Abstract
Riboswitches are non-coding RNA motifs that regulate gene expression in response to ligand binding. The glycine tandem riboswitch (GTR) contains two glycine aptamers that interact extensively, driving conformational changes in the downstream expression platform to control gene expression. Despite numerous studies, the role of glycine and RNA folding pathways in co-transcriptional regulation remains unclear. Here, we integrate single-molecule kinetic analysis, co-transcriptional RNA structure probing, and modeling to reveal that the GTR processes multiple molecular inputs sequentially, guided by polymerase pausing. Our findings elucidate its stepwise 5’-to-3’ folding pathway and demonstrate how sequential glycine binding to each aptamer, K+ binding to a kink-turn, non-native folding intermediates, inter-aptamer docking driving binding site pre-organization, and modulation by transcription factor NusA collectively orchestrate co-transcriptional gene regulation. These results support a model wherein glycine binding cooperativity arises through non-equilibrium mechanisms, rather than a classical concerted model.
Data availability
The raw sequencing data generated in this study have been deposited in the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) with the BioProject accession code PRJNA938111. Individual BioSample accession codes are available in Table S9. The processed reactivity data have been deposited in the RNA Mapping Database (https://rmdb.stanford.edu/)74. Individual accession codes for each data set are available in Table S10. The ShapeMapper2 output files for these data have been deposited in Zenodo (https://doi.org/10.5281/zenodo.15264637)75.
The computational 3D simulation data generated in this study is available at GitHub (https://github.com/Vfold-RNA/Computational-3D-simulation-data-for-Bus-GTR)76. Source data for single-molecule and gel-based assays are available through the University of Michigan DeepBlue deposit (https://doi.org/10.7302/py5g-bm35)77. Source data are provided with this paper.
Code availability
TECtools can be accessed at https://github.com/e-strobel-lab/TECtools/releases/tag/v1.2.0. Data visualization scripts can be accessed at https://github.com/e-strobel-lab/TECprobe_visualization/releases/tag/v1.0.077,78. The Vfold3D-MD simulation code can be accessed at https://rna.physics.missouri.edu/vfold_software_download/vfold3D_download.html. The code used for the single-molecule experiments in this study are available through the DeepBlue deposit (https://doi.org/10.7302/py5g-bm35).
References
Shine, M. et al. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-024-00706-2 (2024).
Chauvier, A. & Walter, N. G. Regulation of bacterial gene expression by non-coding RNA: It is all about time!. Cell Chem. Biol. 31, 71–85 (2024).
Chauvier, A. & Walter, N. G. Beyond ligand binding: single molecule observation reveals how riboswitches integrate multiple signals to balance bacterial gene regulation. Curr. Opin. Struct. Biol. 88, 102893 (2024).
Rodgers, M. L. & Woodson, S. A. A roadmap for rRNA folding and assembly during transcription. Trends Biochem. Sci. 46, 889–901 (2021).
Landick, R. Transcriptional pausing as a mediator of bacterial gene regulation. Annu. Rev. Microbiol. 75, 291–314 (2021).
Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).
Oh, J., Xu, J., Chong, J. & Wang, D. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. Biochim. Biophys. Acta Gene Regul. Mech. 1864, 194659 (2021).
Mandal, M. & Breaker, R. R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5, 451–463 (2004).
Nudler, E. & Mironov, A. S. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29, 11–17 (2004).
Jones, C. P. & Ferré-D’Amaré, A. R. Long-range interactions in riboswitch control of gene expression. Annu Rev Biophys 46, 455–481 (2017).
Chauvier, A. et al. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation. Nat. Commun. 8, 13892 (2017).
Steinert, H. et al. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation. Elife. https://doi.org/10.7554/eLife.21297 (2017).
Chauvier, A., Dandpat, S. S., Romero, R. & Walter, N. G. A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration. Nat. Commun. 15, 3955 (2024).
Lou, Y. & Woodson, S. A. Co-transcriptional folding of the glmS ribozyme enables a rapid response to metabolite. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad1120 (2023).
Chauvier, A. et al. Monitoring RNA dynamics in native transcriptional complexes. Proc. Natl. Acad. Sci. USA 118, e2106564118 (2021).
Watters, K. E., Strobel, E. J., Yu, A. M., Lis, J. T. & Lucks, J. B. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23, 1124–1131 (2016).
Strobel, E. J., Cheng, L., Berman, K. E., Carlson, P. D. & Lucks, J. B. A ligand-gated strand displacement mechanism for ZTP riboswitch transcription control. Nat. Chem. Biol. 15, 1067–1076 (2019).
Szyjka, C. E. & Strobel, E. J. Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing. Nat. Commun. 14, 7839 (2023).
Wickiser, J. K., Winkler, W. C., Breaker, R. R. & Crothers, D. M. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18, 49–60 (2005).
Chauvier, A., Ajmera, P., Yadav, R. & Walter, N. G. Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation. Proc. Natl. Acad. Sci. USA 118, e2109026118 (2021).
Sudarsan, N. et al. Tandem riboswitch architectures exhibit complex gene control functions. Science 314, 300–304 (2006).
Sherlock, M. E., Sudarsan, N., Stav, S. & Breaker, R. R. Tandem riboswitches form a natural Boolean logic gate to control purine metabolism in bacteria. eLife 7, e33908 (2018).
Sherlock, M. E. et al. Architectures and complex functions of tandem riboswitches. RNA Biol. 19, 1059–1076 (2022).
Mandal, M. et al. A Glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306, 275–279 (2004).
Crum, M., Ram-Mohan, N. & Meyer, M. M. Regulatory context drives conservation of glycine riboswitch aptamers. PLoS Comput. Biol. 15, e1007564 (2019).
Torgerson, C. D., Hiller, D. A. & Strobel, S. A. The asymmetry and cooperativity of tandem glycine riboswitch aptamers. RNA 26, 564–580 (2020).
Sherman, E. M., Esquiaqui, J., Elsayed, G. & Ye, J.-D. An energetically beneficial leader–linker interaction abolishes ligand-binding cooperativity in glycine riboswitches. RNA 18, 496–507 (2012).
Kladwang, W., Chou, F.-C. & Das, R. Automated RNA structure prediction uncovers a kink-turn linker in double glycine riboswitches. J. Am. Chem. Soc. 134, 1404–1407 (2012).
Butler, E. B., Xiong, Y., Wang, J. & Strobel, S. A. Structural basis of cooperative ligand binding by the glycine riboswitch. Chem. Biol. 18, 293–298 (2011).
Huang, L., Serganov, A. & Patel, D. J. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol. Cell 40, 774–786 (2010).
Ruff, K. M. & Strobel, S. A. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy. RNA 20, 1775–1788 (2014).
Baird, N. J. & Ferré-D’Amaré, A. R. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches. RNA 19, 167–176 (2013).
Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).
Babina, A. M., Lea, N. E. & Meyer, M. M. In vivo behavior of the tandem glycine riboswitch in Bacillus subtilis. mBio 8, e01602-17 (2017).
Baird, N. J., Zhang, J., Hamma, T. & Ferré-D’Amaré, A. R. YbxF and YlxQ are bacterial homologs of L7Ae and bind K-turns but not K-loops. RNA 18, 759–770 (2012).
Larson, M. H. et al. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344, 1042–1047 (2014).
Vvedenskaya, I. O. et al. Transcription. Interactions between RNA polymerase and the “core recognition element” counteract pausing. Science 344, 1285–1289 (2014).
Yang, X. et al. The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Rep. 10, 997–1002 (2009).
Jayasinghe, O. T., Mandell, Z. F., Yakhnin, A. V., Kashlev, M. & Babitzke, P. Transcriptome-wide effects of NusA on RNA polymerase pausing in Bacillus subtilis. Journal of Bacteriology 204, e00534-21 (2022).
Chauvier, A., Cabello-Villegas, J. & Walter, N. G. Probing RNA structure and interaction dynamics at the single molecule level. Methods 162–163, 3–11 (2019).
Komissarova, N. & Kashlev, M. Functional topography of nascent RNA in elongation intermediates of RNA polymerase. Proc. Natl. Acad. Sci. 95, 14699–14704 (1998).
Yu, A. M. et al. Computationally reconstructing cotranscriptional RNA folding from experimental data reveals rearrangement of non-native folding intermediates. Mol. Cell 81, 870–883.e10 (2021).
Incarnato, D. et al. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res. 45, 9716–9725 (2017).
Sanbonmatsu, K., Jespersen, N., Prajapati, J. & Singhal, A. Cryo-EM reveals remodeling of a tandem riboswitch at 2.9 Å resolution. Preprint at https://doi.org/10.21203/rs.3.rs-6422592/v1 (2025).
Rozov, A. et al. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat Commun 10, 2519 (2019).
Esquiaqui, J. M., Sherman, E. M., Ye, J.-D. & Fanucci, G. E. Conformational flexibility and dynamics of the internal loop and helical regions of the Kink–Turn motif in the glycine riboswitch by site-directed spin-labeling. Biochemistry 55, 4295–4305 (2016).
Yadav, R., Widom, J. R., Chauvier, A. & Walter, N. G. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch. Nat. Commun. 13, 207 (2022).
Zhang, D. & Chen, S.-J. IsRNA: an iterative simulated reference state approach to modeling correlated interactions in RNA folding. J. Chem. Theory Comput. 14, 2230–2239 (2018).
Zhang, D., Li, J. & Chen, S.-J. IsRNA1: de novo prediction and blind screening of RNA 3D structures. J. Chem. Theory Comput. 17, 1842–1857 (2021).
Zhang, D., Chen, S.-J. & Zhou, R. Modeling noncanonical RNA base pairs by a coarse-grained IsRNA2 model. J. Phys. Chem. B 125, 11907–11915 (2021).
Kappel, K. et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 17, 699–707 (2020).
Widom, J. R. et al. Ligand modulates cross-coupling between riboswitch folding and transcriptional pausing. Mol. Cell 72, 541–552.e6 (2018).
Lennon, S. R. & Batey, R. T. Regulation of gene expression through effector-dependent conformational switching by cobalamin riboswitches. J. Mol. Biol. 434, 167585 (2022).
Epstein, W. The roles and regulation of potassium in bacteria. Prog. Nucleic Acid Res. Mol. Biol. https://doi.org/10.1016/S0079-6603(03)75008-9 (2003).
Cheng, L. et al. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch. Nucleic Acids Res. 50, 12001–12018 (2022).
Lussier, A., Bastet, L., Chauvier, A. & Lafontaine, D. A. A kissing loop is important for btuB riboswitch ligand sensing and regulatory control*. J. Biol. Chem. 290, 26739–26751 (2015).
Mandell, Z. F. et al. NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA. eLife 10, e61880 (2021).
Yakhnin, A. V., Murakami, K. S. & Babitzke, P. NusG is a sequence-specific RNA polymerase pause factor that binds to the non-template DNA within the paused transcription bubble*. J. Biol. Chem. 291, 5299–5308 (2016).
Landick, R., Wang, D. & Chan, C. L. Quantitative analysis of transcriptional pausing by Escherichia coli RNA polymerase: his leader pause site as paradigm. Meth. Enzymol. 274, 334–353 (1996).
Suddala, K. C. & Walter, N. G. Riboswitch structure and dynamics by smFRET microscopy. Meth. Enzymol. 549, 343–373 (2014).
Blanco, M. & Walter, N. G. Analysis of complex single-molecule FRET time trajectories. Meth. Enzymol. 472, 153–178 (2010).
Szyjka, C. E. & Strobel, E. J. Cotranscriptional RNA chemical probing. In Riboregulator Design and Analysis (eds. Chappell, J. & Takahashi, M.K.) 291–330 (Springer, 2022).
Strobel, E. Preparation and characterization of internally modified DNA templates for chemical transcription roadblocking. Bio Protoc. https://doi.org/10.21769/BioProtoc.4141 (2021).
Strobel, E. J., Watters, K. E., Nedialkov, Y., Artsimovitch, I. & Lucks, J. B. Distributed biotin–streptavidin transcription roadblocks for mapping cotranscriptional RNA folding. Nucleic Acids Res. 45, e109 (2017).
Jolivet, P. & Foley, J. SPRI bead mix V1. Protocols https://doi.org/10.17504/protocols.io.bnz4mf8w (2020).
Fishman, A., Light, D. & Lamm, A. T. QsRNA-seq: a method for high-throughput profiling and quantifying small RNAs. Genome Biol. 19, 113 (2018).
Strobel, E. J. Preparation of E. coli RNA polymerase transcription elongation complexes by selective photoelution from magnetic beads. J. Biol. Chem. https://doi.org/10.1016/j.jbc.2021.100812 (2021).
Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).
Mahat, D. B. et al. Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat. Protoc. 11, 1455–1476 (2016).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Busan, S. & Weeks, K. M. Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2. RNA 24, 143–148 (2018).
Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11, 129 (2010).
Li, J., Zhang, S., Zhang, D. & Chen, S.-J. Vfold-pipeline: a web server for RNA 3D structure prediction from sequences. Bioinformatics 38, 4042–4043 (2022).
Cordero, P., Lucks, J. B. & Das, R. An RNA mapping DataBase for curating RNA structure mapping experiments. Bioinformatics 28, 3006–3008 (2012).
Romero, R. A. et al. Co-transcriptional folding orchestrates sequential multi- effector sensing by a glycine tandem riboswitch, Vfold-RNA/computational-3D-simulation data-for-Bus-GTR: release-v1 (Version v1). zenodo. https://doi.org/10.5281/zenodo.18292801 (2026).
Romero, R. A. et al. Co-transcriptional folding orchestrates sequential multi- effector sensing by a glycine tandem riboswitch. Preprint at https://doi.org/10.7302/py5g-bm35 (2026).
Szyjka, C. E. & Strobel, E. J. Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing, TECprobe_visualization v1.0.0. zenodo https://doi.org/10.5281/zenodo.10044737 (2023).
Strobel, E. J. Sequential structure probing of cotranscriptional RNA folding intermediates, e-strobel-lab/TECtools: TECtools v1.2.0. zenodo https://zenodo.org/records/13863935 (2024).
Acknowledgements
We thank Chad Torgerson for helpful discussions. This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Numbers R35GM131922 (to N.G.W.), R35GM147137 (to E.J.S.), and R35GM134919 (to S.-J.C.), by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number U54AI170660 (to S.-J.C.), by the National Science Foundation under Award Numbers MCB 2140320 (to N.G.W.) and CHE 2154924 (to S.-J.C.), by the Michigan Economic Development Corporation under Award Number RC112630 (to N.G.W.), and by start-up funding from the University at Buffalo (to E.J.S). R.A.R. was supported, in part, by T32GM149391 (Michigan Predoctoral Training in Genetics). We would also like to express our sincere gratitude to Dr. Tatiana Mishanina from the University of California, San Diego, for kindly providing core Bsu RNAP and SigA. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author information
Authors and Affiliations
Contributions
Conceptualization: R.A.R., A.C., E.J.S., and N.G.W. Methodology: R.A.R., A.C., S.Z., and E.J.S. Investigation: R.A.R., A.C., S.S.T., V.A.R., S.Z., and C.E.S. Writing—original draft: R.A.R., A.C., S.Z., and E.J.S. Writing—review and editing: R.A.R., A.C., S.Z., S.-J.C., E.J.S., and N.G.W. Supervision: S.-J.C., E.J.S., and N.G.W. Funding acquisition: S.-J.C., E.J.S., and N.G.W. Correspondence to N.G.W., E.J.S., or S-J.C.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Xianyang Fang, who co-reviewed with Xiaolin Niu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Romero, R.A., Chauvier, A., Teh, S.S. et al. Co-transcriptional folding orchestrates sequential multi-effector sensing by a glycine tandem riboswitch. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69648-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-026-69648-x