Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Cancer

Deciphering KRAS inhibitor resistance

Targeting oncogenic KRAS holds great promise but is often limited by rapid adaptive resistance. A study now shows that RASH3D19 is regulated by microRNAs and promotes resistance to RAS inhibition by enhancing EGFR dimerization. Targeting RASH3D19 improves sensitivity to RAS inhibitors in preclinical settings.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The miRNA–RASH3D19 network in adaptive resistance to mKRAS inhibition.

References

  1. Przybyszewski, O. et al. Biomedicines 12, 1713 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tsunoda, T. et al. Anticancer Res 31, 2453–2459 (2011).

    PubMed  Google Scholar 

  3. Treekitkarnmongkol, W. et al. Nat. Cell Biol. https://doi.org/10.1038/s41556-025-01816-5 (2025).

    Article  PubMed  Google Scholar 

  4. Cox, A. D. & Der, C. J. Genes Dev. 39, 132–162 (2025).

    PubMed  PubMed Central  Google Scholar 

  5. Singhal, A., Li, B. T. & O’Reilly, E. M. Nat. Med. 30, 969–983 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jänne, P. A. et al. N. Engl. J. Med. 387, 120–131 (2022).

    Article  PubMed  Google Scholar 

  7. de Langen, A. J. et al. Lancet 401, 733–746 (2023).

    Article  PubMed  Google Scholar 

  8. Ryan, M. B. et al. Cell Rep. 39, 110993 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Amodio, V. et al. Cancer Discov. 10, 1129–1139 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Szczepanek, J., Skorupa, M. & Tretyn, A. Cells 11, 1008 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Croce, C. M. Nat. Rev. Genet. 10, 704–714 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tanaka, M. et al. J. Biol. Chem. 279, 41950–41959 (2004).

    Article  PubMed  Google Scholar 

  13. Yam, J. W., Jin, D. Y., So, C. W. & Chan, L. C. Blood 103, 1445–1453 (2004).

    Article  PubMed  Google Scholar 

  14. Fakih, M. G. et al. N. Engl. J. Med. 389, 2125–2139 (2023).

    Article  PubMed  Google Scholar 

  15. Srivastava, R. M. et al. Cancer Immunol. Res. 3, 936–945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliya Pylayeva-Gupta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torphy, R.J., Pylayeva-Gupta, Y. Deciphering KRAS inhibitor resistance. Nat Cell Biol 28, 8–10 (2026). https://doi.org/10.1038/s41556-025-01757-z

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41556-025-01757-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer