Table 2 Configuration dataset and training scheme of EMFF-2025 model
From: EMFF-2025: a general neural network potential for energetic materials with C, H, N, and O elements
Structure | Iterationsa | Scaling factorb | Temperature (K) | Sampling no. (AIMD/DP-GEN)c |
|---|---|---|---|---|
RDX HMX CL-20 | - | 0.92, 0.96, 1.00, 1.04, 1.08 | 300–4000 300–4000 300–4000 | 5000/4000 5000/4000 5000/4000 |
TNT | 1–5 | 1.00 | 300–4000 | 0/800 |
ADN | 5–9 | 1.00 | 300–4000 | 0/400 |
FOX-7 | 10–11 | 1.00 | 300–4000 | 0/400 |
TKX-50 | 12–13 | 1.00 | 300–4000 | 0/400 |
DNBF | 14–16 | 1.00 | 300–4000 | 0/300 |
BTF | 17–19 | 1.00 | 300–4000 | 0/300 |
TATB | 20–21 | 1.00 | 300–4000 | 0/200 |
TAGN | 22–23 | 1.00 | 300–4000 | 0/200 |
NG | 24–25 | 1.00 | 300–4000 | 0/200 |
PETN | 26–27 | 1.00 | 300–4000 | 0/500 |
DTTO/iso-DTTO d | 28–30 | 1.00 | 300–4000 | 0/200 |
NTO | 31–33 | 1.00 | 300–4000 | 0/200 |
TEX | 34–35 | 1.00 | 300–4000 | 0/200 |
BTTN | 36–38 | 1.00 | 300–4000 | 0/500 |
NC | 39–40 | 1.00 | 300–4000 | 0/500 |
TNB | 41–42 | 1.00 | 300–4000 | 0/800 |
HNS | 43–45 | 1.00 | 300–4000 | 0/800 |