Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Co-transcriptional folding orchestrates sequential multi-effector sensing by a glycine tandem riboswitch
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Co-transcriptional folding orchestrates sequential multi-effector sensing by a glycine tandem riboswitch

  • Rosa A. Romero1,
  • Adrien Chauvier  ORCID: orcid.org/0000-0003-4473-61941,
  • Serena S. Teh2,
  • Vincent A. Reed1,
  • Sicheng Zhang  ORCID: orcid.org/0009-0009-9851-54513,
  • Courtney E. Szyjka  ORCID: orcid.org/0000-0001-9991-80382,
  • Shi-Jie Chen  ORCID: orcid.org/0000-0002-8093-72443,4,5,
  • Eric J. Strobel  ORCID: orcid.org/0000-0002-7082-28812 &
  • …
  • Nils G. Walter  ORCID: orcid.org/0000-0002-7301-12751 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Riboswitches
  • RNA

Abstract

Riboswitches are non-coding RNA motifs that regulate gene expression in response to ligand binding. The glycine tandem riboswitch (GTR) contains two glycine aptamers that interact extensively, driving conformational changes in the downstream expression platform to control gene expression. Despite numerous studies, the role of glycine and RNA folding pathways in co-transcriptional regulation remains unclear. Here, we integrate single-molecule kinetic analysis, co-transcriptional RNA structure probing, and modeling to reveal that the GTR processes multiple molecular inputs sequentially, guided by polymerase pausing. Our findings elucidate its stepwise 5’-to-3’ folding pathway and demonstrate how sequential glycine binding to each aptamer, K+ binding to a kink-turn, non-native folding intermediates, inter-aptamer docking driving binding site pre-organization, and modulation by transcription factor NusA collectively orchestrate co-transcriptional gene regulation. These results support a model wherein glycine binding cooperativity arises through non-equilibrium mechanisms, rather than a classical concerted model.

Data availability

The raw sequencing data generated in this study have been deposited in the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) with the BioProject accession code PRJNA938111. Individual BioSample accession codes are available in Table S9. The processed reactivity data have been deposited in the RNA Mapping Database (https://rmdb.stanford.edu/)74. Individual accession codes for each data set are available in Table S10. The ShapeMapper2 output files for these data have been deposited in Zenodo (https://doi.org/10.5281/zenodo.15264637)75.

The computational 3D simulation data generated in this study is available at GitHub (https://github.com/Vfold-RNA/Computational-3D-simulation-data-for-Bus-GTR)76. Source data for single-molecule and gel-based assays are available through the University of Michigan DeepBlue deposit (https://doi.org/10.7302/py5g-bm35)77. Source data are provided with this paper.

Code availability

TECtools can be accessed at https://github.com/e-strobel-lab/TECtools/releases/tag/v1.2.0. Data visualization scripts can be accessed at https://github.com/e-strobel-lab/TECprobe_visualization/releases/tag/v1.0.077,78. The Vfold3D-MD simulation code can be accessed at https://rna.physics.missouri.edu/vfold_software_download/vfold3D_download.html. The code used for the single-molecule experiments in this study are available through the DeepBlue deposit (https://doi.org/10.7302/py5g-bm35).

References

  1. Shine, M. et al. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-024-00706-2 (2024).

  2. Chauvier, A. & Walter, N. G. Regulation of bacterial gene expression by non-coding RNA: It is all about time!. Cell Chem. Biol. 31, 71–85 (2024).

    Google Scholar 

  3. Chauvier, A. & Walter, N. G. Beyond ligand binding: single molecule observation reveals how riboswitches integrate multiple signals to balance bacterial gene regulation. Curr. Opin. Struct. Biol. 88, 102893 (2024).

    Google Scholar 

  4. Rodgers, M. L. & Woodson, S. A. A roadmap for rRNA folding and assembly during transcription. Trends Biochem. Sci. 46, 889–901 (2021).

    Google Scholar 

  5. Landick, R. Transcriptional pausing as a mediator of bacterial gene regulation. Annu. Rev. Microbiol. 75, 291–314 (2021).

    Google Scholar 

  6. Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).

    Google Scholar 

  7. Oh, J., Xu, J., Chong, J. & Wang, D. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. Biochim. Biophys. Acta Gene Regul. Mech. 1864, 194659 (2021).

    Google Scholar 

  8. Mandal, M. & Breaker, R. R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5, 451–463 (2004).

    Google Scholar 

  9. Nudler, E. & Mironov, A. S. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29, 11–17 (2004).

    Google Scholar 

  10. Jones, C. P. & Ferré-D’Amaré, A. R. Long-range interactions in riboswitch control of gene expression. Annu Rev Biophys 46, 455–481 (2017).

    Google Scholar 

  11. Chauvier, A. et al. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation. Nat. Commun. 8, 13892 (2017).

    Google Scholar 

  12. Steinert, H. et al. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation. Elife. https://doi.org/10.7554/eLife.21297 (2017).

  13. Chauvier, A., Dandpat, S. S., Romero, R. & Walter, N. G. A nascent riboswitch helix orchestrates robust transcriptional regulation through signal integration. Nat. Commun. 15, 3955 (2024).

    Google Scholar 

  14. Lou, Y. & Woodson, S. A. Co-transcriptional folding of the glmS ribozyme enables a rapid response to metabolite. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad1120 (2023).

  15. Chauvier, A. et al. Monitoring RNA dynamics in native transcriptional complexes. Proc. Natl. Acad. Sci. USA 118, e2106564118 (2021).

    Google Scholar 

  16. Watters, K. E., Strobel, E. J., Yu, A. M., Lis, J. T. & Lucks, J. B. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23, 1124–1131 (2016).

    Google Scholar 

  17. Strobel, E. J., Cheng, L., Berman, K. E., Carlson, P. D. & Lucks, J. B. A ligand-gated strand displacement mechanism for ZTP riboswitch transcription control. Nat. Chem. Biol. 15, 1067–1076 (2019).

    Google Scholar 

  18. Szyjka, C. E. & Strobel, E. J. Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing. Nat. Commun. 14, 7839 (2023).

    Google Scholar 

  19. Wickiser, J. K., Winkler, W. C., Breaker, R. R. & Crothers, D. M. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18, 49–60 (2005).

    Google Scholar 

  20. Chauvier, A., Ajmera, P., Yadav, R. & Walter, N. G. Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation. Proc. Natl. Acad. Sci. USA 118, e2109026118 (2021).

    Google Scholar 

  21. Sudarsan, N. et al. Tandem riboswitch architectures exhibit complex gene control functions. Science 314, 300–304 (2006).

    Google Scholar 

  22. Sherlock, M. E., Sudarsan, N., Stav, S. & Breaker, R. R. Tandem riboswitches form a natural Boolean logic gate to control purine metabolism in bacteria. eLife 7, e33908 (2018).

    Google Scholar 

  23. Sherlock, M. E. et al. Architectures and complex functions of tandem riboswitches. RNA Biol. 19, 1059–1076 (2022).

    Google Scholar 

  24. Mandal, M. et al. A Glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306, 275–279 (2004).

    Google Scholar 

  25. Crum, M., Ram-Mohan, N. & Meyer, M. M. Regulatory context drives conservation of glycine riboswitch aptamers. PLoS Comput. Biol. 15, e1007564 (2019).

    Google Scholar 

  26. Torgerson, C. D., Hiller, D. A. & Strobel, S. A. The asymmetry and cooperativity of tandem glycine riboswitch aptamers. RNA 26, 564–580 (2020).

    Google Scholar 

  27. Sherman, E. M., Esquiaqui, J., Elsayed, G. & Ye, J.-D. An energetically beneficial leader–linker interaction abolishes ligand-binding cooperativity in glycine riboswitches. RNA 18, 496–507 (2012).

    Google Scholar 

  28. Kladwang, W., Chou, F.-C. & Das, R. Automated RNA structure prediction uncovers a kink-turn linker in double glycine riboswitches. J. Am. Chem. Soc. 134, 1404–1407 (2012).

    Google Scholar 

  29. Butler, E. B., Xiong, Y., Wang, J. & Strobel, S. A. Structural basis of cooperative ligand binding by the glycine riboswitch. Chem. Biol. 18, 293–298 (2011).

    Google Scholar 

  30. Huang, L., Serganov, A. & Patel, D. J. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol. Cell 40, 774–786 (2010).

    Google Scholar 

  31. Ruff, K. M. & Strobel, S. A. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy. RNA 20, 1775–1788 (2014).

    Google Scholar 

  32. Baird, N. J. & Ferré-D’Amaré, A. R. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches. RNA 19, 167–176 (2013).

    Google Scholar 

  33. Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    Google Scholar 

  34. Babina, A. M., Lea, N. E. & Meyer, M. M. In vivo behavior of the tandem glycine riboswitch in Bacillus subtilis. mBio 8, e01602-17 (2017).

  35. Baird, N. J., Zhang, J., Hamma, T. & Ferré-D’Amaré, A. R. YbxF and YlxQ are bacterial homologs of L7Ae and bind K-turns but not K-loops. RNA 18, 759–770 (2012).

    Google Scholar 

  36. Larson, M. H. et al. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344, 1042–1047 (2014).

    Google Scholar 

  37. Vvedenskaya, I. O. et al. Transcription. Interactions between RNA polymerase and the “core recognition element” counteract pausing. Science 344, 1285–1289 (2014).

    Google Scholar 

  38. Yang, X. et al. The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Rep. 10, 997–1002 (2009).

    Google Scholar 

  39. Jayasinghe, O. T., Mandell, Z. F., Yakhnin, A. V., Kashlev, M. & Babitzke, P. Transcriptome-wide effects of NusA on RNA polymerase pausing in Bacillus subtilis. Journal of Bacteriology 204, e00534-21 (2022).

    Google Scholar 

  40. Chauvier, A., Cabello-Villegas, J. & Walter, N. G. Probing RNA structure and interaction dynamics at the single molecule level. Methods 162–163, 3–11 (2019).

    Google Scholar 

  41. Komissarova, N. & Kashlev, M. Functional topography of nascent RNA in elongation intermediates of RNA polymerase. Proc. Natl. Acad. Sci. 95, 14699–14704 (1998).

    Google Scholar 

  42. Yu, A. M. et al. Computationally reconstructing cotranscriptional RNA folding from experimental data reveals rearrangement of non-native folding intermediates. Mol. Cell 81, 870–883.e10 (2021).

    Google Scholar 

  43. Incarnato, D. et al. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res. 45, 9716–9725 (2017).

    Google Scholar 

  44. Sanbonmatsu, K., Jespersen, N., Prajapati, J. & Singhal, A. Cryo-EM reveals remodeling of a tandem riboswitch at 2.9 Å resolution. Preprint at https://doi.org/10.21203/rs.3.rs-6422592/v1 (2025).

  45. Rozov, A. et al. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat Commun 10, 2519 (2019).

    Google Scholar 

  46. Esquiaqui, J. M., Sherman, E. M., Ye, J.-D. & Fanucci, G. E. Conformational flexibility and dynamics of the internal loop and helical regions of the Kink–Turn motif in the glycine riboswitch by site-directed spin-labeling. Biochemistry 55, 4295–4305 (2016).

    Google Scholar 

  47. Yadav, R., Widom, J. R., Chauvier, A. & Walter, N. G. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch. Nat. Commun. 13, 207 (2022).

    Google Scholar 

  48. Zhang, D. & Chen, S.-J. IsRNA: an iterative simulated reference state approach to modeling correlated interactions in RNA folding. J. Chem. Theory Comput. 14, 2230–2239 (2018).

    Google Scholar 

  49. Zhang, D., Li, J. & Chen, S.-J. IsRNA1: de novo prediction and blind screening of RNA 3D structures. J. Chem. Theory Comput. 17, 1842–1857 (2021).

    Google Scholar 

  50. Zhang, D., Chen, S.-J. & Zhou, R. Modeling noncanonical RNA base pairs by a coarse-grained IsRNA2 model. J. Phys. Chem. B 125, 11907–11915 (2021).

    Google Scholar 

  51. Kappel, K. et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 17, 699–707 (2020).

    Google Scholar 

  52. Widom, J. R. et al. Ligand modulates cross-coupling between riboswitch folding and transcriptional pausing. Mol. Cell 72, 541–552.e6 (2018).

    Google Scholar 

  53. Lennon, S. R. & Batey, R. T. Regulation of gene expression through effector-dependent conformational switching by cobalamin riboswitches. J. Mol. Biol. 434, 167585 (2022).

    Google Scholar 

  54. Epstein, W. The roles and regulation of potassium in bacteria. Prog. Nucleic Acid Res. Mol. Biol. https://doi.org/10.1016/S0079-6603(03)75008-9 (2003).

  55. Cheng, L. et al. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch. Nucleic Acids Res. 50, 12001–12018 (2022).

    Google Scholar 

  56. Lussier, A., Bastet, L., Chauvier, A. & Lafontaine, D. A. A kissing loop is important for btuB riboswitch ligand sensing and regulatory control*. J. Biol. Chem. 290, 26739–26751 (2015).

    Google Scholar 

  57. Mandell, Z. F. et al. NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA. eLife 10, e61880 (2021).

    Google Scholar 

  58. Yakhnin, A. V., Murakami, K. S. & Babitzke, P. NusG is a sequence-specific RNA polymerase pause factor that binds to the non-template DNA within the paused transcription bubble*. J. Biol. Chem. 291, 5299–5308 (2016).

    Google Scholar 

  59. Landick, R., Wang, D. & Chan, C. L. Quantitative analysis of transcriptional pausing by Escherichia coli RNA polymerase: his leader pause site as paradigm. Meth. Enzymol. 274, 334–353 (1996).

    Google Scholar 

  60. Suddala, K. C. & Walter, N. G. Riboswitch structure and dynamics by smFRET microscopy. Meth. Enzymol. 549, 343–373 (2014).

    Google Scholar 

  61. Blanco, M. & Walter, N. G. Analysis of complex single-molecule FRET time trajectories. Meth. Enzymol. 472, 153–178 (2010).

    Google Scholar 

  62. Szyjka, C. E. & Strobel, E. J. Cotranscriptional RNA chemical probing. In Riboregulator Design and Analysis (eds. Chappell, J. & Takahashi, M.K.) 291–330 (Springer, 2022).

  63. Strobel, E. Preparation and characterization of internally modified DNA templates for chemical transcription roadblocking. Bio Protoc. https://doi.org/10.21769/BioProtoc.4141 (2021).

  64. Strobel, E. J., Watters, K. E., Nedialkov, Y., Artsimovitch, I. & Lucks, J. B. Distributed biotin–streptavidin transcription roadblocks for mapping cotranscriptional RNA folding. Nucleic Acids Res. 45, e109 (2017).

    Google Scholar 

  65. Jolivet, P. & Foley, J. SPRI bead mix V1. Protocols https://doi.org/10.17504/protocols.io.bnz4mf8w (2020).

  66. Fishman, A., Light, D. & Lamm, A. T. QsRNA-seq: a method for high-throughput profiling and quantifying small RNAs. Genome Biol. 19, 113 (2018).

    Google Scholar 

  67. Strobel, E. J. Preparation of E. coli RNA polymerase transcription elongation complexes by selective photoelution from magnetic beads. J. Biol. Chem. https://doi.org/10.1016/j.jbc.2021.100812 (2021).

  68. Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).

    Google Scholar 

  69. Mahat, D. B. et al. Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat. Protoc. 11, 1455–1476 (2016).

    Google Scholar 

  70. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Google Scholar 

  71. Busan, S. & Weeks, K. M. Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2. RNA 24, 143–148 (2018).

    Google Scholar 

  72. Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11, 129 (2010).

    Google Scholar 

  73. Li, J., Zhang, S., Zhang, D. & Chen, S.-J. Vfold-pipeline: a web server for RNA 3D structure prediction from sequences. Bioinformatics 38, 4042–4043 (2022).

    Google Scholar 

  74. Cordero, P., Lucks, J. B. & Das, R. An RNA mapping DataBase for curating RNA structure mapping experiments. Bioinformatics 28, 3006–3008 (2012).

    Google Scholar 

  75. Romero, R. A. et al. Co-transcriptional folding orchestrates sequential multi- effector sensing by a glycine tandem riboswitch, Vfold-RNA/computational-3D-simulation data-for-Bus-GTR: release-v1 (Version v1). zenodo. https://doi.org/10.5281/zenodo.18292801 (2026).

  76. Romero, R. A. et al. Co-transcriptional folding orchestrates sequential multi- effector sensing by a glycine tandem riboswitch. Preprint at https://doi.org/10.7302/py5g-bm35 (2026).

  77. Szyjka, C. E. & Strobel, E. J. Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing, TECprobe_visualization v1.0.0. zenodo https://doi.org/10.5281/zenodo.10044737 (2023).

  78. Strobel, E. J. Sequential structure probing of cotranscriptional RNA folding intermediates, e-strobel-lab/TECtools: TECtools v1.2.0. zenodo https://zenodo.org/records/13863935 (2024).

Download references

Acknowledgements

We thank Chad Torgerson for helpful discussions. This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Numbers R35GM131922 (to N.G.W.), R35GM147137 (to E.J.S.), and R35GM134919 (to S.-J.C.), by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number U54AI170660 (to S.-J.C.), by the National Science Foundation under Award Numbers MCB 2140320 (to N.G.W.) and CHE 2154924 (to S.-J.C.), by the Michigan Economic Development Corporation under Award Number RC112630 (to N.G.W.), and by start-up funding from the University at Buffalo (to E.J.S). R.A.R. was supported, in part, by T32GM149391 (Michigan Predoctoral Training in Genetics). We would also like to express our sincere gratitude to Dr. Tatiana Mishanina from the University of California, San Diego, for kindly providing core Bsu RNAP and SigA. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

  1. Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA

    Rosa A. Romero, Adrien Chauvier, Vincent A. Reed & Nils G. Walter

  2. Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA

    Serena S. Teh, Courtney E. Szyjka & Eric J. Strobel

  3. Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA

    Sicheng Zhang & Shi-Jie Chen

  4. Department of Biochemistry, University of Missouri, Columbia, MO, USA

    Shi-Jie Chen

  5. Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA

    Shi-Jie Chen

Authors
  1. Rosa A. Romero
    View author publications

    Search author on:PubMed Google Scholar

  2. Adrien Chauvier
    View author publications

    Search author on:PubMed Google Scholar

  3. Serena S. Teh
    View author publications

    Search author on:PubMed Google Scholar

  4. Vincent A. Reed
    View author publications

    Search author on:PubMed Google Scholar

  5. Sicheng Zhang
    View author publications

    Search author on:PubMed Google Scholar

  6. Courtney E. Szyjka
    View author publications

    Search author on:PubMed Google Scholar

  7. Shi-Jie Chen
    View author publications

    Search author on:PubMed Google Scholar

  8. Eric J. Strobel
    View author publications

    Search author on:PubMed Google Scholar

  9. Nils G. Walter
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: R.A.R., A.C., E.J.S., and N.G.W. Methodology: R.A.R., A.C., S.Z., and E.J.S. Investigation: R.A.R., A.C., S.S.T., V.A.R., S.Z., and C.E.S. Writing—original draft: R.A.R., A.C., S.Z., and E.J.S. Writing—review and editing: R.A.R., A.C., S.Z., S.-J.C., E.J.S., and N.G.W. Supervision: S.-J.C., E.J.S., and N.G.W. Funding acquisition: S.-J.C., E.J.S., and N.G.W. Correspondence to N.G.W., E.J.S., or S-J.C.

Corresponding authors

Correspondence to Shi-Jie Chen, Eric J. Strobel or Nils G. Walter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Xianyang Fang, who co-reviewed with Xiaolin Niu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, R.A., Chauvier, A., Teh, S.S. et al. Co-transcriptional folding orchestrates sequential multi-effector sensing by a glycine tandem riboswitch. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69648-x

Download citation

  • Received: 09 July 2025

  • Accepted: 05 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69648-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing