Table 2 The 16 classic data descriptors derived from random mixing commonly used for ML-assisted design of single-phase high entropy alloys31,102,103
No. | Parameters | Calculation formula |
|---|---|---|
1 | rmean, mean atomic radius | \({r}_{{mean}}=\mathop{\sum }\limits_{i=1}^{n}{c}_{i}{r}_{i}\) |
2 | δ, atomic size difference | \(\delta =\sqrt{\mathop{\sum }\limits_{i=1}^{n}{{c}_{i}(1-\frac{{r}_{i}}{{r}_{{mean}}})}^{2}}\) |
3 | Tm, average melting point | \({T}_{m}=\mathop{\sum }\limits_{i=1}^{n}{c}_{i}{T}_{mi}\) |
4 | σT, standard deviation of Tm | \({\sigma }_{T}=\sqrt{\mathop{\sum }\limits_{i=1}^{n}{{c}_{i}(1-\frac{{T}_{{mi}}}{{T}_{m}})}^{2}}\) |
5 | ∆Hmix, mixing enthalpy | \(\varDelta {H}_{mix}=\sum _{i\ne j}{c}_{i}{c}_{j}{H}_{ij}\) |
6 | σ∆H, standard deviation of ∆Hmix | \({\sigma }_{\triangle H}=\sqrt{\sum _{i\ne j}{{c}_{i}{c}_{j}({H}_{{ij}}-{\triangle H}_{{mix}})}^{2}}\) |
7 | ∆Smix, ideal mixing entropy | \(\varDelta {S}_{mix}=-{k}_{B}\mathop{\sum }\limits_{i=1}^{n}{c}_{i}\,\mathrm{ln}({c}_{i})\) |
8 | \(\chi\), mean electronegativity | \(\chi =\mathop{\sum }\limits_{i=1}^{n}{c}_{i}{\chi }_{i}\) |
9 | σχ, standard deviation of \(\chi\) | \({\sigma }_{\chi }\,=\sqrt{\mathop{\sum }\limits_{i=1}^{n}{{c}_{i}({\chi }_{i}-\chi )}^{2}}\) |
10 | VEC, number of valence electrons | \({\rm{VEC}}=\mathop{\sum }\limits_{i=1}^{n}{c}_{i}VE{C}_{i}\) |
11 | σVEC, standard deviation of VEC | \({\sigma }_{{VEC}}\,=\sqrt{\mathop{\sum }\limits_{i=1}^{n}{{c}_{i}({{VEC}}_{i}-{VEC})}^{2}}\) |
12 | E, Young’s modulus | \({\rm{E}}=\mathop{\sum }\limits_{i=1}^{n}{c}_{i}{E}_{i}\) |
13 | σE, standard deviation of E | \({\sigma }_{E}=\sqrt{\mathop{\sum }\limits_{i=1}^{n}{{c}_{i}({E}_{i}-E)}^{2}}\) |
14 | K, bulk modulus | \({\rm{K}}=\mathop{\sum }\limits_{i=1}^{n}{c}_{i}{K}_{i}\) |
15 | σK, standard deviation of \(K\) | \({\sigma }_{K}=\sqrt{\mathop{\sum }\limits_{i=1}^{n}{{c}_{i}({K}_{i}-K)}^{2}}\) |
16 | (H/G), ordering tendency | \((H/G)=\,\mathrm{ln}(\frac{\varDelta {H}_{mix}}{\varDelta {H}_{mix}-{T}_{m}{S}_{id}})\) |