Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Biomimetic metal-drug coordination nanoplatform to counteract drug resistance in Pseudomonas aeruginosa via energy disruption
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 15 February 2026

Biomimetic metal-drug coordination nanoplatform to counteract drug resistance in Pseudomonas aeruginosa via energy disruption

  • Yingmin Ye1,2,3,
  • Kai Zhang  ORCID: orcid.org/0000-0003-3761-32091,2,3,4,
  • Yanmin Wang1,2,3,
  • Yang Li  ORCID: orcid.org/0000-0002-6493-39721,2,3,
  • Nana Zhao  ORCID: orcid.org/0000-0001-8610-34111,2,3 &
  • …
  • Fu-Jian Xu  ORCID: orcid.org/0000-0002-1838-88111,2,3 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biomaterials
  • Nanomedicine

Abstract

The rapid emergence of antimicrobial resistance is a critical global health challenge that renders conventional antibiotics ineffective. Developing innovative strategies to resensitize drug-resistant pathogens to existing antibiotics represents a promising therapeutic approach. Here, we present a biomimetic nanoplatform (Ce-Car@EV NPs) through the rational integration of ginger-derived extracellular vesicles (EVs) and a pH-responsive cerium-carbenicillin coordination nanoparticles (Ce-Car NCPs). This design enables prolonged circulation and targeted degradation in acidic infection sites, releasing Ce4+ ions and carbenicillin. The released Ce4+ ions penetrate the bacterial cells, where they disrupt ATP synthesis, impede oxidative phosphorylation, and inhibit the activity of efflux pump. By depleting ATP, blocking efflux pumps, and thereby reversing bacterial resistance, Ce4+ ions act as a potent adjuvant to carbenicillin. Here we show that this strategy effectively restores carbenicillin efficacy against drug-resistant Pseudomonas aeruginosa both in vitro and in vivo, establishing a therapeutic strategy leveraging metallic adjuvants to counteract antimicrobial resistance.

Data availability

RNA-Seq data generated in this work have been deposited in the NCBI Gene Expression Omnibus database under the accession code PRJNA1298406. All data needed to evaluate the conclusions in this work are presented in the manuscript and/or Supplementary Materials. Source data are provided with this paper.

References

  1. Vaughn, V. M., Dickson, R. P., Horowitz, J. K. & Flanders, S. A. Community-acquired pneumonia: a review. JAMA 332, 1282–1295 (2024).

    Google Scholar 

  2. Powers, J. G., Higham, C., Broussard, K. & Phillips, T. J. Wound healing and treating wounds: chronic wound care and management. J. Am. Acad. Dermatol. 74, 607–625 (2016).

    Google Scholar 

  3. Martin-Loeches, I., Singer, M. & Leone, M. Sepsis: key insights, future directions, and immediate goals. A review and expert opinion. Intensive Care Med. 50, 2043–2049 (2024).

    Google Scholar 

  4. Hasbun, R. Progress and challenges in bacterial meningitis: a review. JAMA 328, 2147–2154 (2022).

    Google Scholar 

  5. Letizia, M., Diggle, S. P. & Whiteley, M. Pseudomonas aeruginosa: ecology, evolution, pathogenesis and antimicrobial susceptibility. Nat. Rev. Microbiol. 23, 701–717 (2025).

    Google Scholar 

  6. Mall, M. A. et al. Cystic fibrosis. Nat. Rev. Dis. Primers 10, 54 (2024).

  7. Duan, S. et al. An all-in-one nano-biomimetic polyamidoamine dendrimer platform for treatment of CRKP pneumonia. Adv. Funct. Mater. 34, 2401549 (2024).

    Google Scholar 

  8. Miller, W. R. & Arias, C. A. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol. 22, 598–616 (2024).

    Google Scholar 

  9. Botelho, J., Grosso, F. & Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa–mechanisms, epidemiology and evolution. Drug Resist. Updates 44, 100640 (2019).

    Google Scholar 

  10. Lewis, K. et al. Sophisticated natural products as antibiotics. Nature 632, 39–49 (2024).

    Google Scholar 

  11. Pontes, M. H. & Groisman, E. A. A physiological basis for nonheritable antibiotic resistance. mBio 11, 00817–00820 (2020).

    Google Scholar 

  12. Pu, Y. et al. ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Mol. Cell 73, 143–156 (2019).

    Google Scholar 

  13. Li, B. et al. Bioenergetic stress potentiates antimicrobial resistance and persistence. Nat. Commun. 16, 5111 (2025).

    Google Scholar 

  14. Yang, J., Li, K., Li, C. & Gu, J. Intrinsic apyrase-like activity of cerium-based metal–organic frameworks (MOFs): dephosphorylation of adenosine tri- and diphosphate. Angew. Chem. Int. Ed. 59, 22952–22956 (2020).

    Google Scholar 

  15. Yang, H., Lin, P., Zhang, B., Li, F. & Ling, D. A nucleophilicity-engineered DNA ligation blockade nanoradiosensitizer induces irreversible DNA damage to overcome cancer radioresistance. Adv. Mater. 36, 2410031 (2024).

    Google Scholar 

  16. Makvandi, P. et al. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 30, 1910021 (2020).

    Google Scholar 

  17. Wei, X. et al. Supercharged precision killers: genetically engineered biomimetic drugs of screened metalloantibiotics against Acinetobacter baumanni. Sci. Adv. 10, eadk6331 (2024).

    Google Scholar 

  18. Xia, Y. et al. Bismuth-based drugs sensitize Pseudomonas aeruginosa to multiple antibiotics by disrupting iron homeostasis. Nat. Microbiol. 9, 2600–2613 (2024).

    Google Scholar 

  19. Wang, R. et al. Orally administered bismuth drug together with N-acetyl cysteine as a broad-spectrum anti-coronavirus cocktail therapy. Chem. Sci. 13, 2238–2248 (2022).

    Google Scholar 

  20. Li, X., Yamazaki, T., Ebara, M., Shirahata, N. & Hanagata, N. Nanoengineered coordination polymers boost cancer immunotherapy. Mater. Today 67, 127–150 (2023).

    Google Scholar 

  21. Zhang, L. et al. Gambogic acid based coordination polymer reinforces high-intensity focused ultrasound treatment of gynecologic malignancies. Adv. Mater. 37, 2501664 (2025).

    Google Scholar 

  22. Wang, J.-L. et al. Room-temperature preparation of coordination polymers for biomedicine. Coord. Chem. Rev. 411, 213256 (2020).

    Google Scholar 

  23. Xu, W. et al. Assembly and biological functions of metal-biomolecule network nanoparticles formed by metal-phosphonate coordination. Sci. Adv. 10, eads9542 (2024).

    Google Scholar 

  24. Wong, K.-Y., Nie, Z., Wong, M.-S., Wang, Y. & Liu, J. Metal–drug coordination nanoparticles and hydrogels for enhanced delivery. Adv. Mater. 36, 2404053 (2024).

    Google Scholar 

  25. Suárez-García, S. et al. Antitumour activity of coordination polymer nanoparticles. Coord. Chem. Rev. 441, 213977 (2021).

    Google Scholar 

  26. Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014).

    Google Scholar 

  27. Qiao, Z. et al. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat. Commun. 13, 7164 (2022).

    Google Scholar 

  28. Yang, J. et al. Gallium–carbenicillin framework coated defect-rich hollow TiO2 as a photocatalyzed oxidative stress amplifier against complex infections. Adv. Funct. Mater. 30, 2004861 (2020).

    Google Scholar 

  29. He, M. et al. Sonoinduced tumor therapy and metastasis inhibition by a ruthenium complex with dual action: superoxide anion sensitization and ligand fracture. J. Am. Chem. Soc. 146, 25764–25779 (2024).

    Google Scholar 

  30. Fang, F. et al. Continuous spatiotemporal therapy of a full-API nanodrug via multi-step tandem endogenous biosynthesis. Nat. Commun. 14, 1660 (2023).

    Google Scholar 

  31. Frei, A., Verderosa, A. D., Elliott, A. G., Zuegg, J. & Blaskovich, M. A. T. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 7, 202–224 (2023).

    Google Scholar 

  32. Wang, C. et al. Metal-based approaches for the fight against antimicrobial resistance: mechanisms, opportunities, and challenges. J. Am. Chem. Soc. 147, 12361–12380 (2025).

    Google Scholar 

  33. Lorusso, A. B., Carrara, J. A., Barroso, C. D. N., Tuon, F. F. & Faoro, H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 23, 15779 (2022).

    Google Scholar 

  34. Henderson, P. J. F. et al. Physiological functions of bacterial “multidrug” efflux pumps. Chem. Rev. 121, 5417–5478 (2021).

    Google Scholar 

  35. Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2023).

    Google Scholar 

  36. Yang, B., Tong, Z., Shi, J., Wang, Z. & Liu, Y. Bacterial proton motive force as an unprecedented target to control antimicrobial resistance. Med. Res. Rev. 43, 1068–1090 (2023).

    Google Scholar 

  37. Biquet-Bisquert, A. et al. Spatiotemporal dynamics of the proton motive force on single bacterial cells. Sci. Adv. 10, eadl5849 (2024).

    Google Scholar 

  38. Riquelme, S. A. et al. Pseudomonas aeruginosa utilizes host-derived itaconate to redirect its metabolism to promote biofilm formation. Cell Metab. 31, 1091–1106 (2020).

    Google Scholar 

  39. Schink, S. J. et al. Glycolysis/gluconeogenesis specialization in microbes is driven by biochemical constraints of flux sensing. Mol. Syst. Biol. 18, e10704 (2022).

    Google Scholar 

  40. Wang, X. et al. TPGS-based and S-thanatin functionalized nanorods for overcoming drug resistance in Klebsiella pneumonia. Nat. Commun. 13, 3731 (2022).

    Google Scholar 

  41. Liu, Y. et al. Effect of piperine on the inhibitory potential of MexAB-OprM efflux pump and imipenem resistance in carbapenem-resistant Pseudomonas aeruginosa. Microb. Pathog. 185, 106397 (2023).

    Google Scholar 

  42. Wu, J., Wang, C., Sun, J. & Xue, Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano 5, 4476–4489 (2011).

    Google Scholar 

  43. Qian, B., Jiang, R.-J., Song, J.-L. & Wang, C.-Q. Organophosphorus flame retardant TDCPP induces neurotoxicity via mitophagy-related ferroptosis in vivo and in vitro. Chemosphere 308, 136345 (2022).

    Google Scholar 

  44. Wang, Y. et al. Biomimetic electrodynamic metal-organic framework nanosponges for augmented treatment of biofilm infections. Adv. Sci. 11, 2408442 (2024).

    Google Scholar 

  45. Fang, J., Islam, W. & Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 157, 142–160 (2020).

    Google Scholar 

  46. Park, J. et al. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics 9, 8073–8090 (2019).

    Google Scholar 

  47. Wang, Y. et al. Honeysuckle-derived nanovesicles regulate gut microbiota for the treatment of inflammatory bowel disease. Adv. Sci. 12, e05208 (2025).

  48. Yan, L. et al. Ginger exosome-like nanoparticle-derived miRNA therapeutics: a strategic inhibitor of intestinal inflammation. J. Adv. Res. 69, 1–15 (2025).

    Google Scholar 

  49. Hu, Q. et al. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil. Med. Res. 9, 61 (2022).

    Google Scholar 

  50. Teng, Y. et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 24, 637–652 (2018).

    Google Scholar 

  51. Teng, Y. et al. Plant-nanoparticles enhance anti-PD-L1 efficacy by shaping human commensal microbiota metabolites. Nat. Commun. 16, 1295 (2025).

    Google Scholar 

  52. Teng, Y. et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol. Ther. 29, 2424–2440 (2021).

    Google Scholar 

  53. Xu, X.-H. et al. Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett. 21, 8151–8159 (2021).

    Google Scholar 

  54. Ghosh, S. et al. A potent antibiotic-loaded bone-cement implant against staphylococcal bone infections. Nat. Biomed. Eng. 6, 1180–1195 (2022).

    Google Scholar 

  55. Mazzolini, R. et al. Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nat. Biotechnol. 41, 1089–1098 (2023).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 52293382 to F.J.X., 52303172 to K.Z., 52361165659 to N.Z., and 52221006 to F.J.X.), Beijing Natural Science Foundation (grant no. 2262072 to K.Z.) and the Fundamental Research Funds for the Central Universities (JD2518 to K.Z.). All animal experiments in this study were approved by the Animal Ethics Committee of Capital Medical University.

Author information

Authors and Affiliations

  1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China

    Yingmin Ye, Kai Zhang, Yanmin Wang, Yang Li, Nana Zhao & Fu-Jian Xu

  2. Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, China

    Yingmin Ye, Kai Zhang, Yanmin Wang, Yang Li, Nana Zhao & Fu-Jian Xu

  3. Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China

    Yingmin Ye, Kai Zhang, Yanmin Wang, Yang Li, Nana Zhao & Fu-Jian Xu

  4. Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, China

    Kai Zhang

Authors
  1. Yingmin Ye
    View author publications

    Search author on:PubMed Google Scholar

  2. Kai Zhang
    View author publications

    Search author on:PubMed Google Scholar

  3. Yanmin Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Yang Li
    View author publications

    Search author on:PubMed Google Scholar

  5. Nana Zhao
    View author publications

    Search author on:PubMed Google Scholar

  6. Fu-Jian Xu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: Y.Y., K.Z. Methodology: Y.Y., Y.W. Investigation: Y.Y., K.Z., visualization: Y.Y. Supervision: K.Z., Y.L., N.Z., and F.J.X. Writing-original draft: Y.Y. Writing-review and editing: K.Z., N.Z., and F.J.X.

Corresponding authors

Correspondence to Kai Zhang, Nana Zhao or Fu-Jian Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Hongzhe Sun, who co-reviewed with Chenyuan Wang, Min Lu and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Reporting Summary

Transparent Peer Review File

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Zhang, K., Wang, Y. et al. Biomimetic metal-drug coordination nanoplatform to counteract drug resistance in Pseudomonas aeruginosa via energy disruption. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69712-6

Download citation

  • Received: 15 July 2025

  • Accepted: 06 February 2026

  • Published: 15 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69712-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research