Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amino-acid-transporter-mediated assembly of rhizosphere microbiota enhances soil organic nitrogen acquisition in rice

Abstract

Amino acids are plant-available organic nitrogen (N) that can be directly absorbed, but their availability relies on microbial decomposition of organic matter in the soil. Natural variation in Lysine-Histidine-Type Transporter-1 (OsLHT1) (NCBI Gene ID: 3974662) is associated with higher amino acid uptake in japonica rice than in indica. However, how this genetic variation influences rhizosphere microbiome assembly and its subsequent impact on amino acid acquisition remains unclear. In this study, we demonstrate that the OsLHT1a allele in japonica is prevalent in rice grown in high-organic-N soils, where it recruits a distinct rhizosphere microbiome to enhance amino acid acquisition. A synthetic microbiota composed of bacteria enriched by the OsLHT1a allele in japonica enhanced amino acid production in soil through organic matter decomposition and increased root amino acid uptake by upregulating OsLHT1 gene expression. The rhizosphere colonization of the synthetic microbiota was specifically driven by the function of OsLHT1. Notably, organic fertilization facilitated this colonization, thereby improving organic N use efficiency and rice yield. This root–rhizosphere microbiome functional synergy under organic fertilization presents a promising strategy to increase organic fertilizer use efficiency and demonstrates the potential for harnessing plant-gene-associated rhizosphere microbiomes for sustainable agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rice adaption to the geographic distribution of soil organic N is linked to OsLHT1-dependent uptake of amino acids.
Fig. 2: OsLHT1a cultivars enrich amino-acid-acquisition-related rhizosphere bacteria in organic fertilized soil.
Fig. 3: OsLHT1 dominates the assembly of SynM.
Fig. 4: OsLHT1 maintains SynM cross-generation assembly.
Fig. 5: Field performance of SynM combined with organic fertilization in promoting amino acid uptake and rice yield.
Fig. 6: Interaction of OsLHT1 haplotype and rhizosphere microbiota unveils adaptive organic N acquisition.

Data availability

The raw 16S rRNA sequence data that support the findings of this study are openly available via the Beijing Institute of Genomics Data Center, Chinese Academy of Sciences, under BioProject accession no. PRJCA038661 at https://ngdc.cncb.ac.cn/bioproject/. Source data are provided with this paper.

Code availability

This study only used base R packages, which are publicly available and can be downloaded from CRAN. Python analyses relied on pandas (v2.2.2), available on Python Package Index (PyPI) and installable via 'pip install pandas'.

References

  1. Koike, M. et al. In-situ preservation of nitrogen-bearing organics in Noachian Martian carbonates. Nat. Commun. 11, 1988 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, X. X. et al. Phloem iron remodels root development in response to ammonium as the major nitrogen source. Nat. Commun. 13, 561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ichihashi, Y. et al. Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield. Proc. Natl Acad. Sci. USA 117, 14552–14560 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, Q. et al. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nat. Commun. 9, 735 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Näsholm, T., Kielland, K. & Ganeteg, U. Uptake of organic nitrogen by plants. New Phytol. 182, 31–48 (2009).

    Article  PubMed  Google Scholar 

  6. Hu, C.-C. et al. Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants. Nat. Commun. 15, 6407 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao, Z.-B. et al. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome 7, 33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Quan, Q. et al. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv. 5, eaav1131 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, J. et al. Root microbiota regulates tiller number in rice. Cell 188, 3152–3166.e16 (2025).

    Article  CAS  PubMed  Google Scholar 

  10. Pantigoso, H. A., Ossowicki, A., Stringlis, I. A. & Carrión, V. J. Hub metabolites at the root–microbiome interface: unlocking plant drought resilience. Trends iPlant Sci. 30, 1046–1059 (2025).

    Article  CAS  Google Scholar 

  11. De Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).

    Article  PubMed  Google Scholar 

  12. Mendes, L. W., Raaijmakers, J. M., De Hollander, M., Mendes, R. & Tsai, S. M. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J. 12, 212–224 (2018).

    Article  PubMed  Google Scholar 

  13. Chen, Y. et al. The beneficial rhizobacterium Bacillus velezensis SQR9 regulates plant nitrogen uptake via an endogenous signaling pathway. J. Exp. Bot. 75, 3388–3400 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Xun, W. et al. Dissection of rhizosphere microbiome and exploiting strategies for sustainable agriculture. New Phytol. 242, 2401–2410 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Korenblum, E. et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc. Natl Acad. Sci. USA 117, 3874–3883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, A. C. et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Brachi, B. et al. Plant genetic effects on microbial hubs impact host fitness in repeated field trials. Proc. Natl Acad. Sci. USA 119, e2201285119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harbort, C. J. et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28, 825–837.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Escudero-Martinez, C. et al. Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nat. Commun. 13, 3443 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan, X. et al. Host genetic determinants drive compartment-specific assembly of tea plant microbiomes. Plant Biotechnol. J. 20, 2174–2186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Spor, A. et al. Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat. Sci. Rep. 10, 12234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng, Y. et al. Core root-associated prokaryotic community and its relationship to host traits across wheat varieties. J. Exp. Bot. 74, 2740–2753 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Deng, S. et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 15, 3181–3194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oyserman, B. O. et al. Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nat. Commun. 13, 3228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y. et al. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat. Commun. 13, 5913 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tegeder, M. & Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 217, 35–53 (2018).

    Article  PubMed  Google Scholar 

  34. Qiu, J. et al. Genomic variation associated with local adaptation of weedy rice during de-domestication. Nat. Commun. 8, 15323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu, B. et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 47, 834–838 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Guo, N. et al. Oryza sativa Lysine-Histidine-type Transporter 1 functions in root uptake and root-to-shoot allocation of amino acids in rice. Plant J. 103, 395–411 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, S. et al. Natural variation of OsWRKY23 drives difference in nitrate use efficiency between indica and japonica rice. Nat. Commun. 16, 1420 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xie, Y. et al. Plastid-localized amino acid metabolism coordinates rice ammonium tolerance and nitrogen use efficiency. Nat. Plants 9, 1514–1529 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Wu, J. et al. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biol. 15, 218 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Compant, S. et al. Harnessing the plant microbiome for sustainable crop production. Nat. Rev. Microbiol. 23, 9–23 (2025).

    Article  CAS  PubMed  Google Scholar 

  44. Ramirez-Villacis, D. X. et al. Root microbiome modulates plant growth promotion induced by low doses of glyphosate. mSphere https://doi.org/10.1128/msphere.00484-20 (2020).

  45. Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhong, Y. et al. Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness. Nat. Plants 8, 887–896 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Ling, N., Wang, T. & Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 13, 836 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, Y. et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 9, 3429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yue, H. et al. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome 11, 70 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stringlis, I. A. et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl Acad. Sci. USA 115, E5213–E5222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, P. et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat. Plants 7, 481–499 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Yin, J. et al. Heritability of tomato rhizobacteria resistant to Ralstonia solanacearum. Microbiome 10, 227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Veach, A. M. et al. Rhizosphere microbiomes diverge among Populus trichocarpa plant–host genotypes and chemotypes, but it depends on soil origin. Microbiome 7, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. He, X. et al. Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nat. Plants 10, 598–617 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Favela, A., Bohn, M. O. & Kent, A. D. Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome. ISME J. 15, 2454–2464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo, G. et al. Long-term fertilization regimes drive the abundance and composition of N-cycling-related prokaryotic groups via soil particle-size differentiation. Soil Biol. Biochem. 116, 213–223 (2018).

    Article  CAS  Google Scholar 

  57. Schäfer, M., Vogel, C. M., Bortfeld-Miller, M., Mittelviefhaus, M. & Vorholt, J. A. Mapping phyllosphere microbiota interactions in planta to establish genotype–phenotype relationships. Nat. Microbiol. 7, 856–867 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wassermann, B., Cernava, T., Müller, H., Berg, C. & Berg, G. Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks. Microbiome 7, 108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cernava, T. Coming of age for microbiome gene breeding in plants. Nat. Commun. 15, 6623 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dwivedi, S. L. et al. Exploitation of rhizosphere microbiome biodiversity in plant breeding. Trends Plant Sci. 30, 1033–1045 (2025).

    Article  CAS  PubMed  Google Scholar 

  61. Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, Y. et al. Structure of Vibrio collagenase VhaC provides insight into the mechanism of bacterial collagenolysis. Nat. Commun. 13, 566 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiao, L. et al. Prediction models for monitoring selenium and its associated heavy-metal accumulation in four kinds of agro-foods in seleniferous area. Front. Nutr. 9, 990628 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang, X.-B. et al. Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. ISME J. 11, 1345–1358 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen, X. et al. Genome-centric insight into metabolically active microbial population in shallow-sea hydrothermal vents. Microbiome 10, 170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shi, Y. et al. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome 6, 27 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Guo, S. et al. Protists as main indicators and determinants of plant performance. Microbiome 9, 64 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Oksanen, J. et al. Package ‘vegan’. Community Ecology Package version 2 (2013).

  73. Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  75. Chang, M. X. et al. OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes. Plant Physiol. 179, 656–670 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Tang, Z. et al. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol. 160, 2052–2063 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, J. et al. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 16, 988–1012 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Li, F. et al. CsAAP7.2 is involved in the uptake of amino acids from soil and the long-distance transport of theanine in tea plants (Camellia sinensis L.). Tree Physiol. 42, 2369–2381 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key Research and Development Program (grant nos 2021YFF1000403 to G.X. and R.Z. and 2022YFF1001804 to R.Z.), the National Natural Science Foundation of China (grant nos 32172661 and 32361143785 to R.Z. and 32272803 to W.X.) and the Fundamental and Interdisciplinary Disciplines Breakthrough Plan of the Ministry of Education of China (grant no. JYB2025XDXM703 to R.Z.). The authors are grateful to N. Guo from Yangzhou University for her valuable suggestions on the experimental design.

Author information

Authors and Affiliations

Authors

Contributions

R.Z., G.X., W.X., Q.S., A.M. and S.Z. designed the study. A.M. and S.Z. performed the experimental work and conducted the sampling. A.M., S.L. and H.H. conducted the DNA purification and organized the sequencing. G.X., S.Z. and W.W. provided the rice materials. A.M. carried out the bioinformatics and statistical analysis. W.X. and A.M. drafted the manuscript, and R.Z., G.X., W.X. and S.Z. revised it. All authors helped review, edit and complete the manuscript.

Corresponding authors

Correspondence to Guohua Xu or Ruifu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Mohammad Bahram, Peng Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Total nitrogen content in roots and shoots of OsLHT1a and OsLHT1b haplotypes under organic and inorganic fertilized soils.

a. Total nitrogen in root. b. Total nitrogen in shoot. n = 42 biologically independent samples (including 7 cultivars with 6 biological replicates per cultivar). Values represent means ± s.d. Two-way ANOVA showed significant effects of Genotype (F(1, 136) = 25.64, p < 0.0001), Fertilization (F(1, 136) = 20.52, p < 0.0001), and their interaction (F(1, 136) = 25.98, p < 0.0001) on roots. For shoots, significant effects of Genotype (F(1, 136) = 24.49, p < 0.0001), Fertilization (F(1, 136) = 13.89, p = 0.0003), and a marginal effect of Genotype:Fertilization interaction (F(1, 136) = 3.89, p = 0.051). Different letters above bars indicate significant differences between groups (p < 0.05) based on one-way ANOVA followed by Tukey’s HSD post-hoc test. A two-sided t-test was performed to compare the total nitrogen in the shoot and in the root of OsLHT1a and OsLHT1b grown in organic and inorganic N fertilization soils.

Source data

Extended Data Fig. 2 Enzyme activity and amino acid production of the isolated strains.

a. Protease activity (U·ml⁻¹), b. Asparagine (mg·L⁻¹), c. Glutamine (mg·L⁻¹), d. Nitrate (mg·L⁻¹) e. Ammonium (mg·L⁻¹). Different letters above bars indicate significant differences between groups (p < 0.05) based on one-way ANOVA followed by Tukey’s HSD post-hoc test. Values represent means ± s.d., n = 3 biologically independent samples.

Source data

Extended Data Fig. 3 Functional relationship of rhizosphere bacterial strains.

a. OsLHT1 expression. b. Amino acid in rhizosphere soil(mg·kg⁻¹). c. Amino acid in shoot(mg·kg⁻¹). d. Amino acid in root(mg·kg⁻¹). Different letters above bars indicate significant differences between groups (p < 0.05) based on one-way ANOVA followed by Tukey’s HSD post-hoc test. The F-values indicate the ratio of between-group variance to within-group variance, p-values represent the statistical significance of the differences, and partial R² indicates the effect size, representing the proportion of total variance explained by the treatment factor. Values represent means ± s.d. For a, n = 72 biologically independent samples, representing 10 varieties, with 4 OsLHT1a haplotypes and 4 OsLHT1b haplotypes. Each haplotype had 6 biologically independent samples, with 12 biologically independent samples for the LHT1/LHT1 and LHT1/lht1 genotypes. For b,c and d, n = 30 biologically independent samples, representing 10 cultivars, with 3 biologically independent samples per cultivar.

Source data

Extended Data Fig. 4 SynM enhances growth and organic N uptake in OsLHT1 genotypes under organic and inorganic fertilization.

a-b. Shoot height, Total nitrogen in shoot and root of lht1/lht1, LHT1/LHT1, and LHT1/lht1 under CK and SynM treatments in organic (a) and inorganic N (b) fertilization soil. A two-sided t-test was performed to compare the differences between the non-inoculated (CK) and SynM-inoculated groups, values represent means ± s.d. (n = 3 biologically independent samples).

Source data

Extended Data Fig. 5 Effect of SynM on OsLHT1a and OsLHT1b in cross-generation experiment.

a-b. Shoot height, shoot dry weight, Total nitrogen in shoot and root of 4 OsLHT1a and 4 OsLHT1b haplotypes under CK and SynM treatments across first and second generations in organic (a) and inorganic N (b) fertilization soil. A two-sided t-test was performed to compare the differences between the non-inoculated (CK) and SynM-inoculated groups, values represent means ± s.d., The analysis was based on 16 biologically independent samples for shoot height and shoot dry weight (4 cultivars with 4 replicates per cultivar), and 12 biologically independent samples for total nitrogen in shoot and total nitrogen in root (4 cultivars with 3 replicates per cultivar).

Source data

Extended Data Fig. 6 Effect of SynM on LHT1/LHT1, LHT1/lht1 and lht1/lht1 in cross-generation experiment.

a-b. Shoot height, shoot dry weight, Total nitrogen in shoot and root, and Amino acid in shoot and root of lht1/lht1, LHT1/LHT1, and LHT1/lht1 under CK and SynM treatments across first and second generations in organic (a) and inorganic N (b) fertilization soil. A two-sided t-test was performed to compare the differences between the non-inoculated (CK) and SynM-inoculated groups, values represent means ± s.d., n = 3 biologically independent samples.

Source data

Extended Data Fig. 7 SynM enhances growth and organic N uptake of OsLHT1a and OsLHT1b cultivars under field conditions.

a-b. Shoot height, tillering number, Total nitrogen in shoot and root of 4 OsLHT1a and 4 OsLHT1b haplotypes under CK and SynM treatments during the tillering stage under long-term organic (a) and inorganic N fertilization (b). A two-sided t-test was performed to compare the differences between the non-inoculated (CK) and SynM-inoculated groups. Values represent means ± s.d., the analysis was based on 16 biologically independent samples for shoot height and tiller number (4 cultivars with 4 replicates per cultivar), and 12 biologically independent samples for total nitrogen in shoot and total nitrogen in root (4 cultivars with 3 replicates per cultivar).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–18.

Supplementary Data 1

Raw data for all supplementary figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, A., Xun, W., Zhang, S. et al. Amino-acid-transporter-mediated assembly of rhizosphere microbiota enhances soil organic nitrogen acquisition in rice. Nat. Plants (2026). https://doi.org/10.1038/s41477-025-02217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41477-025-02217-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing