Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SEL1L–HRD1-mediated ERAD in mammals

Abstract

Endoplasmic reticulum-associated degradation (ERAD) is a critical quality control mechanism responsible for eliminating misfolded or unassembled proteins. It maintains endoplasmic reticulum homeostasis, ensures a proper folding environment and regulates substrate protein levels. Following its discovery in the late 1980s and early 1990s, research on ERAD in mammals—particularly that mediated by the conserved protein complex comprising suppressor/enhancer of Lin-12-like protein 1-like (SEL1L) and HMG-CoA reductase degradation protein 1 (HRD1)—has advanced substantially over the past decade. SEL1L–HRD1-mediated ERAD is now recognized as a fundamental process in mammals that governs various physiological functions largely in a substrate-specific manner. In humans, mutations in this complex have been causally linked to ERAD-associated neurodevelopmental disorders with onset in infancy (ENDI) and ENDI-agammaglobulinaemia. This Review highlights the SEL1L–HRD1-mediated ERAD pathway, exploring its machinery, molecular mechanism and physiological relevance and potential therapeutic strategies targeting this system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ER quality control pathways.
Fig. 2: The SEL1L–HRD1 ERAD pathway: core components, cofactors, structural insights and representative endogenous substrates.
Fig. 3: Proposed autoregulatory feedback loop of the SEL1L–HRD1 ERAD complex.
Fig. 4: Pathogenic SEL1L and HRD1 variants in humans.

Similar content being viewed by others

References

  1. Braakman, I. & Bulleid, N. J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 80, 71–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Wenzel, E. M., Elfmark, L. A., Stenmark, H. & Raiborg, C. ER as master regulator of membrane trafficking and organelle function. J. Cell Biol. 2 221, e202205135 (2022).

    Article  CAS  Google Scholar 

  3. Phillips, M. J. & Voeltz, G. K. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17, 69–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, M. et al. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes. Metab. 20, 28–50 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, M. et al. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J. Clin. Invest. 131, e142240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arunagiri, A. et al. Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes. Ann. NY Acad. Sci. 1418, 5–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Anelli, T. & Sitia, R. Protein quality control in the early secretory pathway. EMBO J. 27, 315–327 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mori, K., Ma, W., Gething, M. J. & Sambrook, J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74, 743–756 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Lippincott-Schwartz, J., Bonifacino, J. S., Yuan, L. C. & Klausner, R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 54, 209–220 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Sommer, T. & Jentsch, S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365, 176–179 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Jensen, T. J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin–proteasome pathway. Cell 83, 121–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. McCracken, A. A. & Brodsky, J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Bernales, S., McDonald, K. L. & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4, e423 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hubner, C. A. & Dikic, I. ER-phagy and human diseases. Cell Death Differ. 27, 833–842 (2020).

    Article  PubMed  Google Scholar 

  17. Molinari, M. ER-phagy responses in yeast, plants, and mammalian cells and their crosstalk with UPR and ERAD. Dev. Cell 56, 949–966 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Fregno, I. et al. ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. EMBO J. 37, e99259 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guerriero, C. J. & Brodsky, J. L. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol. Rev. 92, 537–576 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Christianson, J. C., Jarosch, E. & Sommer, T. Mechanisms of substrate processing during ER-associated protein degradation. Nat. Rev. Mol. Cell Biol. 24, 777–796 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Shrestha, N. et al. Integration of ER protein quality control mechanisms defines β cell function and ER architecture. J. Clin. Invest. 133, e163584 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, S. A. et al. The mechanisms to dispose of misfolded proteins in the endoplasmic reticulum of adipocytes. Nat. Commun. 14, 3132 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun, Z. & Brodsky, J. L. Protein quality control in the secretory pathway. J. Cell Biol. 218, 3171–3187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, S. A., Li, Z. & Qi, L. Endoplasmic reticulum (ER) protein degradation by ER-associated degradation and ER-phagy. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2025.01.002 (2025).

    Article  PubMed  Google Scholar 

  25. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Acosta-Alvear, D., Harnoss, J. M., Walter, P. & Ashkenazi, A. Homeostasis control in health and disease by the unfolded protein response. Nat. Rev. Mol. Cell Biol. 26, 193–212 (2025).

    Article  CAS  PubMed  Google Scholar 

  27. Zattas, D. & Hochstrasser, M. Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope. Crit. Rev. Biochem. Mol. Biol. 50, 1–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat. Cell Biol. 3, 24–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Vembar, S. S. & Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bernasconi, R., Galli, C., Calanca, V., Nakajima, T. & Molinari, M. Stringent requirement for HRD1, SEL1L, and OS-9/XTP3-B for disposal of ERAD-LS substrates. J. Cell Biol. 188, 223–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Foresti, O., Rodriguez-Vaello, V., Funaya, C. & Carvalho, P. Quality control of inner nuclear membrane proteins by the Asi complex. Science 346, 751–755 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Khmelinskii, A. et al. Protein quality control at the inner nuclear membrane. Nature 516, 410–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirsch, C., Gauss, R., Horn, S. C., Neuber, O. & Sommer, T. The ubiquitylation machinery of the endoplasmic reticulum. Nature 458, 453–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Olzmann, J. A., Kopito, R. R. & Christianson, J. C. The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb. Perspect. Biol. 5, a013185 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Qi, L., Tsai, B. & Arvan, P. New insights into the physiological role of endoplasmic reticulum-associated degradation. Trends Cell Biol. 27, 430–440 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hwang, J. & Qi, L. Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways. Trends Biochem. Sci. 43, 593–605 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhattacharya, A. & Qi, L. ER-associated degradation in health and disease—from substrate to organism. J. Cell Sci. 132, jcs232850 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029–2044 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gardner, R. G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol. 151, 69–82 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Christianson, J. C., Shaler, T. A., Tyler, R. E. & Kopito, R. R. OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1–SEL1L ubiquitin ligase complex for ERAD. Nat. Cell Biol. 10, 272–282 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin, L. L. et al. SEL1L–HRD1 interaction is required to form a functional HRD1 ERAD complex. Nat. Commun. 15, 1440 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mueller, B., Klemm, E. J., Spooner, E., Claessen, J. H. & Ploegh, H. L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl Acad. Sci. USA 105, 12325–12330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brodsky, J. L. Cleaning up: ER-associated degradation to the rescue. Cell 151, 1163–1167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baldridge, R. D. & Rapoport, T. A. Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. Cell 166, 394–407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peterson, B. G., Glaser, M. L., Rapoport, T. A. & Baldridge, R. D. Cycles of autoubiquitination and deubiquitination regulate the ERAD ubiquitin ligase Hrd1. eLife 8, e50903 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vashistha, N., Neal, S. E., Singh, A., Carroll, S. M. & Hampton, R. Y. Direct and essential function for Hrd3 in ER-associated degradation. Proc. Natl Acad. Sci. USA 113, 5934–5939 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schoebel, S. et al. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548, 352–355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, X. et al. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science 368, eaaz2449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, K. et al. Substrate recognition mechanism of the endoplasmic reticulum-associated ubiquitin ligase Doa10. Nat. Commun. 15, 2182 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, D., Wu, X. & Rapoport, T. A.Initiation of ERAD by the bifunctional complex of Mnl1/Htm1 mannosidase and protein disulfide isomerase. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-025-01491-y (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wei, X. et al. Proteomic screens of SEL1L–HRD1 ER-associated degradation substrates reveal its role in glycosylphosphatidylinositol-anchored protein biogenesis. Nat. Commun. 15, 659 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ye, Y., Baek, S. H., Ye, Y. & Zhang, T. Proteomic characterization of endogenous substrates of mammalian ubiquitin ligase Hrd1. Cell Biosci. 8, 46 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tyler, R. E. et al. Unassembled CD147 is an endogenous endoplasmic reticulum-associated degradation substrate. Mol. Biol. Cell 23, 4668–4678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song, Z. et al. Regulation of hepatic inclusions and fibrinogen biogenesis by SEL1L–HRD1 ERAD. Nat. Commun. 15, 9244 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thepsuwan, P. et al. Hepatic SEL1L–HRD1 ER-associated degradation regulates systemic iron homeostasis via ceruloplasmin. Proc. Natl Acad. Sci. USA 120, e2212644120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun, S. et al. IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat. Cell Biol. 17, 1546–1555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhattacharya, A. et al. Hepatic Sel1L–Hrd1 ER-associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH. EMBO J. 37, e99277 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wei, J. et al. HRD1–ERAD controls production of the hepatokine FGF21 through CREBH polyubiquitination. EMBO J. 37, e98942 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yoshida, S. et al. Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function. J. Clin. Invest. 131, e143988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou, Z. et al. Endoplasmic reticulum-associated degradation regulates mitochondrial dynamics in brown adipocytes. Science 368, 54–60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shrestha, N. et al. Sel1L–Hrd1 ER-associated degradation maintains β cell identity via TGFβ signaling. J. Clin. Invest. 130, 3499–3510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, G. H. et al. Hypothalamic ER-associated degradation regulates POMC maturation, feeding and age-associated obesity. J. Clin. Invest. 128, 1125–1140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shi, G. et al. ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. J. Clin. Invest. 127, 3897–3912 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hu, Y. et al. Endoplasmic reticulum-associated degradation (ERAD) has a critical role in supporting glucose-stimulated insulin secretion in pancreatic β-cells. Diabetes 68, 733–746 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Hosokawa, N. et al. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1–SEL1L ubiquitin ligase complex and BiP. J. Biol. Chem. 283, 20914–20924 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Venkatarangan, V. et al. ER-associated degradation in cystinosis pathogenesis and the prospects of precision medicine. J. Clin. Invest. 133, e169551 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun, S. et al. Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival. Proc. Natl Acad. Sci. USA 111, E582–E591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mehnert, M. et al. The interplay of Hrd3 and the molecular chaperone system ensures efficient degradation of malfolded secretory proteins. Mol. Biol. Cell 26, 185–194 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Weis, D. et al. Biallelic Cys141Tyr variant of SEL1L is associated with neurodevelopmental disorders, agammaglobulinemia, and premature death. J. Clin. Invest. 134, e170882 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Horimoto, S. et al. The unfolded protein response transducer ATF6 represents a novel transmembrane-type endoplasmic reticulum-associated degradation substrate requiring both mannose trimming and SEL1L protein. J. Biol. Chem. 288, 31517–31527 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ji, Y. et al. The Sel1L–Hrd1 endoplasmic reticulum-associated degradation complex manages a key checkpoint in B cell development. Cell Rep. 16, 2630–2640 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang, Y. et al. The endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls a critical checkpoint in B cell development in mice. J. Biol. Chem. 293, 12934–12944 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fujita, H. et al. The E3 ligase synoviolin controls body weight and mitochondrial biogenesis through negative regulation of PGC-1β. EMBO J. 34, 1042–1055 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kikkert, M. et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J. Biol. Chem. 279, 3525–3534 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Iida, Y. et al. SEL1L protein critically determines the stability of the HRD1–SEL1L endoplasmic reticulum-associated degradation (ERAD) complex to optimize the degradation kinetics of ERAD substrates. J. Biol. Chem. 286, 16929–16939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin–ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Christianson, J. C. et al. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 14, 93–105 (2012).

    Article  CAS  Google Scholar 

  80. Hwang, J. et al. Characterization of protein complexes of the endoplasmic reticulum-associated degradation E3 ubiquitin ligase Hrd1. J. Biol. Chem. 292, 9104–9116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Francisco, A. B. et al. Deficiency of suppressor enhancer Lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality. J. Biol. Chem. 285, 13694–13703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yagishita, N. et al. Essential role of synoviolin in embryogenesis. J. Biol. Chem. 280, 7909–7916 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Mao, H., Kim, G. H., Pan, L. & Qi, L. Regulation of leptin signaling and diet-induced obesity by SEL1L–HRD1 ER-associated degradation in POMC expressing neurons. Nat. Commun. 15, 8435 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sha, H. et al. The ER-associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism. Cell Metab. 20, 458–470 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Badman, M. K. et al. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5, 426–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Inagaki, T. et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Ji, Y. et al. SEL1L–HRD1 endoplasmic reticulum-associated degradation controls STING-mediated innate immunity by limiting the size of the activable STING pool. Nat. Cell Biol. 25, 726–739 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Correa-Medero, L. O. et al. ER-associated degradation adapter Sel1L is required for CD8+ T cell function and memory formation following acute viral infection. Cell Rep. 43, 114156 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu, Y. et al. The E3 ligase Hrd1 stabilizes Tregs by antagonizing inflammatory cytokine-induced ER stress response. JCI Insight 4, e121887 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yao, X. et al. T-cell-specific Sel1L deletion exacerbates EAE by promoting Th1/Th17-cell differentiation. Mol. Immunol. 149, 13–26 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Liu, X. et al. Notch-induced endoplasmic reticulum-associated degradation governs mouse thymocyte β-selection. eLife 10, e69975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, S., Liu, P., Cvetanovic, M. & Lin, W. Endoplasmic reticulum associated degradation preserves neurons viability by maintaining endoplasmic reticulum homeostasis. Front. Neurosci. 18, 1437854 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Torres, M. et al. Purkinje cell-specific deficiency in SEL1L–hrd1 endoplasmic reticulum-associated degradation causes progressive cerebellar ataxia in mice. JCI Insight 9, e174725 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kyostila, K. et al. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD) machinery. PLoS Genet. 8, e1002759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Eura, Y. et al. Derlin-1 deficiency is embryonic lethal, Derlin-3 deficiency appears normal, and Herp deficiency is intolerant to glucose load and ischemia in mice. PLoS ONE 7, e34298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dougan, S. K. et al. Derlin-2-deficient mice reveal an essential role for protein dislocation in chondrocytes. Mol. Cell. Biol. 31, 1145–1159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Koenig, P. A. et al. The E2 ubiquitin-conjugating enzyme UBE2J1 is required for spermiogenesis in mice. J. Biol. Chem. 289, 34490–34502 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang, H. H. et al. Hypomorphic variants of SEL1L–HRD1 ER-associated degradation are associated with neurodevelopmental disorders. J. Clin. Invest. 134, e170054 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Alazami, A. M. et al. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 10, 148–161 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Anazi, S. et al. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol. Psychiatry 22, 615–624 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Fricker, L. D. Proteasome inhibitor drugs. Annu. Rev. Pharmacol. Toxicol. 60, 457–476 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Bhattacharya, A. et al. SEL1L–HRD1 ER-associated degradation suppresses hepatocyte hyperproliferation and liver cancer. iScience 25, 105183 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Biunno, I. et al. SEL1L a multifaceted protein playing a role in tumor progression. J. Cell. Physiol. 208, 23–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, Q. et al. A single-nucleotide polymorphism in tumor suppressor gene SEL1L as a predictive and prognostic marker for pancreatic ductal adenocarcinoma in Caucasians. Mol. Carcinog. 51, 433–438 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Liu, Q. et al. Putative tumor suppressor gene SEL1L was downregulated by aberrantly upregulated hsa-mir-155 in human pancreatic ductal adenocarcinoma. Mol. Carcinog. 53, 711–721 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Mellai, M. et al. SEL1L SNP rs12435998, a predictor of glioblastoma survival and response to radio-chemotherapy. Oncotarget 6, 12452–12467 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Nomura, J. et al. Neuroprotection by endoplasmic reticulum stress-induced HRD1 and chaperones: possible therapeutic targets for Alzheimer’s and Parkinson’s disease. Med. Sci. (Basel) 4, 14 (2016).

    PubMed  Google Scholar 

  108. Wei, J. et al. HRD1-mediated METTL14 degradation regulates m6A mRNA modification to suppress ER proteotoxic liver disease. Mol. Cell 81, 5052–5065.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu, T. et al. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev. 28, 708–722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Saltini, G. et al. A novel polymorphism in SEL1L confers susceptibility to Alzheimer’s disease. Neurosci. Lett. 398, 53–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Yagishita, N. et al. RING-finger type E3 ubiquitin ligase inhibitors as novel candidates for the treatment of rheumatoid arthritis. Int. J. Mol. Med. 30, 1281–1286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, Z. et al. The astragaloside IV derivative LS-102 ameliorates obesity-related nephropathy. Drug Des. Dev. Ther. 16, 647–664 (2022).

    Article  CAS  Google Scholar 

  113. Magnaghi, P. et al. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat. Chem. Biol. 9, 548–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Zhou, H. J. et al. Discovery of a first-in-class, potent, selective, and orally bioavailable inhibitor of the p97 AAA ATPase (CB-5083). J. Med. Chem. 58, 9480–9497 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Anderson, D. J. et al. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell 28, 653–665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Meyer, H. & Weihl, C. C. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J. Cell Sci. 127, 3877–3883 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Chirnomas, D., Hornberger, K. R. & Crews, C. M. Protein degraders enter the clinic—a new approach to cancer therapy. Nat. Rev. Clin. Oncol. 20, 265–278 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bordallo, J., Plemper, R. K., Finger, A. & Wolf, D. H. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9, 209–222 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Grant, B. & Greenwald, I. Structure, function, and expression of SEL-1, a negative regulator of LIN-12 and GLP-1 in C. elegans. Development 124, 637–644 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Sundaram, M. & Greenwald, I. Suppressors of a lin-12 hypomorph define genes that interact with both lin-12 and glp-1 in Caenorhabditis elegans. Genetics 135, 765–783 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Biunno, I. et al. Isolation of a pancreas-specific gene located on human chromosome 14q31: expression analysis in human pancreatic ductal carcinomas. Genomics 46, 284–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Biunno, I. et al. SEL1L, the human homolog of C. elegans sel-1: refined physical mapping, gene structure and identification of polymorphic markers. Hum. Genet. 106, 227–235 (2000).

    CAS  PubMed  Google Scholar 

  123. Amano, T. et al. Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev. 17, 2436–2449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kaneko, M., Ishiguro, M., Niinuma, Y., Uesugi, M. & Nomura, Y. Human HRD1 protects against ER stress-induced apoptosis through ER-associated degradation. FEBS Lett. 532, 147–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Bhamidipati, A., Denic, V., Quan, E. M. & Weissman, J. S. Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol. Cell 19, 741–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Kim, W., Spear, E. D. & Ng, D. T. Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol. Cell 19, 753–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P. & Jakob, C. A. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell 19, 765–775 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Lilley, B. N. & Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Ye, Y. et al. Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl Acad. Sci. USA 102, 14132–14138 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Stein, A., Ruggiano, A., Carvalho, P. & Rapoport, T. A. Key steps in ERAD of luminal ER proteins reconstituted with purified components. Cell 158, 1375–1388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose works were not cited due to space limitations. This work was supported by R01DK128077 and R01DK132068 (to S.S); the Alzheimer’s Association (24AARG-D-NTF-1187603), 1R01AG089640, 1R01DK120330, 1R01DK137794, 1R01DK132786, 1R01DK111174 and 1R35GM130292 (to L.Q.); and 1R01NS138119 (to S.S. and L.Q.). H.H.W. is supported by an Alzheimer’s Association Postdoctoral Research Fellowship (25AARF-1375486).

Author information

Authors and Affiliations

Authors

Contributions

H.H.W., S.S. and L.Q. conceptualized the manuscript and co-wrote the majority of the text. H.H.W. generated the figures. I.B. contributed to the writing of Box 1. I.B. and S.S. provided critical edits. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Shengyi Sun or Ling Qi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks John Christianson and Yihong Ye for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H.H., Biunno, I., Sun, S. et al. SEL1L–HRD1-mediated ERAD in mammals. Nat Cell Biol 27, 1063–1073 (2025). https://doi.org/10.1038/s41556-025-01690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41556-025-01690-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing