Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitotic errors as triggers of cell death and inflammation

Abstract

Bursts of cell proliferation after infection, injury or transformation can coincide with DNA damage and spindle assembly defects. These increase the risk of cell cycle arrest in mitosis, during which many cellular processes are uniquely regulated. Ultimately, cells arrested during mitosis may die, but adaptive mechanisms also allow their escape into the next interphase. This step can have variable consequences, including chromosome missegregation, polyploidization and centrosome amplification. Escaping cells can also initiate innate immune signalling, enter senescence or engage cell death, which in turn alert the microenvironment through nucleic acid sensing mechanisms and/or the release of danger-associated molecular patterns. Here we discuss the causes and consequences of deregulated mitosis and postmitotic cell fate, highlighting the impact of DNA damage repair, the spindle assembly checkpoint and extra centrosomes on genome integrity, as well as inflammatory signalling. Finally, we attempt to reconcile conflicting observations and propose variable modes that activate innate immune responses after mitotic perturbations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Unique features of mitosis and possible consequences of mitotic errors.
Fig. 2: Initiation and execution of mitotic cell death.
Fig. 3: Possible consequences of mitotic escape.
Fig. 4: Possible sources of inflammation in response to mitotic errors.

Similar content being viewed by others

References

  1. Matthews, H. K., Bertoli, C. & de Bruin, R. A. M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 23, 74–88 (2022).

    PubMed  Google Scholar 

  2. Costa, A. & Diffley, J. F. X. The initiation of eukaryotic DNA replication. Annu. Rev. Biochem. 91, 107–131 (2022).

    PubMed  Google Scholar 

  3. Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).

    PubMed  Google Scholar 

  4. Breslow, D. K. & Holland, A. J. Mechanism and regulation of centriole and cilium biogenesis. Annu. Rev. Biochem. 88, 691–724 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. Dey, G. & Baum, B. Nuclear envelope remodelling during mitosis. Curr. Opin. Cell Biol. 70, 67–74 (2021).

    PubMed  PubMed Central  Google Scholar 

  6. Gibcus, J.H, et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Zhao, G. et al. A tubule-sheet continuum model for the mechanism of nuclear envelope assembly. Dev. Cell 58, 847–865 (2023).

    PubMed  PubMed Central  Google Scholar 

  8. Palozola, K. C. et al. Mitotic transcription and waves of gene reactivation during mitotic exit. Science 358, 119–122 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Tanenbaum, M. E., Stern-Ginossar, N., Weissman, J. S. & Vale, R. D. Regulation of mRNA translation during mitosis. eLife 4, e07957 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Ly, J. et al. Nuclear release of eIF1 restricts start-codon selection during mitosis. Nature 635, 490–498 (2024).

    PubMed  PubMed Central  Google Scholar 

  11. Valdez, V. A., Neahring, L., Petry, S. & Dumont, S. Mechanisms underlying spindle assembly and robustness. Nat. Rev. Mol. Cell Biol. 24, 523–542 (2023).

    PubMed  PubMed Central  Google Scholar 

  12. Salinas-Luypaert, C. & Fachinetti, D. Canonical and noncanonical regulators of centromere assembly and maintenance. Curr. Opin. Cell Biol. 89, 102396 (2024).

    PubMed  Google Scholar 

  13. Waterman, D. P., Haber, J. E. & Smolka, M. B. Checkpoint responses to DNA double-strand breaks. Annu. Rev. Biochem. 89, 103–133 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Maiato, H. & Silva, S. Double-checking chromosome segregation. J. Cell Biol. 222, e202301106 (2023).

    PubMed  PubMed Central  Google Scholar 

  15. McAinsh, A. D. & Kops, G. Principles and dynamics of spindle assembly checkpoint signalling. Nat. Rev. Mol. Cell Biol. 24, 543–559 (2023).

    PubMed  Google Scholar 

  16. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    PubMed  PubMed Central  Google Scholar 

  17. Dwivedi, D., Harry, D. & Meraldi, P. Mild replication stress causes premature centriole disengagement via a sub-critical Plk1 activity under the control of ATR−Chk1. Nat. Commun. 14, 6088 (2023).

    PubMed  PubMed Central  Google Scholar 

  18. Haschka, M., Karbon, G., Fava, L. L. & Villunger, A. Perturbing mitosis for anti-cancer therapy: is cell death the only answer? EMBO Rep. 19, e45440 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Szmyd, R. et al. Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage. Nat. Cell Biol. 27, 59–72 (2025).

    PubMed  PubMed Central  Google Scholar 

  20. Flynn, F., Koch, P. D. & Mitchison, T. J. Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc. Natl Acad. Sci. USA 118, e2103585118 (2021).

    PubMed  PubMed Central  Google Scholar 

  21. Masamsetti, V. P. et al. Replication stress induces mitotic death through parallel pathways regulated by WAPL and telomere deprotection. Nat. Commun. 10, 4224 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Garner, E., Kim, Y., Lach, F. P., Kottemann, M. C. & Smogorzewska, A. Human GEN1 and the SLX4-associated nucleases MUS81 and SLX1 are essential for the resolution of replication-induced Holliday junctions. Cell Rep. 5, 207–215 (2013).

    PubMed  Google Scholar 

  23. Chen, J. et al. Cell cycle checkpoints cooperate to suppress DNA- and RNA-associated molecular pattern recognition and anti-tumor immune responses. Cell Rep. 32, 108080 (2020).

    PubMed  PubMed Central  Google Scholar 

  24. Hayashi, M. T., Cesare, A. J., Fitzpatrick, J. A., Lazzerini-Denchi, E. & Karlseder, J. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat. Struct. Mol. Biol. 19, 387–394 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Lemmens, B. et al. DNA replication determines timing of mitosis by restricting CDK1 and PLK1 activation. Mol. Cell 71, 117–128 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Saldivar, J. C. et al. An intrinsic S/G(2) checkpoint enforced by ATR. Science 361, 806–810 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Minocherhomji, S. et al. Replication stress activates DNA repair synthesis in mitosis. Nature 528, 286–290 (2015).

    PubMed  Google Scholar 

  28. Groelly, F. J. et al. Mitotic DNA synthesis is caused by transcription-replication conflicts in BRCA2-deficient cells. Mol. Cell 82, 3382–3397 (2022).

    PubMed  PubMed Central  Google Scholar 

  29. Lukas, C. et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat. Cell Biol. 13, 243–253 (2011).

    PubMed  Google Scholar 

  30. Gelot, C. et al. Polθ is phosphorylated by PLK1 to repair double-strand breaks in mitosis. Nature 621, 415–422 (2023).

    PubMed  PubMed Central  Google Scholar 

  31. Mazzagatti, A., Engel, J. L. & Ly, P. Boveri and beyond: chromothripsis and genomic instability from mitotic errors. Mol. Cell 84, 55–69 (2024).

    PubMed  Google Scholar 

  32. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    PubMed  PubMed Central  Google Scholar 

  33. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Umbreit, N. T. et al. Mechanisms generating cancer genome complexity from a single cell division error. Science 368, eaba0712 (2020).

    PubMed  PubMed Central  Google Scholar 

  36. Engel, J. L. et al. The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance. Cell 187, 6055–6070 (2024).

    PubMed  PubMed Central  Google Scholar 

  37. Topham, C. et al. MYC is a major determinant of mitotic cell fate. Cancer Cell 28, 129–140 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Haschka, M. D. et al. The NOXA–MCL1–BIM axis defines lifespan on extended mitotic arrest. Nat. Commun. 6, 6891 (2015).

    PubMed  Google Scholar 

  39. Topham, C. H. & Taylor, S. S. Mitosis and apoptosis: how is the balance set? Curr. Opin. Cell Biol. 25, 780–785 (2013).

    PubMed  Google Scholar 

  40. Díaz-Martínez, L. A. et al. Genome-wide siRNA screen reveals coupling between mitotic apoptosis and adaptation. EMBO J. 33, 1960–1976 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Lok, T. M. et al. Mitotic slippage is determined by p31comet and the weakening of the spindle-assembly checkpoint. Oncogene 39, 2819–2834 (2020).

    PubMed  PubMed Central  Google Scholar 

  42. Tuzlak, S., Kaufmann, T. & Villunger, A. Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis. Genes Dev. 30, 2133–2151 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Czabotar, P. E. & Garcia-Saez, A. J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat. Rev. Mol. Cell Biol. 24, 732–748 (2023).

    PubMed  Google Scholar 

  44. Glover, H. L., Schreiner, A., Dewson, G. & Tait, S. W. G. Mitochondria and cell death. Nat. Cell Biol. 26, 1434–1446 (2024).

    PubMed  Google Scholar 

  45. Shi, J. & Mitchison, T. J. Cell death response to anti-mitotic drug treatment in cell culture, mouse tumor model and the clinic. Endocr. Relat. Cancer 24, T83–T96 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Bock, F. J. & Riley, J. S. When cell death goes wrong: inflammatory outcomes of failed apoptosis and mitotic cell death. Cell Death Differ. 30, 293–303 (2023).

    PubMed  Google Scholar 

  47. Darweesh, O. et al. Identification of a novel Bax-Cdk1 signalling complex that links activation of the mitotic checkpoint to apoptosis. J. Cell Sci. 134, jcs244152 (2021).

    PubMed  Google Scholar 

  48. Allan, L. A., Skowyra, A., Rogers, K. I., Zeller, D. & Clarke, P. R. Atypical APC/C-dependent degradation of Mcl-1 provides an apoptotic timer during mitotic arrest. EMBO J. 37, e96831 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Arai, S. et al. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. eLife 9, e54954 (2020).

    PubMed  PubMed Central  Google Scholar 

  50. Haschka, M. D. et al. MARCH5-dependent degradation of MCL1/NOXA complexes defines susceptibility to antimitotic drug treatment. Cell Death Differ. 27, 2297–2312 (2020).

    PubMed  PubMed Central  Google Scholar 

  51. Wertz, I. E. et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110–114 (2011).

    PubMed  Google Scholar 

  52. Shi, J., Zhou, Y., Huang, H. C. & Mitchison, T. J. Navitoclax (ABT-263) accelerates apoptosis during drug-induced mitotic arrest by antagonizing Bcl-xL. Cancer Res. 71, 4518–4526 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. Nikhil, K. & Shah, K. The Cdk5–Mcl-1 axis promotes mitochondrial dysfunction and neurodegeneration in a model of Alzheimer’s disease. J. Cell Sci. 130, 3023–3039 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Lowman, X. H. et al. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol. Cell 40, 823–833 (2010).

    PubMed  Google Scholar 

  55. Zheng, X. F. et al. CDK5–cyclin B1 regulates mitotic fidelity. Nature 633, 932–940 (2024).

    PubMed  PubMed Central  Google Scholar 

  56. Zierhut, C. et al. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178, 302–315 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. Moustafa-Kamal, M., Gamache, I., Lu, Y., Li, S. & Teodoro, J. G. BimEL is phosphorylated at mitosis by Aurora A and targeted for degradation by βTrCP1. Cell Death Differ. 20, 1393–1403 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. Tanaka, K. et al. Targeting Aurora B kinase prevents and overcomes resistance to EGFR inhibitors in lung cancer by enhancing BIM- and PUMA-mediated apoptosis. Cancer Cell 39, 1245–1261 (2021).

    PubMed  PubMed Central  Google Scholar 

  59. Vaz, S. et al. FOXM1 repression increases mitotic death upon antimitotic chemotherapy through BMF upregulation. Cell Death Dis. 12, 542 (2021).

    PubMed  PubMed Central  Google Scholar 

  60. Pedley, R. et al. BioID-based proteomic analysis of the Bid interactome identifies novel proteins involved in cell-cycle-dependent apoptotic priming. Cell Death Dis. 11, 872 (2020).

    PubMed  PubMed Central  Google Scholar 

  61. Karbon, G. et al. The BH3-only protein NOXA serves as an independent predictor of breast cancer patient survival and defines susceptibility to microtubule targeting agents. Cell Death Dis. 12, 1151 (2021).

    PubMed  PubMed Central  Google Scholar 

  62. Tan, T. T. et al. Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 7, 227–238 (2005).

    PubMed  Google Scholar 

  63. Karbon, G. et al. Chronic spindle assembly checkpoint activation causes myelosuppression and gastrointestinal atrophy. EMBO Rep. 25, 2743–2772 (2024).

    PubMed  PubMed Central  Google Scholar 

  64. Matthess, Y., Raab, M., Knecht, R., Becker, S. & Strebhardt, K. Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol. Oncol. 8, 596–608 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Andersen, J. L. et al. Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2. EMBO J. 28, 3216–3227 (2009).

    PubMed  PubMed Central  Google Scholar 

  66. Connolly, P., Garcia-Carpio, I. & Villunger, A. Cell-cycle cross talk with caspases and their substrates. Cold Spring Harb. Perspect. Biol. 12, a036475 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Allan, L. A. & Clarke, P. R. Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol. Cell 26, 301–310 (2007).

    PubMed  Google Scholar 

  68. Lim, Y. et al. Phosphorylation by Aurora B kinase regulates caspase-2 activity and function. Cell Death Differ. 28, 349–366 (2021).

    PubMed  Google Scholar 

  69. Van Opdenbosch, N. & Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity 50, 1352–1364 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Moore, A. S. et al. Actin cables and comet tails organize mitochondrial networks in mitosis. Nature 591, 659–664 (2021).

    PubMed  PubMed Central  Google Scholar 

  71. Meier, P., Legrand, A. J., Adam, D. & Silke, J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat. Rev. Cancer 24, 299–315 (2024).

    PubMed  Google Scholar 

  72. Liccardi, G. et al. RIPK1 and caspase-8 ensure chromosome stability independently of their role in cell death and inflammation. Mol. Cell 73, 413–428 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Pollak, N. et al. Cell cycle progression and transmitotic apoptosis resistance promote escape from extrinsic apoptosis. J. Cell Sci. 134, jcs258966 (2021).

    PubMed  Google Scholar 

  74. Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).

    PubMed  PubMed Central  Google Scholar 

  75. Meitinger, F. et al. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J. Cell Biol. 214, 155–166 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Lambrus, B. G. et al. A USP28–53BP1–p53–p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J. Cell Biol. 214, 143–153 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Fong, C. S. et al. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife 5, e16270 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Uetake, Y. & Sluder, G. Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr. Biol. 20, 1666–1671 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Meitinger, F. et al. Control of cell proliferation by memories of mitosis. Science 383, 1441–1448 (2024).

    PubMed  PubMed Central  Google Scholar 

  80. Burigotto, M. et al. PLK1 promotes the mitotic surveillance pathway by controlling cytosolic 53BP1 availability. EMBO Rep. 24, e57234 (2023).

    PubMed  PubMed Central  Google Scholar 

  81. Bazzi, H. & Anderson, K. V. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc. Natl Acad. Sci. USA 111, E1491–E1500 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Xiao, C. et al. Gradual centriole maturation associates with the mitotic surveillance pathway in mouse development. EMBO Rep. 22, e51127 (2021).

    PubMed  PubMed Central  Google Scholar 

  83. Meyer-Gerards, C. & Bazzi, H. Developmental and tissue-specific roles of mammalian centrosomes. FEBS J. 292, 709–726 (2025).

    PubMed  Google Scholar 

  84. Phan, T. P. & Holland, A. J. Time is of the essence: the molecular mechanisms of primary microcephaly. Genes Dev. 35, 1551–1578 (2021).

    PubMed  PubMed Central  Google Scholar 

  85. Schapfl, M. A. et al. Centrioles are frequently amplified in early B cell development but dispensable for humoral immunity. Nat. Commun. 15, 8890 (2024).

    PubMed  PubMed Central  Google Scholar 

  86. Collin, P., Nashchekina, O., Walker, R. & Pines, J. The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nat. Cell Biol. 15, 1378–1385 (2013).

    PubMed  Google Scholar 

  87. Fulcher, L. J., Sobajima, T., Batley, C., Gibbs-Seymour, I. & Barr, F. A. MDM2 functions as a timer reporting the length of mitosis. Nat. Cell Biol. 27, 262–272 (2025).

    PubMed  PubMed Central  Google Scholar 

  88. Herve, S. et al. Chromosome mis-segregation triggers cell cycle arrest through a mechanosensitive nuclear envelope checkpoint. Nat. Cell Biol. 27, 73–86 (2025).

    PubMed  PubMed Central  Google Scholar 

  89. Chunduri, N. K. & Storchová, Z. The diverse consequences of aneuploidy. Nat. Cell Biol. 21, 54–62 (2019).

    PubMed  Google Scholar 

  90. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

    PubMed  Google Scholar 

  91. Ippolito, M. R. et al. Increased RNA and protein degradation is required for counteracting transcriptional burden and proteotoxic stress in human aneuploid cells. Cancer Discov. 14, 2532–2553 (2024).

    PubMed  PubMed Central  Google Scholar 

  92. Ottens, F., Efstathiou, S. & Hoppe, T. Cutting through the stress: RNA decay pathways at the endoplasmic reticulum. Trends Cell Biol. 34, 1056–1068 (2024).

    PubMed  Google Scholar 

  93. Xu, L. et al. IRE1α silences dsRNA to prevent taxane-induced pyroptosis in triple-negative breast cancer. Cell 187, 7248–7266 (2024).

    PubMed  PubMed Central  Google Scholar 

  94. Santaguida, S., Vasile, E., White, E. & Amon, A. Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev. 29, 2010–2021 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Stingele, S. et al. Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol. Syst. Biol. 8, 608 (2012).

    PubMed  PubMed Central  Google Scholar 

  96. Zerbib, J. et al. Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage. Nat. Commun. 15, 7772 (2024).

    PubMed  PubMed Central  Google Scholar 

  97. Ippolito, M. R. et al. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy. Dev. Cell 56, 2440–2454 (2021).

    PubMed  Google Scholar 

  98. Cohen-Sharir, Y. et al. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature 590, 486–491 (2021).

    PubMed  PubMed Central  Google Scholar 

  99. Zheng, S. et al. High CDC20 levels increase sensitivity of cancer cells to MPS1 inhibitors. EMBO Rep. 26, 1036–1061 (2025).

    PubMed  PubMed Central  Google Scholar 

  100. Bennett, A. et al. Inhibition of Bcl-xL sensitizes cells to mitotic blockers, but not mitotic drivers. Open Biol. 6, 160134 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Weiss, J. G., Gallob, F., Rieder, P. & Villunger, A. Apoptosis as a barrier against CIN and aneuploidy. Cancers 15, 30 (2022).

    PubMed  PubMed Central  Google Scholar 

  102. Boon, N. J. et al. DNA damage induces p53-independent apoptosis through ribosome stalling. Science 384, 785–792 (2024).

    PubMed  Google Scholar 

  103. Ogawa, A. et al. SLFN11-mediated ribosome biogenesis impairment induces TP53-independent apoptosis. Mol. Cell 85, 894–912 (2025).

    PubMed  Google Scholar 

  104. Piñon, J. D., Labi, V., Egle, A. & Villunger, A. Bim and Bmf in tissue homeostasis and malignant disease. Oncogene 27, S41–S52 (2008).

    PubMed  PubMed Central  Google Scholar 

  105. Fava, L. L. et al. The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev. 31, 34–45 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Evans, L. T. et al. ANKRD26 recruits PIDD1 to centriolar distal appendages to activate the PIDDosome following centrosome amplification. EMBO J. 40, e105106 (2021).

    PubMed  Google Scholar 

  107. Quintyne, N. J., Reing, J. E., Hoffelder, D. R., Gollin, S. M. & Saunders, W. S. Spindle multipolarity is prevented by centrosomal clustering. Science 307, 127–129 (2005).

    PubMed  Google Scholar 

  108. Burigotto, M. et al. Centriolar distal appendages activate the centrosome–PIDDosome–p53 signalling axis via ANKRD26. EMBO J. 40, e104844 (2021).

    PubMed  Google Scholar 

  109. Sladky, V. C. et al. E2F-family members engage the PIDDosome to limit hepatocyte ploidy in liver development and regeneration. Dev. Cell 52, 335–349 (2020).

    PubMed  Google Scholar 

  110. Rizzotto, D., Englmaier, L. & Villunger, A. At a crossroads to cancer: how p53-induced cell fate decisions secure genome integrity. Int. J. Mol. Sci. 22, 10883 (2021).

    PubMed  PubMed Central  Google Scholar 

  111. Rizzotto, D. et al. Caspase-2 kills cells with extra centrosomes. Sci. Adv. 10, eado6607 (2024).

    PubMed  PubMed Central  Google Scholar 

  112. Edwards, F., et al. Centrosome amplification primes ovarian cancer cells for apoptosis and potentiates the response to chemotherapy. PLoS Biol. 22, e3002759 (2024).

    PubMed  PubMed Central  Google Scholar 

  113. McLaughlin, M. et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nat. Rev. Cancer 20, 203–217 (2020).

    PubMed  Google Scholar 

  114. Di Maggio, F. M. et al. Portrait of inflammatory response to ionizing radiation treatment. J. Inflamm.12, 14 (2015).

    Google Scholar 

  115. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Zhang, B., Xu, P. & Ablasser, A. Regulation of the cGAS–STING pathway. Annu. Rev. Immunol. 43, 667–692 (2025).

    PubMed  Google Scholar 

  117. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    PubMed  Google Scholar 

  118. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    PubMed  Google Scholar 

  119. Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8, 427 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. Glück, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–E4620 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Hong, C. et al. cGAS–STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607, 366–373 (2022).

    PubMed  Google Scholar 

  124. Volkman, H. E., Cambier, S., Gray, E. E. & Stetson, D. B. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. eLife 8, e47491 (2019).

    PubMed  PubMed Central  Google Scholar 

  125. Xu, P. et al. The CRL5–SPSB3 ubiquitin ligase targets nuclear cGAS for degradation. Nature 627, 873–879 (2024).

    PubMed  PubMed Central  Google Scholar 

  126. Xie, W. & Patel, D. J. Keeping innate immune response in check: when cGAS meets the nucleosome. Cell Res. 30, 1055–1056 (2020).

    PubMed  PubMed Central  Google Scholar 

  127. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Mackenzie, K. J. et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J. 35, 831–844 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Zierhut, C. & Funabiki, H. Regulation and consequences of cGAS activation by self-DNA. Trends Cell Biol. 30, 594–605 (2020).

    PubMed  PubMed Central  Google Scholar 

  131. Wang, B., Han, J., Elisseeff, J. H. & Demaria, M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat. Rev. Mol. Cell Biol. 25, 958–978 (2024).

    PubMed  Google Scholar 

  132. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    PubMed  PubMed Central  Google Scholar 

  133. Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

    PubMed  PubMed Central  Google Scholar 

  134. López-Polo, V. et al. Release of mitochondrial dsRNA into the cytosol is a key driver of the inflammatory phenotype of senescent cells. Nat. Commun. 15, 7378 (2024).

    PubMed  PubMed Central  Google Scholar 

  135. Uggenti, C., Lepelley, A. & Crow, Y. J. Self-awareness: nucleic acid-driven inflammation and the type I interferonopathies. Annu. Rev. Immunol. 37, 247–267 (2019).

    PubMed  Google Scholar 

  136. Krupina, K., Goginashvili, A. & Cleveland, D. W. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).

    PubMed  PubMed Central  Google Scholar 

  137. Lebrec, V. et al. A microscopy reporter for cGAMP reveals rare cGAS activation following DNA damage, and a lack of correlation with micronuclear cGAS enrichment. Preprint at bioRxiv https://doi.org/10.1101/2024.05.13.593978 (2024).

  138. Takaki, T., Millar, R., Hiley, C. T. & Boulton, S. J. Micronuclei induced by radiation, replication stress, or chromosome segregation errors do not activate cGAS–STING. Mol. Cell 84, 2203–2213 (2024).

    PubMed  Google Scholar 

  139. Sato, Y. & Hayashi, M. T. Micronucleus is not a potent inducer of the cGAS/STING pathway. Life Sci. Alliance 7, e202302424 (2024).

    PubMed  PubMed Central  Google Scholar 

  140. Smarduch, S. et al. A novel biosensor for the spatiotemporal analysis of STING activation during innate immune responses to dsDNA. EMBO J. 44, 2157–2182 (2025).

    PubMed  PubMed Central  Google Scholar 

  141. Agustinus, A. S. et al. Epigenetic dysregulation from chromosomal transit in micronuclei. Nature 619, 176–183 (2023).

    PubMed  PubMed Central  Google Scholar 

  142. Coquel, F. et al. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557, 57–61 (2018).

    PubMed  Google Scholar 

  143. Crossley, M. P. et al. R-loop-derived cytoplasmic RNA–DNA hybrids activate an immune response. Nature 613, 187–194 (2023).

    PubMed  Google Scholar 

  144. Mankan, A. K. et al. Cytosolic RNA:DNA hybrids activate the cGAS–STING axis. EMBO J.33, 2937–2946 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Wang, Y. et al. eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature 599, 308–314 (2021).

    PubMed  PubMed Central  Google Scholar 

  146. Yang, F. et al. Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. Nature 620, 218–225 (2023).

    PubMed  PubMed Central  Google Scholar 

  147. Tang, S., Stokasimov, E., Cui, Y. & Pellman, D. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair. Nature 606, 930–936 (2022).

    PubMed  PubMed Central  Google Scholar 

  148. Bhowmick, R., Hickson, I. D. & Liu, Y. Completing genome replication outside of S phase. Mol. Cell 83, 3596–3607 (2023).

    PubMed  Google Scholar 

  149. Deng, L. et al. Mitotic CDK promotes replisome disassembly, fork breakage, and complex DNA rearrangements. Mol. Cell 73, 915–929 (2019).

    PubMed  PubMed Central  Google Scholar 

  150. Leimbacher, P. A. et al. MDC1 interacts with TOPBP1 to maintain chromosomal stability during mitosis. Mol. Cell 74, 571–583 (2019).

    PubMed  PubMed Central  Google Scholar 

  151. Trivedi, P., Steele, C. D., Au, F. K. C., Alexandrov, L. B. & Cleveland, D. W. Mitotic tethering enables inheritance of shattered micronuclear chromosomes. Nature 618, 1049–1056 (2023).

    PubMed  PubMed Central  Google Scholar 

  152. Lin, Y. F. et al. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 618, 1041–1048 (2023).

    PubMed  PubMed Central  Google Scholar 

  153. De Marco Zompit, M. et al. The CIP2A–TOPBP1 complex safeguards chromosomal stability during mitosis. Nat. Commun. 13, 4143 (2022).

    PubMed  PubMed Central  Google Scholar 

  154. Krupina, K., Goginashvili, A. & Cleveland, D. W. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat. Rev. Genet. 25, 196–210 (2024).

    PubMed  Google Scholar 

  155. Kim, H. et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet. 52, 891–897 (2020).

    PubMed  PubMed Central  Google Scholar 

  156. Hall-Younger, E. & Tait, S. W. Mitochondria and cell death signalling. Curr. Opin. Cell Biol. 94, 102510 (2025).

    PubMed  Google Scholar 

  157. Pizzuto, M. & Pelegrin, P. Cardiolipin in immune signaling and cell death. Trends Cell Biol. 30, 892–903 (2020).

    PubMed  Google Scholar 

  158. Kalkavan, H. et al. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 185, 3356–3374 (2022).

    PubMed  PubMed Central  Google Scholar 

  159. Vringer, E. et al. Mitochondrial outer membrane integrity regulates a ubiquitin-dependent and NF-κB-mediated inflammatory response. EMBO J. 43, 904–930 (2024).

    PubMed  PubMed Central  Google Scholar 

  160. Di Bona, M. et al. Micronuclear collapse from oxidative damage. Science 385, eadj8691 (2024).

    PubMed  PubMed Central  Google Scholar 

  161. Martin, S. et al. A p62-dependent rheostat dictates micronuclei catastrophe and chromosome rearrangements. Science 385, eadj7446 (2024).

    PubMed  PubMed Central  Google Scholar 

  162. Garcia-Carpio, I. et al. Extra centrosomes induce PIDD1-mediated inflammation and immunosurveillance. EMBO J. 42, e113510 (2023).

    PubMed  PubMed Central  Google Scholar 

  163. Wang, R. W., Vigano, S., Ben-David, U., Amon, A. & Santaguida, S. Aneuploid senescent cells activate NF-κB to promote their immune clearance by NK cells. EMBO Rep. 22, e52032 (2021).

    PubMed  PubMed Central  Google Scholar 

  164. Xian, S. et al. The unfolded protein response links tumor aneuploidy to local immune dysregulation. EMBO Rep. 22, e52509 (2021).

    PubMed  PubMed Central  Google Scholar 

  165. Grootjans, J., Kaser, A., Kaufman, R. J. & Blumberg, R. S. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 16, 469–484 (2016).

    PubMed  PubMed Central  Google Scholar 

  166. Ahn, J. et al. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 5, 5166 (2014).

    PubMed  Google Scholar 

  167. Chen, Q. et al. Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    PubMed  PubMed Central  Google Scholar 

  168. Arwert, E. N. et al. STING and IRF3 in stromal fibroblasts enable sensing of genomic stress in cancer cells to undermine oncolytic viral therapy. Nat. Cell Biol. 22, 758–766 (2020).

    PubMed  PubMed Central  Google Scholar 

  169. Schadt, L. et al. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 29, 1236–1248 (2019).

    PubMed  Google Scholar 

  170. Ahn, J., Xia, T., Rabasa Capote, A., Betancourt, D. & Barber, G. N. Extrinsic phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. Cancer Cell 33, 862–873 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. Dillon, M. T. et al. ATR inhibition potentiates the radiation-induced inflammatory tumor microenvironment. Clin. Cancer Res. 25, 3392–3403 (2019).

    PubMed  PubMed Central  Google Scholar 

  172. Sasaki, N. et al. RNA sensing induced by chromosome missegregation augments anti-tumor immunity. Mol. Cell 85, 770–786 (2025).

    PubMed  Google Scholar 

  173. Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20, 698–714 (2019).

    PubMed  PubMed Central  Google Scholar 

  174. Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19, 1–9 (2016).

    PubMed  Google Scholar 

  175. Brambati, A. et al. RHINO directs MMEJ to repair DNA breaks in mitosis. Science 381, 653–660 (2023).

    PubMed  PubMed Central  Google Scholar 

  176. Rieder, C. L. & Cole, R. W. Entry into mitosis in vertebrate somatic cells is guarded by a chromosome damage checkpoint that reverses the cell cycle when triggered during early but not late prophase. J. Cell Biol. 142, 1013–1022 (1998).

    PubMed  PubMed Central  Google Scholar 

  177. Wang, H. et al. PLK1 targets CtIP to promote microhomology-mediated end joining. Nucleic Acids Res. 46, 10724–10739 (2018).

    PubMed  PubMed Central  Google Scholar 

  178. Martin, P. R. et al. The mitotic CIP2A–TOPBP1 axis facilitates mitotic pathway choice between MiDAS and MMEJ. Nat. Commun. 16, 10623 (2025).

    PubMed  PubMed Central  Google Scholar 

  179. Bhowmick, R., Minocherhomji, S. & Hickson, I. D. RAD52 facilitates mitotic DNA synthesis following replication stress. Mol. Cell 64, 1117–1126 (2016).

    PubMed  Google Scholar 

  180. Mocanu, C. et al. DNA replication is highly resilient and persistent under the challenge of mild replication stress. Cell Rep. 39, 110701 (2022).

    PubMed  PubMed Central  Google Scholar 

  181. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    PubMed  PubMed Central  Google Scholar 

  182. Frank, T. et al. Cell cycle arrest in mitosis promotes interferon-induced necroptosis. Cell Death Differ. 26, 2046–2060 (2019).

    PubMed  PubMed Central  Google Scholar 

  183. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    PubMed  Google Scholar 

  184. Chen, K. W. & Broz, P. Gasdermins as evolutionarily conserved executors of inflammation and cell death. Nat. Cell Biol. 26, 1394–1406 (2024).

    PubMed  Google Scholar 

  185. Gong, W. et al. Phosphorylated IRF3 promotes GSDME-mediated pyroptosis through RIPK1/FADD/caspase-8 complex formation during mitotic arrest in ovarian cancer. Cell Commun. Signal. 23, 306 (2025).

    PubMed  PubMed Central  Google Scholar 

  186. Hu, Y. et al. Paclitaxel induces micronucleation and activates pro-inflammatory cGAS–STING signaling in triple-negative breast cancer. Mol. Cancer Ther. 20, 2553–2567 (2021).

    PubMed  Google Scholar 

  187. Scribano, C. M. et al. Chromosomal instability sensitizes patient breast tumors to multipolar divisions induced by paclitaxel. Sci. Transl. Med. 13, eabd4811 (2021).

    PubMed  PubMed Central  Google Scholar 

  188. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    PubMed  Google Scholar 

Download references

Acknowledgements

A.V. acknowledges support by the Austrian Science Fund (FWF) (10.55776/I6642, TRR353 and 10.55776/FG25) and the European Research Council (ERC AdG POLICE #787171). C.Z. acknowledges support from Cancer Research UK (RCCFEL\100092), the Cancer Research UK Radiation Research Centre of Excellence at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust (A28724 and RRCOER-Jun24/100006) and Breast Cancer Now (2023.05PR1625). We also thank N. Kinz and M. Schapfl for help with preparing the figures.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally. D.R., C.Z. and A.V. led the reviewing and writing of individual sections that were subsequently cross-checked and edited by each author. C.Z. developed Fig. 1, A.V. developed Figs. 24. All figures were edited by D.R., C.Z. and A.V.

Corresponding authors

Correspondence to Dario Rizzotto, Christian Zierhut or Andreas Villunger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizzotto, D., Zierhut, C. & Villunger, A. Mitotic errors as triggers of cell death and inflammation. Nat Cell Biol 28, 21–34 (2026). https://doi.org/10.1038/s41556-025-01785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41556-025-01785-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing