Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global functional shifts in trees driven by alien naturalization and native extinction

Abstract

Human activities are driving simultaneous native extinctions and alien naturalizations, reshaping global tree diversity with major implications for ecosystem structure and function. Here we analysed functional traits and environmental niches of 31,001 tree species worldwide, comparing naturalized, threatened and non-threatened species to assess current patterns and project future shifts under intensified extinction and naturalization. Future tree-rich ecosystems are projected to become increasingly dominated by fast-growing, high-resource-use species with acquisitive traits, while slow-growing, conservative species face greater extinction risk. Although group means along the main functional axes do not differ significantly, naturalized species occupy broader functional and environmental spaces and thrive in colder and more variable climates, whereas threatened species are more specialized to warm, stable and nutrient-rich environments, with non-threatened species intermediate. Projected naturalizations expand local functional diversity, but their acquisitive strategies could reduce long-term ecosystem stability, while extinctions cause pronounced contractions of functional and environmental trait space, especially in climatically variable regions. Overall, our findings reveal an accelerating global shift towards faster-growing tree communities, with likely consequences for carbon storage and biodiversity, underscoring the need to safeguard slow-growing species and limit the dominance of acquisitive trees.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional and environmental spaces of tree species.
Fig. 2: Shifts of the occupied functional and environmental PC spaces between current and future projection scenarios, represented as the occupied space in the 0.99 quantile distribution (representing the existing trait and environmental boundaries at the global scale) for each of the three tree groups.
Fig. 3: Shifts in functional and environmental spectra.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via GitHub at https://github.com/kun-ecology/global_tree.fun-env.space and are mirrored on Zenodo at https://doi.org/10.5281/zenodo.17662284 (ref. 104). The trait data were obtained from ref. 42, and the environmental data were extracted from ref. 43.

Code availability

R scripts for reproducing the analyses and figures are available via GitHub at https://github.com/kun-ecology/global_tree.fun-env.space and are mirrored on Zenodo at https://doi.org/10.5281/zenodo.17662284 (ref. 104).

References

  1. Bastin, J. F. et al. The global tree restoration potential. Science 364, 76–79 (2019).

    Article  Google Scholar 

  2. Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature 624, 92–101 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).

    Article  Google Scholar 

  7. de Lima, R. A. F. et al. Comprehensive conservation assessments reveal high extinction risks across Atlantic Forest trees. Science 383, 219–225 (2024).

    Article  PubMed  Google Scholar 

  8. Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P. & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9, 547–553 (2019).

    Article  Google Scholar 

  9. Rivers, M., Newton, A. C. & Oldfield, S. Scientists’ warning to humanity on tree extinctions. Plants People Planet 5, 466–482 (2023).

    Article  Google Scholar 

  10. Pyšek, P. et al. Naturalized alien flora of the world. Preslia 89, 203–274 (2017).

    Article  Google Scholar 

  11. van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).

    Article  PubMed  Google Scholar 

  12. Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Jäger, H., Kowarik, I. & Tye, A. Destruction without extinction: long-term impacts of an invasive tree species on Galápagos highland vegetation. J. Ecol. 97, 1252–1263 (2009).

    Article  Google Scholar 

  14. Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).

    Article  PubMed  Google Scholar 

  15. Gallardo, B. et al. Risks posed by invasive species to the provision of ecosystem services in Europe. Nat. Commun. 15, 2631 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castro-Díez, P. et al. Global effects of non-native tree species on multiple ecosystem services. Biol. Rev. 94, 1477–1501 (2019).

    Article  PubMed  Google Scholar 

  17. Ngorima, A. & Shackleton, C. M. Livelihood benefits and costs from an invasive alien tree (Acacia dealbata) to rural communities in the Eastern Cape, South Africa. J. Environ. Manage. 229, 158–165 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. van der Werf, G. R. et al. CO2 emissions from forest loss. Nat. Geosci. 2, 737–738 (2009).

    Article  Google Scholar 

  19. Díaz, S., Fargione, J., Chapin, F. S. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Colautti, R. I., Alexander, J. M., Dlugosch, K. M., Keller, S. R. & Sultan, S. E. Invasions and extinctions through the looking glass of evolutionary ecology. Phil. Trans. R. Soc. B 372, 20160031 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schmidt, J. P., Davies, T. J. & Farrell, M. J. Opposing macroevolutionary and trait-mediated patterns of threat and naturalisation in flowering plants. Ecol. Lett. 24, 1237–1250 (2021).

    Article  PubMed  Google Scholar 

  22. Jeschke, J. M. & Strayer, D. L. Are threat status and invasion success two sides of the same coin? Ecography 31, 124–130 (2008).

    Article  Google Scholar 

  23. Bradshaw, C. J. A., Giam, X., Tan, H. T. W., Brook, B. W. & Sodhi, N. S. Threat or invasive status in legumes is related to opposite extremes of the same ecological and life-history attributes. J. Ecol. 96, 869–883 (2008).

    Article  Google Scholar 

  24. Wassen, M. J., Schrader, J., van Dijk, J. & Eppinga, M. B. Phosphorus fertilization is eradicating the niche of northern Eurasia’s threatened plant species. Nat. Ecol. Evol. 5, 67–73 (2020).

    Article  PubMed  Google Scholar 

  25. Saar, L., Takkis, K., Pärtel, M. & Helm, A. Which plant traits predict species loss in calcareous grasslands with extinction debt? Divers. Distrib. 18, 808–817 (2012).

    Article  Google Scholar 

  26. Essl, F. et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Rouget, M. et al. Invasion debt—quantifying future biological invasions. Divers. Distrib. 22, 445–456 (2016).

    Article  Google Scholar 

  28. Boonman, C. C. F. et al. More than 17,000 tree species are at risk from rapid global change. Nat. Commun. 15, 166 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).

    Article  Google Scholar 

  30. Boonman, C. C. F. et al. High tree diversity exposed to unprecedented macroclimatic conditions even under minimal anthropogenic climate change. Proc. Natl Acad. Sci. USA 122, e2420059122 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sax, D. F. & Gaines, S. D. Species invasions and extinction: the future of native biodiversity on islands. Proc. Natl Acad. Sci. USA 105, 11490–11497 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Longman, E. K., Rosenblad, K. & Sax, D. F. Extreme homogenization: the past, present and future of mammal assemblages on islands. Glob. Ecol. Biogeogr. 27, 77–95 (2018).

    Article  Google Scholar 

  33. Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sayol, F. et al. Loss of functional diversity through anthropogenic extinctions of island birds is not offset by biotic invasions. Sci. Adv. 7, 5790 (2021).

    Article  Google Scholar 

  35. Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Eiserhardt, W. L., Borchsenius, F., Plum, C. M., Ordonez, A. & Svenning, J. C. Climate-driven extinctions shape the phylogenetic structure of temperate tree floras. Ecol. Lett. 18, 263–272 (2015).

    Article  PubMed  Google Scholar 

  37. Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Toussaint, A., Pärtel, M. & Carmona, C. P. Contrasting impacts of non-native and threatened species on morphological, life history, and phylogenetic diversity in bird assemblages. Ecol. Lett. 27, e14373 (2024).

    Article  PubMed  Google Scholar 

  39. Chakraborty, D. et al. Assisted tree migration can preserve the European forest carbon sink under climate change. Nat. Clim. Change 14, 845–852 (2024).

    Article  Google Scholar 

  40. Richardson, D. M. & Pyšek, P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 30, 409–431 (2006).

    Article  Google Scholar 

  41. Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).

    Article  PubMed  Google Scholar 

  42. Guo, W.-Y. et al. High exposure of global tree diversity to human pressure. Proc. Natl Acad. Sci. USA 119, e2026733119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kindt, R. TreeGOER: a database with globally observed environmental ranges for 48,129 tree species. Glob. Change Biol. 29, 6303–6318 (2023).

    Article  CAS  Google Scholar 

  44. Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Trait probability density (TPD): measuring functional diversity across scales based on TPD with R. Ecology 100, e02876 (2019).

    Article  PubMed  Google Scholar 

  46. van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542 (2019).

    Article  PubMed  Google Scholar 

  47. The IUCN Red List of Threatened Species (IUCN, accessed 28 December 2024); https://www.iucnredlist.org/

  48. Bachman, S. P., Brown, M. J. M., Leão, T. C. C., Nic Lughadha, E. & Walker, B. E. Extinction risk predictions for the world’s flowering plants to support their conservation. New Phytol. 242, 797–808 (2024).

    Article  PubMed  Google Scholar 

  49. Guo, K. et al. Plant invasion and naturalization are influenced by genome size, ecology and economic use globally. Nat. Commun. 15, 1330 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article  PubMed  Google Scholar 

  53. Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article  Google Scholar 

  54. Maynard, D. S. et al. Global relationships in tree functional traits. Nat. Commun. 13, 3185 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth–lifespan trade-offs. Nat. Commun. 11, 4241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo, W.-Y. et al. Domestic gardens play a dominant role in selecting alien species with adaptive strategies that facilitate naturalization. Glob. Ecol. Biogeogr. 28, 628–639 (2019).

    Article  Google Scholar 

  57. Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27, 970–982 (2021).

    Article  CAS  Google Scholar 

  58. Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).

    Article  PubMed  Google Scholar 

  59. Heringer, G. et al. Urbanization affects the richness of invasive alien trees but has limited influence on species composition. Urban Ecosyst. 25, 753–763 (2022).

    Article  Google Scholar 

  60. Guo, K. et al. Stage dependence of Elton’s biotic resistance hypothesis of biological invasions. Nat. Plants 10, 1484–1492 (2024).

    Article  PubMed  Google Scholar 

  61. Delavaux, C. S. et al. Native diversity buffers against severity of non-native tree invasions. Nature 621, 773–781 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Elton, C. S. The Ecology of Invasions by Animals and Plants (Springer US, 1958).

  63. Silva, S. V., Andermann, T., Zizka, A., Kozlowski, G. & Silvestro, D. Global estimation and mapping of the conservation status of tree species using artificial intelligence. Front. Plant Sci. 13, 839792 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chacón-Madrigal, E., Wanek, W., Hietz, P. & Dullinger, S. Traits indicating a conservative resource strategy are weakly related to narrow range size in a group of neotropical trees. Perspect. Plant Ecol. Evol. Syst. 32, 30–37 (2018).

    Article  Google Scholar 

  65. Zanzottera, M., Fratte, M. D., Caccianiga, M., Pierce, S. & Cerabolini, B. E. L. Towards a functional phytosociology: the functional ecology of woody diagnostic species and their vegetation classes in Northern Italy. iForest 14, 522 (2021).

    Article  Google Scholar 

  66. Guo, W.-Y. et al. Climate change and land use threaten global hotspots of phylogenetic endemism for trees. Nat. Commun. 14, 6950 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ripple, W. J. et al. The 2024 state of the climate report: perilous times on planet Earth. BioScience 74, 812–824 (2024).

    Article  Google Scholar 

  68. Chen, P. et al. Deterministic responses of biodiversity to climate change through exotic species invasions. Nat. Plants 10, 1464–1472 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Robeck, P. et al. Invading plants remain undetected in a lag phase while they explore suitable climates. Nat. Ecol. Evol. 8, 477–488 (2024).

    Article  PubMed  Google Scholar 

  70. Seliger, B. J., McGill, B. J., Svenning, J.-C. & Gill, J. L. Widespread underfilling of the potential ranges of North American trees. J. Biogeogr. 48, 359–371 (2021).

    Article  Google Scholar 

  71. Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).

    Article  Google Scholar 

  72. Vilà, M. et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 8, 135–144 (2010).

    Article  Google Scholar 

  73. Augusto, L. et al. Widespread slow growth of acquisitive tree species. Nature 640, 395–401 (2025).

    Article  CAS  PubMed  Google Scholar 

  74. Bordin, K. M. et al. Tall stature and small leaves: ecological strategies that enhance tree growth across the subtropical Brazilian Atlantic Forest. Oikos https://doi.org/10.1002/oik.11235 (2025).

  75. Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Svenning, J. C., Buitenwerf, R. & Le Roux, E. Trophic rewilding as a restoration approach under emerging novel biosphere conditions. Curr. Biol. 34, R435–R451 (2024).

    Article  CAS  PubMed  Google Scholar 

  77. Zavaleta, E. S., Hobbs, R. J. & Mooney, H. A. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 16, 454–459 (2001).

    Article  Google Scholar 

  78. Mungi, N. A., Jhala, Y. V., Qureshi, Q., le Roux, E. & Svenning, J. C. Megaherbivores provide biotic resistance against alien plant dominance. Nat. Ecol. Evol. 7, 1645–1653 (2023).

    Article  PubMed  Google Scholar 

  79. Schubert, S. C., Zahawi, R. A., Oviedo-Brenes, F., Rosales, J. A. & Holl, K. D. Active restoration increases tree species richness and recruitment of large-seeded taxa after 16–18 years. Ecol. Appl. 35, e3053 (2025).

    Article  PubMed  Google Scholar 

  80. Jensen, D. A. et al. The potential for using rare, native species in reforestation—a case study of yews (Taxaceae) in China. For. Ecol. Manage. 482, 118816 (2021).

    Article  Google Scholar 

  81. Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–470 (2013).

    Article  PubMed  Google Scholar 

  82. Bellingham, P. J. et al. The right tree in the right place? A major economic tree species poses major ecological threats. Biol. Invasions 25, 39–60 (2023).

    Article  Google Scholar 

  83. Joswig, J. S. et al. Imputing missing data in plant traits: a guide to improve gap-filling. Glob. Ecol. Biogeogr. 32, 1395–1408 (2023).

    Article  Google Scholar 

  84. Serra-Diaz, J. M., Enquist, B. J., Maitner, B., Merow, C. & Svenning, J. C. Big data of tree species distributions: How big and how good? For. Ecosyst. 4, 30 (2017).

    Article  Google Scholar 

  85. Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. For. 36, 454–489 (2017).

    Article  Google Scholar 

  86. Xu, W. B. et al. Global beta-diversity of angiosperm trees is shaped by Quaternary climate change. Sci. Adv. 9, eadd8553 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article  Google Scholar 

  88. Aubin, I., Boisvert-Marsh, L. & Munson, A. D. Traits of Plants in Canada (TOPIC) Open Access (Government of Canada, 2021); https://doi.org/10.23687/bb14c6bf-75f7-4ff2-b97e-689fa768905c

  89. Thiffault, N., Titus, B. D. & Munson, A. D. Silvicultural options to promote seedling establishment on KalmiaVaccinium-dominated sites. Scand. J. For. Res. 20, 110–121 (2005).

    Article  Google Scholar 

  90. Aubin, I. et al. Managing data locally to answer questions globally: the role of collaborative science in ecology. J. Veget. Sci. 31, 509–517 (2020).

    Article  Google Scholar 

  91. Enquist, B. J., Condit, R. R., Peet, R. K., Schildhauer, M. & Thiers, B. M. The Botanical Information and Ecology Network (BIEN): cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ 4, e2615v2 (2016).

    Google Scholar 

  92. Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).

    Article  Google Scholar 

  94. GlobalTreeSearch Online Database (Botanic Gardens Conservation International, 2024); https://www.bgci.org/resources/bgci-databases/globaltreesearch/

  95. Jombart, T. & Bateman, A. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024); http://www.R-project.org/

  97. Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jarić, I. et al. The role of species charisma in biological invasions. Front. Ecol. Environ. 18, 345–353 (2020).

    Article  Google Scholar 

  99. Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 

  101. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  102. Duong, T. ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21, 1–16 (2007).

    Article  Google Scholar 

  103. Chacón, J. E. & Duong, T. Multivariate Kernel Smoothing and Its Applications (Chapman & Hall, 2018).

  104. Guo, W.-Y. et al. Global functional shifts in trees driven by alien naturalization and native extinction. Zenodo https://doi.org/10.5281/zenodo.17662284 (2025).

Download references

Acknowledgements

This project was supported by the Natural Science Foundation of China (32171588 and 32471676), the Innovation Program of the Shanghai Municipal Education Commission (2023ZKZD36), the Fundamental and Interdisciplinary Disciplines Breakthrough Plan of the Ministry of Education of China (JYB2025XDXM904). We also consider this work a contribution to the Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by the Danish National Research Foundation (grant no. DNRF173 to J.-C.S.). J.M.S.-D. is supported by the programme RYC2022-035668-I, funded by MCIU/AEI/10.13039/501100011033 and FSE+. J. Pisek is supported by the Estonian Research Council (PRG1405) and by the Estonian Ministry of Education and Research, Centre of Excellence for Sustainable Land Use (TK232). C.B. was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (2022R1A2C1003504). A.G.G. was supported by the ANID PIA/BASAL (FB210006) and FONDECYT (1240874). Ü.N. is supported by Estonian Ministry of Education and Research, Centre of Excellence AgroCropFuture (TK200).

Author information

Authors and Affiliations

Authors

Contributions

W.-Y.G. conceived the project. J.M.S.-D., W.-Y.G., C.C.F.B., R.K. and all others collected the data. K.G. and W.-Y.G. analysed the data. W.-Y.G., K.G. and J.-C.S. interpreted the data and wrote the manuscript. All authors contributed data, discussed the results, revised the manuscript drafts, contributed to writing and approved the final manuscript.

Corresponding author

Correspondence to Wen-Yong Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Wei Huang, Ana Novoa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5 and Figs. 1–8.

Reporting Summary

Supplementary Table 6

Potential naturalized tree species obtained from DAPC.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, WY., Serra-Diaz, J.M., Guo, K. et al. Global functional shifts in trees driven by alien naturalization and native extinction. Nat. Plants (2026). https://doi.org/10.1038/s41477-025-02207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41477-025-02207-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing