Table 1 Details of the training dataset for α-Fe
From: Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe
Datasets | Dataset | Nstr | Natom | Nforce | Energy (meV/atom) | Force (meV/Å) |
|---|---|---|---|---|---|---|
DE | Perfect crystal | 1776 | 54 | 95936 | 2.20 | 69.38 |
Vacancy | 500 | 53 | 26500 | 1.33 | 63.88 | |
SIA | 214 | 129 | 27606 | 1.86 | 36.43 | |
Total | 2490 | 150042 | 2.03 | 63.60 | ||
RANDSPGs | RANDSPG | 691 | 3–10 | 4078 | 16.28 | 88.49 |
VOLMIN | 1273 | 3–10 | 7918 | 12.72 | 77.98 | |
CELLMIN | 1836 | 3–10 | 11882 | 11.14 | 83.20 | |
INTMIN | 2015 | 3–10 | 13236 | 11.30 | 54.00 | |
TRIAX | 5187 | 3–10 | 35806 | 16.15 | 62.70 | |
SHEAR | 3209 | 3–10 | 22134 | 21.66 | 83.85 | |
RATTLE | 3249 | 3–10 | 22092 | 9.10 | 114.45 | |
Total | 17460 | 117146 | 15.14 | 81.94 | ||
All | Total | 19950 | 267188 | 14.11 | 71.88 |