Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy

Abstract

Solar photovoltaic (PV) and wind energy provide carbon-free renewable energy to reach ambitious global carbon-neutrality goals, but their yields are in turn influenced by future climate change. Here, using a bias-corrected large ensemble of multi-model simulations under an envisioned post-pandemic green recovery, we find a general enhancement in solar PV over global land regions, especially in Asia, relative to the well-studied baseline scenario with modest climate change mitigation. Our results also show a notable west-to-east interhemispheric shift of wind energy by the mid-twenty-first century, under the two global carbon-neutral scenarios. Both solar PV and wind energy are projected to have a greater temporal stability in most land regions due to deep decarbonization. The co-benefits in enhancing and stabilizing renewable energy sources demonstrate a beneficial feedback in achieving global carbon neutrality and highlight Asian regions as a likely hotspot for renewable resources in future decades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes of solar PVPOT.
Fig. 2: Attribution of solar PVPOT changes.
Fig. 3: Changes of WP.
Fig. 4: Changes of wind speed conditions.
Fig. 5: Changes in variability of solar PVPOT and WP at various time scales.

Similar content being viewed by others

Data availability

The ERA5 reanalysis can be obtained at https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. The multi-model outputs (experiments names: historical, ssp245, ssp245-cov-strgreen and ssp245-cov-strgreen) are available at https://esgf-node.llnl.gov/search/cmip6/.

Code availability

The bias correction is based on the open-source R package of MBCn (https://rdrr.io/cran/MBC/man/MBCn.html).

References

  1. Mukherjee, S. & Mishra, A. K. Increase in compound drought and heatwaves in a warming world. Geophys. Res. Lett. 48, e2020GL090617 (2021).

    Article  Google Scholar 

  2. Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).

    Article  CAS  Google Scholar 

  3. Tellman, B. et al. Satellite imaging reveals increased proportion of population exposed to floods. Nature 596, 80–86 (2021).

    Article  CAS  Google Scholar 

  4. Yuan, X. et al. Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun. 10, 4661 (2019).

    Article  Google Scholar 

  5. Lei, Y. D. et al. Global perspective of drought impacts on ozone pollution episodes. Environ. Sci. Technol. 56, 3932–3940 (2022).

    Article  Google Scholar 

  6. Cai, W. J., Li, K., Liao, H., Wang, H. J. & Wu, L. X. Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Clim. Change 7, 257–262 (2017).

    Article  Google Scholar 

  7. Colette, A. et al. Is the ozone climate penalty robust in Europe? Environ. Res. Lett. 10, 084015 (2015).

    Article  Google Scholar 

  8. Liu, C. et al. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 381, 705–715 (2019).

    Article  CAS  Google Scholar 

  9. Vicedo-Cabrera, A. M. et al. Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries. Br. Med. J. 368, m108 (2020).

    Article  Google Scholar 

  10. IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  11. Huang, M. T. & Zhai, P. M. Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society. Adv. Clim. Change Res. 12, 281–286 (2021).

    Article  Google Scholar 

  12. Forster, P. M. et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Change 10, 913–919 (2020).

    Article  CAS  Google Scholar 

  13. AlSkaif, T., Dev, S., Visser, L., Hossari, M. & van Sark, W. A systematic analysis of meteorological variables for PV output power estimation. Renew. Energy 153, 12–22 (2020).

    Article  Google Scholar 

  14. Pryor, S. C., Barthelmie, R. J. & Schoof, J. T. Past and future wind climates over the contiguous USA based on the North American Regional Climate Change Assessment Program model suite. J. Geophys. Res. Atmos. 117, D19119 (2012).

    Article  Google Scholar 

  15. Feron, S., Cordero, R. R., Damiani, A. & Jackson, R. B. Climate change extremes and photovoltaic power output. Nat. Sustain. 4, 270–276 (2020).

    Article  Google Scholar 

  16. Gao, M. et al. Secular decrease of wind power potential in India associated with warming in the Indian Ocean. Sci. Adv. 4, eaat5256 (2018).

    Article  Google Scholar 

  17. Gandoman, F. H., Raeisi, F. & Ahmadi, A. A literature review on estimating of PV-array hourly power under cloudy weather conditions. Renew. Sustain. Energy Rev. 63, 579–592 (2016).

    Article  Google Scholar 

  18. Skoplaki, E. & Palyvos, J. A. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83, 614–624 (2009).

    Article  CAS  Google Scholar 

  19. Wang, J. Z., Hu, J. M. & Ma, K. L. Wind speed probability distribution estimation and wind energy assessment. Renew. Sustain. Energy Rev. 60, 881–899 (2016).

    Article  Google Scholar 

  20. Li, D. et al. Historical evaluation and future projections of 100‐m wind energy potentials over CORDEX‐East Asia. J. Geophys. Res. Atmos. 125, e2020JD032874 (2020).

    Google Scholar 

  21. Karnauskas, K. B., Lundquist, J. K. & Zhang, L. Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat. Geosci. 11, 38–43 (2017).

    Article  Google Scholar 

  22. Pryor, S. C., Barthelmie, R. J., Bukovsky, M. S., Leung, L. R. & Sakaguchi, K. Climate change impacts on wind power generation. Nat. Rev. Earth Environ. 1, 627–643 (2020).

    Article  Google Scholar 

  23. Moemken, J., Reyers, M., Feldmann, H. & Pinto, J. G. Future changes of wind speed and wind energy potentials in EURO-CORDEX ensemble simulations. J. Geophys. Res. Atmos. 123, 6373–6389 (2018).

    Article  Google Scholar 

  24. Gernaat, D. E. H. J. et al. Climate change impacts on renewable energy supply. Nat. Clim. Change 11, 119–125 (2021).

    Article  Google Scholar 

  25. Lima, D. C. A. et al. The present and future offshore wind resource in the southwestern African region. Clim. Dyn. 56, 1371–1388 (2021).

    Article  Google Scholar 

  26. Carvalho, D., Rocha, A., Costoya, X., deCastro, M. & Gómez-Gesteira, M. Wind energy resource over Europe under CMIP6 future climate projections: what changes from CMIP5 to CMIP6. Renew. Sustain. Energy Rev. 151, 111594 (2021).

    Article  Google Scholar 

  27. Barthelmie, R. J. & Pryor, S. C. Potential contribution of wind energy to climate change mitigation. Nat. Clim. Change 4, 684–688 (2014).

    Article  CAS  Google Scholar 

  28. Hanna, R., Xu, Y. & Victor, D. G. After COVID-19, green investment must deliver jobs to get political traction. Nature 582, 178–180 (2020).

    Article  CAS  Google Scholar 

  29. Liu, Z. et al. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155 (2022).

    Article  Google Scholar 

  30. Zeng, N. et al. The Chinese carbon-neutral goal: challenges and prospects. Adv. Atmos. Sci. 39, 1229–1238 (2022).

    Article  Google Scholar 

  31. Net-zero carbon pledges must be meaningful. Nature 592, 8 (2021).

  32. Fiedler, S., Wyser, K., Rogelj, J. & van Noije, T. Radiative effects of reduced aerosol emissions during the COVID-19 pandemic and the future recovery. Atmos. Res. 264, 105866 (2021).

    Article  CAS  Google Scholar 

  33. D’Souza, J. et al. Projected changes in seasonal and extreme summertime temperature and precipitation in India in response to COVID-19 recovery emissions scenarios. Environ. Res. Lett. 16, 114025 (2021).

    Article  Google Scholar 

  34. Lei, Y. D. et al. Avoided population exposure to extreme heat under two scenarios of global carbon neutrality by 2050 and 2060. Environ. Res. Lett. 17, 094041 (2022).

    Article  Google Scholar 

  35. Lamboll, R. D. et al. Modifying emissions scenario projections to account for the effects of COVID-19: protocol for CovidMIP. Geosci. Model Dev. 14, 3683–3695 (2021).

    Article  CAS  Google Scholar 

  36. Danso, D. K. et al. A CMIP6 assessment of the potential climate change impacts on solar photovoltaic energy and its atmospheric drivers in West Africa. Environ. Res. Lett. 17, 044016 (2022).

    Article  Google Scholar 

  37. Hou, X., Wild, M., Folini, D., Kazadzis, S. & Wohland, J. Climate change impacts on solar power generation and its spatial variability in Europe based on CMIP6. Earth Syst. Dyn. 12, 1099–1113 (2021).

    Article  Google Scholar 

  38. Wang, Z. L. et al. Evaluation of surface solar radiation trends over China since the 1960s in the CMIP6 models and potential impact of aerosol emissions. Atmos. Res. 268, 105991 (2022).

    Article  CAS  Google Scholar 

  39. Schwarz, M., Folini, D., Yang, S., Allan, R. P. & Wild, M. Changes in atmospheric shortwave absorption as important driver of dimming and brightening. Nat. Geosci. 13, 110–115 (2020).

    Article  CAS  Google Scholar 

  40. Salgueiro, V., Costa, M. J., Silva, A. M. & Bortoli, D. Effects of clouds on the surface shortwave radiation at a rural inland mid-latitude site. Atmos. Res. 178, 95–101 (2016).

    Article  Google Scholar 

  41. Li, L. et al. A satellite-measured view of aerosol component content and optical property in a haze-polluted case over North China Plain. Atmos. Res. 266, 105958 (2022).

    Article  CAS  Google Scholar 

  42. Chen, S. et al. Improved air quality in China can enhance solar-power performance and accelerate carbon-neutrality targets. One Earth 5, 550–562 (2022).

    Article  Google Scholar 

  43. Jerez, S. et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 6, 10014 (2015).

    Article  CAS  Google Scholar 

  44. Lu, N. et al. High emission scenario substantially damages China’s photovoltaic potential. Geophys. Res. Lett. 49, e2022GL100068 (2022).

    Article  Google Scholar 

  45. Akinsanola, A. A., Ogunjobi, K. O., Abolude, A. T. & Salack, S. Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models. Environ. Res. Lett. 16, 044033 (2021).

    Article  Google Scholar 

  46. Net Zero by 2050: A Roadmap for the Global Energy Sector (IEA, 2021).

  47. Renewables 2022 (IEA, 2022).

  48. Li, M. Q. et al. High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system. Appl. Energy 306, 117996 (2022).

    Article  Google Scholar 

  49. Wang, Y. H. et al. Spatial and temporal variation of offshore wind power and its value along the Central California Coast. Environ. Res. Commun. 1, 121001 (2019).

    Article  Google Scholar 

  50. He, Y. P., Monahan, A. H. & McFarlane, N. A. Diurnal variations of land surface wind speed probability distributions under clear-sky and low-cloud conditions. Geophys. Res. Lett. 40, 3308–3314 (2013).

    Article  Google Scholar 

  51. Li, Y. et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 361, 1019–1022 (2018).

    Article  CAS  Google Scholar 

  52. Zhou, L. M. et al. Impacts of wind farms on land surface temperature. Nat. Clim. Change 2, 539–543 (2012).

    Article  Google Scholar 

  53. Walsh-Thomas, J. M., Cervone, G., Agouris, P. & Manca, G. Further evidence of impacts of large-scale wind farms on land surface temperature. Renew. Sustain. Energy Rev. 16, 6432–6437 (2012).

    Article  Google Scholar 

  54. Xu, S. Q. et al. Delayed use of bioenergy crops might threaten climate and food security. Nature 609, 299–306 (2022).

    Article  CAS  Google Scholar 

  55. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  Google Scholar 

  56. Fan, W. X. et al. Evaluation of global reanalysis land surface wind speed trends to support wind energy development using in situ observations. J. Appl. Meteorol. Climatol. 60, 33–50 (2021).

    Article  Google Scholar 

  57. Urraca, R. et al. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Sol. Energy 164, 339–354 (2018).

    Article  Google Scholar 

  58. Xu, Z. F., Han, Y., Tam, C. Y., Yang, Z. L. & Fu, C. B. Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979-2100). Sci. Data 8, 293 (2021).

    Article  CAS  Google Scholar 

  59. Wang, F. & Tian, D. On deep learning-based bias correction and downscaling of multiple climate models simulations. Clim. Dyn. 59, 3451–3468 (2022).

    Article  Google Scholar 

  60. Cannon, A. J. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 50, 31–49 (2018).

    Article  Google Scholar 

  61. Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J. Clim. 28, 6938–6959 (2015).

    Article  Google Scholar 

  62. Bichet, A. et al. Potential impact of climate change on solar resource in Africa for photovoltaic energy: analyses from CORDEX-AFRICA climate experiments. Environ. Res. Lett. 14, 124039 (2019).

    Article  CAS  Google Scholar 

  63. TamizhMani, G., Ji, L., Tang, Y. & Petacci, L. Photovoltaic module thermal/wind performance: long-term monitoring and model development for energy rating. In NCPV and Solar Program Review Meeting Proceedings NREL/CP-520-35645 (National Renewable Energy Laboratory, 2003).

  64. Chenni, R., Makhlouf, M., Kerbache, T. & Bouzid, A. A detailed modeling method for photovoltaic cells. Energy 32, 1724–1730 (2007).

    Article  CAS  Google Scholar 

  65. Pryor, S. C. & Barthelmie, R. J. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States. Proc. Natl Acad. Sci. USA 108, 8167–8171 (2011).

    Article  CAS  Google Scholar 

  66. Smith, O., Cattell, O., Farcot, E., O’Dea, R. D. & Hopcraft, K. I. The effect of renewable energy incorporation on power grid stability and resilience. Sci. Adv. 8, eabj6734 (2022).

  67. Yan, Z. F., Hitt, J. L., Turner, J. A. & Mallouk, T. E. Renewable electricity storage using electrolysis. Proc. Natl Acad. Sci. USA 117, 12558–12563 (2020).

    Article  CAS  Google Scholar 

  68. Zhang, B. C., Guo, Z., Zhang, L. X., Zhou, T. J. & Hayasaya, T. Cloud characteristics and radiation forcing in the global land monsoon region from multisource satellite data sets. Earth Space Sci. 7, e2019EA001027 (2020).

    Article  Google Scholar 

  69. Li, J. D., Wang, W. C., Dong, X. Q. & Mao, J. Y. Cloud–radiation–precipitation associations over the Asian monsoon region: an observational analysis. Clim. Dyn. 49, 3237–3255 (2017).

    Article  Google Scholar 

  70. Feng, H. H., Ye, S. C. & Zou, B. Contribution of vegetation change to the surface radiation budget: a satellite perspective. Glob. Planet. Change 192, 103225 (2020).

    Article  Google Scholar 

  71. Martel, J. L. et al. CMIP5 and CMIP6 model projection comparison for hydrological impacts over North America. Geophys. Res. Lett. 49, e2022GL098364 (2022).

    Article  Google Scholar 

  72. Dieng, D. et al. Multivariate bias-correction of high-resolution regional climate change simulations for West Africa: performance and climate change implications. J. Geophys. Res. Atmos. 127, e2021JD034836 (2022).

    Article  Google Scholar 

  73. Singh, H., Najafi, M. R. & Cannon, A. J. Characterizing non-stationary compound extreme events in a changing climate based on large-ensemble climate simulations. Clim. Dyn. 56, 1389–1405 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the CovidMIP project for providing simulation outputs. We also thank A. J. Cannon for sharing the MBCn package. This work was jointly supported by the Special Project of National Natural Science Foundation of China (42341202 to X.Z., Z.W. and H.C.), the National Science Fund for Distinguished Young Scholars (41825011 to H.C.) and the National Natural Science Foundation of China (42275042 to Z.W. and 42205118 to Y.L.).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and Z.W. conceived the study. Y.L., Z.W. and Y.X. performed the data analysis. Y.L. and Z.W. led the writing of this study, with discussion and improvement from Y.X. D.W., X.Z., H.C., X.Y., C.T., J.Z., L.G., L. Li, H.Z. and L. Liu provided valuable comments and contributed to constructive revisions.

Corresponding author

Correspondence to Zhili Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Michael Craig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Changes of solar photovoltaic potential (\({{\boldsymbol{PV}}}_{{\boldsymbol{POT}}}\)) under different climate change scenarios, shown in absolute values rather than relative values in Fig.1.

(a), The changes of annual mean solar \({{PV}}_{{POT}}\) during 2040–2049 under SSP2-4.5 (S245) relative to the historical period (Unitless). (b)-(c), The changes of annual mean solar \({{PV}}_{{POT}}\) during 2040–2049 under the moderate (MOD) and strong (STR) carbon-neutral scenarios relative to S245 (Unitless). Hatched regions represent a change with high inter-model agreement defined as at least three of the four CovidMIP models agreeing on the direction of change.

Extended Data Fig. 2 Annual changes of temperature (T, units: °C) and downwelling shortwave radiation (I, units: W/m2).

(a-b), The changes of annual mean T and I during 2040–2049 under the SSP2-4.5 scenario (S245) relative to the historical period. (c-d), The changes of annual mean T and I during 2040–2049 under the moderate (MOD) carbon-neutral scenario relative to S245. (e-f), The changes of annual mean T and I during 2040–2049 under the strong (STR) carbon-neutral scenario relative to S245. Hatched regions represent a change with high inter-model agreement defined as at least three of the four CovidMIP models agreeing on the direction of change.

Extended Data Fig. 3 Changes of wind power (WP) under different climate change scenarios, shown in absolute values rather than relative values in Fig. 3.

(a), The changes of annual mean WP during 2040–2049 under SSP2-4.5 (S245) relative to the historical period (units: KW). (b)-(c), The changes of annual mean WP during 2040–2049 under the moderate (MOD) and strong (STR) carbon-neutral scenarios relative to S245 (units: KW). Hatched regions represent a change with high inter-model agreement defined as at least three of the four CovidMIP models agreeing on the direction of change.

Extended Data Fig. 4 Changes of wind power density (WPD) (units: %).

(a), The relative changes of annual mean WPD during 2040–2049 under S245 relative to the historical period. (b)-(c), The relative changes of annual mean WPD during 2040–2049 under MOD and STR relative to S245. Hatched regions have changes with high inter-model agreement defined as at least three of the four models agreeing on the sign of changes. (d), Regional mean relative changes of annual WPD during 2040–2049 under the S245 (red bars), MOD (blue bars), and STR (green bars) scenarios relative to the historical period. The black error bars represent one standard deviation of four climate models. The hatched red (blue and green) bars have changes with high inter-model agreement during 2040–2049 under S245 (MOD and STR) relative to the historical period (S245).

Extended Data Fig. 5 Variability of solar photovoltaic potential (\({{\boldsymbol{PV}}}_{{\boldsymbol{POT}}}\)) and wind power (WP) at various time scales in the historical period.

(a), (c), and (e), Day-to-day, month-to-month, and year-to-year variability of solar \({{PV}}_{{POT}}\) in the historical period (units: %). (b), (d), and (f), same as left panels but for WP.

Extended Data Fig. 6 Spatial distributions of observed and simulated solar photovoltaic potential (\({{\boldsymbol{PV}}}_{{\boldsymbol{POT}}}\)) and Wind Power Density (WPD).

(a, b), Observed annual mean solar \({{PV}}_{{POT}}\) (Unitless) and WPD (units: W/m2) in the historical period (1995–2014). (c)-(d), The relative biases of solar \({{PV}}_{{POT}}\) and WPD from raw multi-model mean simulation (units: %). (e)-(f), The relative biases of solar \({{PV}}_{{POT}}\) and WPD from bias-corrected multi-model mean simulation (units: %). Please note the differences in color scales.

Extended Data Fig. 7 Estimate of annual mean wind speed in the historical period (1995-2014).

(a, b), Annual mean wind speed at 10 m and 100 m. (c), Annual mean of scaling factor \(\alpha\) converting 10 m wind speed to 100 m. Scaling factor was calculated from daily data before taking annual average.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, and Supplementary Figs. 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Wang, Z., Wang, D. et al. Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy. Nat. Clim. Chang. 13, 693–700 (2023). https://doi.org/10.1038/s41558-023-01692-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-023-01692-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing