Model 47, 2242–2252 (2007).

    Google Scholar 

  53. Zhang, Y. et al. Structural elements required for coupling ion and substrate transport in the neurotransmitter transporter homolog LeuT, Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.1716870115 (2018).

  54. Ben-Yona, A., Bendahan, A. & Kanner, B. I. A glutamine residue conserved in the neurotransmitter:sodium:symporters is essential for the interaction of chloride with the GABA transporter GAT-1. J. Biol. Chem. 286, 2826–2833 (2011).

    Google Scholar 

  55. Zhang, Y. W. et al. Chloride-dependent conformational changes in the GlyT1 glycine transporter. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.2017431118 (2021).

  56. Roux, M. J. & Supplisson, S. Neuronal and glial glycine transporters have different stoichiometries. Neuron 25, 373–383 (2000).

    Google Scholar 

  57. Malinauskaite, L. et al. A conserved leucine occupies the empty substrate site of LeuT in the Na(+)-free return state. Nat. Commun. 7, 11673 (2016).

    Google Scholar 

  58. Mostyn, S. N. et al. Identification of an allosteric binding site on the human glycine transporter, GlyT2, for bioactive lipid analgesics. Elife https://doi.org/10.7554/eLife.47150 (2019).

  59. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  60. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Google Scholar 

  61. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Google Scholar 

  62. Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Google Scholar 

  63. Kidmose, R. T. et al. Namdinator - automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019).

    Google Scholar 

  64. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D. Struct. Biol. 75, 861–877 (2019).

    Google Scholar 

  65. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D. Biol. Crystallogr 66, 486–501 (2010).

    Google Scholar 

  66. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D. Struct. Biol. 74, 519–530 (2018).

    Google Scholar 

  67. Bennett, G. J. & Xie, Y. K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107 (1988).

    Google Scholar 

  68. Seltzer, Z., Dubner, R. & Shir, Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43, 205–218 (1990).

    Google Scholar 

  69. Yoon, C., Wook, Y. Y., Sik, N. H., Ho, K. S. & Mo, C. J. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59, 369–376 (1994).

    Google Scholar 

  70. McKendrick, G. et al. Ketamine blocks morphine-induced conditioned place preference and anxiety-like behaviors in mice. Front Behav. Neurosci. 14, 75 (2020).

    Google Scholar 

  71. Schmid, N. et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40, 843–856 (2011).

    Google Scholar 

  72. Sondergaard, C. R., Olsson, M. H., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput 7, 2284–2295 (2011).

    Google Scholar 

  73. Olsson, M. H., Sondergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput 7, 525–537 (2011).

    Google Scholar 

  74. Stroet, M. et al. Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane. J. Chem. Theory Comput 14, 5834–5845 (2018).

    Google Scholar 

  75. Pan, X., Wang, H., Li, C., Zhang, J. Z. H. & Ji, C. MolGpka: A Web Server for Small Molecule pK(a) Prediction Using a Graph-Convolutional Neural Network. J. Chem. Inf. Model 61, 3159–3165 (2021).

    Google Scholar 

  76. Knight, C. J. & Hub, J. S. MemGen: a general web server for the setup of lipid membrane simulation systems. Bioinformatics 31, 2897–2899 (2015).

    Google Scholar 

  77. Hermans, J., Berendsen, H. J. C., Van Gunsteren, W. F. & Postma, J. P. M. A consistent empirical potential for water-protein interactions. Biopolymers 23, 1513–1518 (1984).

    Google Scholar 

  78. Feenstra, K. A., Hess, B. & Berendsen, H. J. C. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput Chem. 20, 786–798 (1999).

    Google Scholar 

  79. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Google Scholar 

  80. Parrinello, M. & Rahman, A. Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980).

    Google Scholar 

  81. Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

    Google Scholar 

  82. Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput 4, 116–122 (2008).

    Google Scholar 

  83. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph 14, 33 (1996).

    Google Scholar 

  84. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014).

    Google Scholar 

  85. PLUMED consortium, Promoting transparency and reproducibility in enhanced molecular simulations. Na.t Methods 16, 670–673 (2019).

  86. Gowers, R. J. et al. in Conference: PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY 2016); 2016-07-11 - 2016-07-11; Medium: ED; Size: 98 (Los Alamos National Laboratory (LANL), Los Alamos, NM (United States), United States, 2019).

  87. Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10, 449–461 (2015).

    Google Scholar 

  88. Massova, I. & Kollman, P. A. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des. 18, 113–135 (2000).

    Google Scholar 

  89. Kumari, R., Kumar, R., Open Source Drug Discovery, C. & Lynn, A. g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model 54, 1951–1962 (2014).

    Google Scholar 

  90. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Google Scholar 

  91. Wang, E. et al. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 119, 9478–9508 (2019).

    Google Scholar 

  92. Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).

    Google Scholar 

  93. Krauth, W. et al. Statistical Mechanics: Algorithms and Computations. 13, (OUP Oxford, 2006).

  94. Sharp, K. A. & Honig, B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev. Biophys. Biophys. Chem. 19, 301–332 (1990).

    Google Scholar 

  95. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput Chem. 31, 455–461 (2010).

    Google Scholar 

  96. Cantwell Chater, R. P. et al. A reversible allosteric inhibitor of GlyT2 for neuropathic pain without on-target side effects. Github, https://doi.org/10.5281/zenodo.18179190 (2025).

Download references

Acknowledgements

We thank Shannon N. Mostyn for early contribution to producing the first hGlyT2 constructs. We thank Julian P. Storm and other members of the ASH lab for helpful discussions, and Dr. Roger Dawson for comments on the manuscript. The plasmid for expression of His-tagged HRV-3C protease was a kind gift from Dr. Eric R. Geertsma. We thank Lise Kristensen for access to the protein production facility, and Eva-Marie L. M. A. Pedersen for assistance with virus production, at the Department of Drug Design and Pharmacology, University of Copenhagen. The cryo-EM data was collected at the Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, supported by the Novo Nordisk Foundation (grants NNF17SA0024386 and NNF22OC0075808). We acknowledge the support offered at the CFIM by Tilmann Pape and Nicholas Sofos. We thank Maria M. Garcia Alai for access to sample preparation and crystallization facility at EMBL Hamburg; Angelica Struve Garcia, Lucas Defelipe, and David R. Carrillo for technical assistance. We are grateful to Assoc. Prof. David Chalmers for access to his Silico software package (http://silico.sourceforge.net). This project has received funding from the Lundbeck Foundation (R368-2021-522), the Novo Nordisk Foundation (NNF23OC0087107), Brødrene Hartmanns Foundation (23080143), and EU Interreg Öresund-Kattegat-Skagerrak project ‘Hanseatic Life Science Research Infrastructure Consortium’ (HALRIC, PP08) to A.S., the National Institute on Drug Abuse, USA, (NIH R01DA048879) to C.L.C. and R.J.V., (NIDA IRP ZIA000069) to M.M and Pain Foundation Ltd to K.R.A. K.E.A. was supported by a Postgraduate scholarship from the University of Sydney. Molecular dynamics simulations were supported by the Australian Government’s National Collaborative Research Infrastructure Strategy (NCRIS), with access to computational resources provided by the National Computational Infrastructure and Pawsey Supercomputing Research Centre through the National Computational Merit Allocation Scheme. The contributions of the NIH authors are considered Works of the United States Government. The findings and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the NIH or the U.S. Department of Health and Human Services.

Author information

Author notes
  1. These authors contributed equally: Julian Peiser-Oliver, Tanmay K. Pati, Ada S. Quinn, Irina Lotsaris.

Authors and Affiliations

  1. Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

    Ryan P. Cantwell Chater & Azadeh Shahsavar

  2. School of Medical Sciences, University of Sydney, Sydney, NSW, Australia

    Ryan P. Cantwell Chater, Julian Peiser-Oliver, Irina Lotsaris & Robert J. Vandenberg

  3. Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA

    Tanmay K. Pati & Christopher L. Cioffi

  4. Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia

    Ada S. Quinn, Billy J. Williams-Noonan & Megan L. O’Mara

  5. ARC Industry Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins (CCeMMP), Parkville, VIC, Australia

    Ada S. Quinn & Megan L. O’Mara

  6. Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA

    Zachary J. Frangos, Anna E. Tischer & Michael Michaelides

  7. Medication Development Program, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA

    Zachary J. Frangos

  8. Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital NSLHD, St Leonards, NSW, Australia

    Kristen E. Anderson & Karin R. Aubrey

  9. Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia

    Kristen E. Anderson, Karin R. Aubrey & Sarasa A. Mohammadi

  10. School of Pharmacy, University of Sydney, Sydney, NSW, Australia

    Sarasa A. Mohammadi

Authors
  1. Ryan P. Cantwell Chater
    View author publications

    Search author on:PubMed Google Scholar

  2. Julian Peiser-Oliver
    View author publications

    Search author on:PubMed Google Scholar

  3. Tanmay K. Pati
    View author publications

    Search author on:PubMed Google Scholar

  4. Ada S. Quinn
    View author publications

    Search author on:PubMed Google Scholar

  5. Irina Lotsaris
    View author publications

    Search author on:PubMed Google Scholar

  6. Zachary J. Frangos
    View author publications

    Search author on:PubMed Google Scholar

  7. Kristen E. Anderson
    View author publications

    Search author on:PubMed Google Scholar

  8. Anna E. Tischer
    View author publications

    Search author on:PubMed Google Scholar

  9. Billy J. Williams-Noonan
    View author publications

    Search author on:PubMed Google Scholar

  10. Karin R. Aubrey
    View author publications

    Search author on:PubMed Google Scholar

  11. Megan L. O’Mara
    View author publications

    Search author on:PubMed Google Scholar

  12. Michael Michaelides
    View author publications

    Search author on:PubMed Google Scholar

  13. Sarasa A. Mohammadi
    View author publications

    Search author on:PubMed Google Scholar

  14. Christopher L. Cioffi
    View author publications

    Search author on:PubMed Google Scholar

  15. Robert J. Vandenberg
    View author publications

    Search author on:PubMed Google Scholar

  16. Azadeh Shahsavar
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.L.C., R.J.V., and A.S. conceived and designed the project. C.L.C. and T.K.P. designed and synthesised RPI-GLYT2-82 compound. R.P.C.C. and A.S. established the protein expression and purification conditions. Expression, purification, cryo-EM sample preparations and data collections, processing, analysis and structure determination were carried out by R.P.C.C. with support from A.S. In vitro experiments were carried out by I.L. and R.P.C.C. with support from R.J.V. In vivo experiments were carried out by J.P-O, Z.J.F, A.E.T, and K.E.A with support from K.R.A., S.A.M., R.J.V., and M.M. The molecular dynamics studies were carried out by A.S.Q. and B.J.W-N, with support from M.L.O. R.P.C.C., R.J.V. and A.S. wrote the initial draft of the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Christopher L. Cioffi, Robert J. Vandenberg or Azadeh Shahsavar.

Ethics declarations

Competing interests

C.L.C., R.J.V. and T.K.P. have a provisional patent application (application number 104743-201) for compound RPI-GLYT2−82. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Elena Bossi who co-reviewed with Tiziana Romanazzi; Ainara Claveras Cabezudo, Ximin Chi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantwell Chater, R.P., Peiser-Oliver, J., Pati, T.K. et al. A reversible allosteric inhibitor of GlyT2 for neuropathic pain without on-target side effects. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69616-5

Download citation

  • Received: 03 June 2025

  • Accepted: 02 February 2026

  • Published: 16 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69616-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research